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1 Introduction

1.1 What is Machine Learning

Machine learning is a subfield of computer science that is concerned with building algorithms
which, to be useful, rely on a collection of examples of some phenomenon. These examples
can come from nature, be handcrafted by humans or generated by another algorithm.

Machine learning can also be defined as the process of solving a practical problem by 1)
gathering a dataset, and 2) algorithmically building a statistical model based on that dataset.
That statistical model is assumed to be used somehow to solve the practical problem.

To save keystrokes, I use the terms “learning” and “machine learning” interchangeably.

1.2 Types of Learning

Learning can be supervised, semi-supervised, unsupervised and reinforcement.

1.2.1 Supervised Learning

In supervised learning’, the dataset is the collection of labeled examples {(x;,v;)}¥ ;.
Each element x; among N is called a feature vector. A feature vector is a vector in which
each dimension j = 1,...,D contains a value that describes the example somehow. That
value is called a feature and is denoted as z(). For instance, if each example x in our
collection represents a person, then the first feature, z(!), could contain height in cm, the
second feature, (?), could contain weight in kg, (3 could contain gender, and so on. For all

examples in the dataset, the feature at position j in the feature vector always contains the
(2

same kind of information. It means that if ;”’ contains weight in kg in some example x;,

then x,(f) will also contain weight in kg in every example x;, k =1,..., N. The label y; can
be either an element belonging to a finite set of classes {1,2,...,C}, or a real number, or a

more complex structure; like a vector, a matrix, a tree, or a graph. Unless otherwise stated,
in this book %; is either one of a finite set of classes or a real number?. You can see a class as
a category to which an example belongs. For instance, if your examples are email messages
and your problem is spam detection, then you have two classes {spam, not__spam}.

The goal of a supervised learning algorithm is to use the dataset to produce a model
that takes a feature vector x as input and outputs information that allows deducing the label
for this feature vector. For instance, the model created using the dataset of people could
take as input a feature vector describing a person and output a probability that the person
has cancer.

1If a term is in bold, that means that the term can be found in the index at the end of the book.
2A real number is a quantity that can represent a distance along a line. Examples: 0, —256.34, 1000,
1000.2.



1.2.2 Unsupervised Learning

In unsupervised learning, the dataset is a collection of unlabeled examples {x;} ;.
Again, x is a feature vector, and the goal of an unsupervised learning algorithm is
to create a model that takes a feature vector x as input and either transforms it into
another vector or into a value that can be used to solve a practical problem. For example,
in clustering, the model returns the id of the cluster for each feature vector in the dataset.
In dimensionality reduction, the output of the model is a feature vector that has fewer
features than the input x; in outlier detection, the output is a real number that indicates
how x is different from a “typical” example in the dataset.

1.2.3 Semi-Supervised Learning

In semi-supervised learning, the dataset contains both labeled and unlabeled examples.
Usually, the quantity of unlabeled examples is much higher than the number of labeled
examples. The goal of a semi-supervised learning algorithm is the same as the goal of
the supervised learning algorithm. The hope here is that using many unlabeled examples can
help the learning algorithm to find (we might say “produce” or “compute”) a better model.

It could look counter-intuitive that learning could benefit from adding more unlabeled
examples. It seems like we add more uncertainty to the problem. However, when you add
unlabeled examples, you add more information about your problem: a larger sample reflects
better the probability distribution the data we labeled came from. Theoretically, a learning
algorithm should be able to leverage this additional information.

1.2.4 Reinforcement Learning

Reinforcement learning is a subfield of machine learning where the machine “lives” in
an environment and is capable of perceiving the state of that environment as a vector of
features. The machine can execute actions in every state. Different actions bring different
rewards and could also move the machine to another state of the environment. The goal of
a reinforcement learning algorithm is to learn a policy.

A policy is a function (similar to the model in supervised learning)
that takes the feature vector of a state as input and outputs an
optimal action to execute in that state. The action is optimal if
it maximizes the expected average reward.

Reinforcement learning solves a particular kind of problem where
decision making is sequential, and the goal is long-term, such as
game playing, robotics, resource management, or logistics. In this
book, I put emphasis on one-shot decision making where input
examples are independent of one another and the predictions made
in the past. I leave reinforcement learning out of the scope of this book.




1.3 How Supervised Learning Works

In this section, I briefly explain how supervised learning works so that you have the picture
of the whole process before we go into detail. I decided to use supervised learning as an
example because it’s the type of machine learning most frequently used in practice.

The supervised learning process starts with gathering the data. The data for supervised
learning is a collection of pairs (input, output). Input could be anything, for example, email
messages, pictures, or sensor measurements. Outputs are usually real numbers, or labels (e.g.
“spam”, “not_spam”, “cat”, “dog”, “mouse”, etc). In some cases, outputs are vectors (e.g.,
four coordinates of the rectangle around a person on the picture), sequences (e.g. [“adjective”,
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“adjective”, “noun”] for the input “big beautiful car”), or have some other structure.

Let’s say the problem that you want to solve using supervised learning is spam detection.
You gather the data, for example, 10,000 email messages, each with a label either “spam” or
“not__spam” (you could add those labels manually or pay someone to do that for us). Now,
you have to convert each email message into a feature vector.

The data analyst decides, based on their experience, how to convert a real-world entity, such
as an email message, into a feature vector. One common way to convert a text into a feature
vector, called bag of words, is to take a dictionary of English words (let’s say it contains
20,000 alphabetically sorted words) and stipulate that in our feature vector:

o the first feature is equal to 1 if the email message contains the word “a”; otherwise,
this feature is 0;

o the second feature is equal to 1 if the email message contains the word “aaron”; otherwise,
this feature equals 0;

o ...

e the feature at position 20,000 is equal to 1 if the email message contains the word
“zulu”; otherwise, this feature is equal to 0.

You repeat the above procedure for every email message in our collection, which gives
us 10,000 feature vectors (each vector having the dimensionality of 20,000) and a label
(“spam”/“not__spam”).

Now you have a machine-readable input data, but the output labels are still in the form of
human-readable text. Some learning algorithms require transforming labels into numbers.
For example, some algorithms require numbers like 0 (to represent the label “not_ spam”)
and 1 (to represent the label “spam”). The algorithm I use to illustrate supervised learning is
called Support Vector Machine (SVM). This algorithm requires that the positive label (in
our case it’s “spam”) has the numeric value of 4+1 (one), and the negative label (“not_spam”)
has the value of —1 (minus one).

At this point, you have a dataset and a learning algorithm, so you are ready to apply
the learning algorithm to the dataset to get the model.

SVM sees every feature vector as a point in a high-dimensional space (in our case, space



is 20,000-dimensional). The algorithm puts all feature vectors on an imaginary 20,000-
dimensional plot and draws an imaginary 19,999-dimensional line (a hyperplane) that separates
examples with positive labels from examples with negative labels. In machine learning, the
boundary separating the examples of different classes is called the decision boundary.

The equation of the hyperplane is given by two parameters, a real-valued vector w of the
same dimensionality as our input feature vector x, and a real number b like this:

wx —b=0,

where the expression wx means wMz(®) +w@z®@ 4 4 wP)x(DP) ‘and D is the number
of dimensions of the feature vector x.

(If some equations aren’t clear to you right now, in Chapter 2 we revisit the math and
statistical concepts necessary to understand them. For the moment, try to get an intuition of
what’s happening here. It all becomes more clear after you read the next chapter.)

Now, the predicted label for some input feature vector x is given like this:

y = sign(wx — b),

where sign is a mathematical operator that takes any value as input and returns +1 if the
input is a positive number or —1 if the input is a negative number.

The goal of the learning algorithm — SVM in this case — is to leverage the dataset and find
the optimal values w* and b* for parameters w and b. Once the learning algorithm identifies
these optimal values, the model f(x) is then defined as:

f(x) = sign(w*x — b*)

Therefore, to predict whether an email message is spam or not spam using an SVM model,
you have to take a text of the message, convert it into a feature vector, then multiply this
vector by w*, subtract b* and take the sign of the result. This will give us the prediction (+1
means “spam”, —1 means “not_ spam”).

Now, how does the machine find w* and b*? It solves an optimization problem. Machines
are good at optimizing functions under constraints.

So what are the constraints we want to satisfy here? First of all, we want the model to predict
the labels of our 10,000 examples correctly. Remember that each example ¢ = 1,...,10000 is
given by a pair (x;,¥;), where x; is the feature vector of example i and y; is its label that
takes values either —1 or +1. So the constraints are naturally:

wx; —b>+1 ify; =+1,
wx; —b< -1 ify, =-—1.
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Figure 1: An example of an SVM model for two-dimensional feature vectors.

We would also prefer that the hyperplane separates positive examples from negative ones with
the largest margin. The margin is the distance between the closest examples of two classes,
as defined by the decision boundary. A large margin contributes to a better generalization,
that is how well the model will classify new examples in the future. To achieve that, we need

to minimize the Euclidean norm of w denoted by ||w|| and given by \/Zle(w(j))?

So, the optimization problem that we want the machine to solve looks like this:

Minimize ||w|| subject to y;(wx; —b) > 1 for i =1, ..., N. The expression y;(wx; —b) > 1
is just a compact way to write the above two constraints.

The solution of this optimization problem, given by w* and b*, is called the statistical
model, or, simply, the model. The process of building the model is called training.

For two-dimensional feature vectors, the problem and the solution can be visualized as
shown in Figure 1. The blue and orange circles represent, respectively, positive and negative
examples, and the line given by wx — b = 0 is the decision boundary.

Why, by minimizing the norm of w, do we find the highest margin between the two classes?
Geometrically, the equations wx —b = 1 and wx — b = —1 define two parallel hyperplanes, as
you see in Figure 1. The distance between these hyperplanes is given by ﬁ, so the smaller



Parameters are variables that define the model learned by the learning algorithm. Parameters
are directly modified by the learning algorithm based on the training data. The goal of
learning is to find such values of parameters that make the model optimal in a certain sense.

2.7 Classification vs. Regression

Classification is a problem of automatically assigning a label to an unlabeled example.
Spam detection is a famous example of classification.

In machine learning, the classification problem is solved by a classification learning
algorithm that takes a collection of labeled examples as inputs and produces a model
that can take an unlabeled example as input and either directly output a label or output a
number that can be used by the analyst to deduce the label. An example of such a number
is a probability.

In a classification problem, a label is a member of a finite set of classes. If the size of
the set of classes is two (“sick”/“healthy”, “spam”/“not_spam”), we talk about binary
classification (also called binomial in some sources). Multiclass classification (also

called multinomial) is a classification problem with three or more classes®.

While some learning algorithms naturally allow for more than two classes, others are by nature
binary classification algorithms. There are strategies allowing to turn a binary classification
learning algorithm into a multiclass one. I talk about one of them in Chapter 7.

Regression is a problem of predicting a real-valued label (often called a target) given an
unlabeled example. Estimating house price valuation based on house features, such as area,
the number of bedrooms, location and so on is a famous example of regression.

The regression problem is solved by a regression learning algorithm that takes a collection
of labeled examples as inputs and produces a model that can take an unlabeled example as
input and output a target.

2.8 Model-Based vs. Instance-Based Learning

Most supervised learning algorithms are model-based. We have already seen one such
algorithm: SVM. Model-based learning algorithms use the training data to create a model
that has parameters learned from the training data. In SVM, the two parameters we saw
were w* and b*. After the model was built, the training data can be discarded.

Instance-based learning algorithms use the whole dataset as the model. One instance-based
algorithm frequently used in practice is k-Nearest Neighbors (kNN). In classification, to
predict a label for an input example the kNN algorithm looks at the close neighborhood of
the input example in the space of feature vectors and outputs the label that it saw the most
often in this close neighborhood.

3There’s still one label per example though.



3 Fundamental Algorithms

In this chapter, I describe five algorithms which are not just the most known but also either
very effective on their own or are used as building blocks for the most effective learning
algorithms out there.

3.1 Linear Regression

Linear regression is a popular regression learning algorithm that learns a model which is a
linear combination of features of the input example.

3.1.1 Problem Statement

We have a collection of labeled examples {(x;, )} ,, where N is the size of the collection,
x; is the D-dimensional feature vector of example i = 1,..., N, y; is a real-valued® target
€))

and every feature z;”’, j =1,...,D, is also a real number.

We want to build a model fw 5(x) as a linear combination of features of example x:
fwp(x)=wx+D, (1)

where w is a D-dimensional vector of parameters and b is a real number. The notation fy
means that the model f is parametrized by two values: w and b.

We will use the model to predict the unknown y for a given x like this: y < fw »(x). Two
models parametrized by two different pairs (w, b) will likely produce two different predictions
when applied to the same example. We want to find the optimal values (w*,b*). Obviously,
the optimal values of parameters define the model that makes the most accurate predictions.

You could have noticed that the form of our linear model in eq. 1 is very similar to the form
of the SVM model. The only difference is the missing sign operator. The two models are
indeed similar. However, the hyperplane in the SVM plays the role of the decision boundary:
it’s used to separate two groups of examples from one another. As such, it has to be as far
from each group as possible.

On the other hand, the hyperplane in linear regression is chosen to be as close to all training
examples as possible.

You can see why this latter requirement is essential by looking at the illustration in Figure
1. Tt displays the regression line (in red) for one-dimensional examples (blue dots). We
can use this line to predict the value of the target y,c. for a new unlabeled input example
ZTnew- 1f our examples are D-dimensional feature vectors (for D > 1), the only difference

ITo say that y; is real-valued, we write y; € R, where R denotes the set of all real numbers, an infinite set
of numbers from minus infinity to plus infinity.
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Figure 1: Linear Regression for one-dimensional examples.

with the one-dimensional case is that the regression model is not a line but a plane (for two
dimensions) or a hyperplane (for D > 2).

Now you see why it’s essential to have the requirement that the regression hyperplane lies as
close to the training examples as possible: if the red line in Figure 1 was far from the blue
dots, the prediction y,.., would have fewer chances to be correct.

3.1.2 Solution

To get this latter requirement satisfied, the optimization procedure which we use to find the
optimal values for w* and b* tries to minimize the following expression:

LS (sl — ). 2)
N

=1...N

In mathematics, the expression we minimize or maximize is called an objective function, or,
simply, an objective. The expression (fw »(x;) — y;)? in the above objective is called the loss
function. It’s a measure of penalty for misclassification of example i. This particular choice
of the loss function is called squared error loss. All model-based learning algorithms have
a loss function and what we do to find the best model is we try to minimize the objective
known as the cost function. In linear regression, the cost function is given by the average
loss, also called the empirical risk. The average loss, or empirical risk, for a model, is the
average of all penalties obtained by applying the model to the training data.



Why is the loss in linear regression a quadratic function? Why couldn’t we get the absolute
value of the difference between the true target y; and the predicted value f(x;) and use that
as a penalty? We could. Moreover, we also could use a cube instead of a square.

Now you probably start realizing how many seemingly arbitrary decisions are made when we
design a machine learning algorithm: we decided to use the linear combination of features to
predict the target. However, we could use a square or some other polynomial to combine the
values of features. We could also use some other loss function that makes sense: the absolute
difference between f(x;) and y; makes sense, the cube of the difference too; the binary loss
(1 when f(x;) and y; are different and 0 when they are the same) also makes sense, right?

If we made different decisions about the form of the model, the form of the loss function,
and about the choice of the algorithm that minimizes the average loss to find the best values
of parameters, we would end up inventing a different machine learning algorithm. Sounds
easy, doesn’t it? However, do not rush to invent a new learning algorithm. The fact that it’s
different doesn’t mean that it will work better in practice.

People invent new learning algorithms for one of the two main reasons:

1. The new algorithm solves a specific practical problem better than the existing algorithms.
2. The new algorithm has better theoretical guarantees on the quality of the model it
produces.

One practical justification of the choice of the linear form for the model is that it’s simple.
Why use a complex model when you can use a simple one? Another consideration is that
linear models rarely overfit. Overfitting is the property of a model such that the model
predicts very well labels of the examples used during training but frequently makes errors
when applied to examples that weren’t seen by the learning algorithm during training.

An example of overfitting in regression is shown in Figure 2. The data used to build the
red regression line is the same as in Figure 1. The difference is that this time, this is the
polynomial regression with a polynomial of degree 10. The regression line predicts almost
perfectly the targets almost all training examples, but will likely make significant errors on
new data, as you can see in Figure 1 for x,.,,. We talk more about overfitting and how to
avoid it Chapter 5.

Now you know why linear regression can be useful: it doesn’t overfit much. But what
about the squared loss? Why did we decide that it should be squared? In 1705, the French
mathematician Adrien-Marie Legendre, who first published the sum of squares method for
gauging the quality of the model stated that squaring the error before summing is convenient.
Why did he say that? The absolute value is not convenient, because it doesn’t have a
continuous derivative, which makes the function not smooth. Functions that are not smooth
create unnecessary difficulties when employing linear algebra to find closed form solutions
to optimization problems. Closed form solutions to finding an optimum of a function are
simple algebraic expressions and are often preferable to using complex numerical optimization
methods, such as gradient descent (used, among others, to train neural networks).

Intuitively, squared penalties are also advantageous because they exaggerate the difference
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Figure 2: Overfitting.

between the true target and the predicted one according to the value of this difference. We
might also use the powers 3 or 4, but their derivatives are more complicated to work with.

Finally, why do we care about the derivative of the average loss? If we can calculate the
gradient of the function in eq. 2, we can then set this gradient to zero? and find the solution
to a system of equations that gives us the optimal values w* and b*.

3.2 Logistic Regression

The first thing to say is that logistic regression is not a regression, but a classification learning
algorithm. The name comes from statistics and is due to the fact that the mathematical
formulation of logistic regression is similar to that of linear regression.

I explain logistic regression on the case of binary classification. However, it can naturally be
extended to multiclass classification.

3.2.1 Problem Statement

In logistic regression, we still want to model y; as a linear function of x;, however, with a
binary y; this is not straightforward. The linear combination of features such as wx; + b is a
function that spans from minus infinity to plus infinity, while y; has only two possible values.

2To find the minimum or the maximum of a function, we set the gradient to zero because the value of the
gradient at extrema of a function is always zero. In 2D, the gradient at an extremum is a horizontal line.



At the time where the absence of computers required scientists to perform manual calculations,
they were eager to find a linear classification model. They figured out that if we define a
negative label as 0 and the positive label as 1, we would just need to find a simple continuous
function whose codomain is (0,1). In such a case, if the value returned by the model for
input x is closer to 0, then we assign a negative label to x; otherwise, the example is labeled
as positive. One function that has such a property is the standard logistic function (also
known as the sigmoid function):

1

f(z) = Ttrea’
where e is the base of the natural logarithm (also called Euler’s number; e* is also known as
the exp(z) function in programming languages). Its graph is depicted in Figure 3.

The logistic regression model looks like this:

def 1
Jwp(x) = T o-(wntD)"

3)

You can see the familiar term wx + b from linear regression.

By looking at the graph of the standard logistic function, we can see how well it fits our
classification purpose: if we optimize the values of w and b appropriately, we could interpret
the output of f(x) as the probability of y; being positive. For example, if it’s higher than or
equal to the threshold 0.5 we would say that the class of x is positive; otherwise, it’s negative.
In practice, the choice of the threshold could be different depending on the problem. We
return to this discussion in Chapter 5 when we talk about model performance assessment.

Now, how do we find optimal w* and b*? In linear regression, we minimized the empirical
risk which was defined as the average squared error loss, also known as the mean squared
error or MSE.
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Figure 3: Standard logistic function.

3.2.2 Solution

In logistic regression, on the other hand, we maximize the likelihood of our training set
according to the model. In statistics, the likelihood function defines how likely the observation
(an example) is according to our model.

For instance, let’s have a labeled example (x;,y;) in our training data. Assume also that we
found (guessed) some specific values W and b of our parameters. If we now apply our model
[ 5 to x; using eq. 3 we will get some value 0 < p < 1 as output. If y; is the positive class,
the hkehhood of y; being the positive class, according to our model, is given by p. Slmllarly,
if y; is the negative class, the likelihood of it being the negative class is given by 1 —

The optimization criterion in logistic regression is called maximum likelihood. Instead of
minimizing the average loss, like in linear regression, we now maximize the likelihood of the
training data according to our model:

Ly E T Fan(0)? (1= farp(xi) 7. (4)

i=1...N

The expression fu 5(X)¥ (1 — fw.s(x))17¥) may look scary but it’s just a fancy mathematical
way of saying: “fw.p(x) when y; = 1 and (1 — fy 5(x)) otherwise”. Indeed, if y; = 1, then
(1 — fwp(x))37¥) equals 1 because (1 — ;) = 0 and we know that anything power 0 equals
1. On the other hand, if y; = 0, then fy 5(x)¥" equals 1 for the same reason.



You may have noticed that we used the product operator [ in the objective function instead
of the sum operator > which was used in linear regression. It’s because the likelihood of
observing N labels for N examples is the product of likelihoods of each observation (assuming
that all observations are independent of one another, which is the case). You can draw
a parallel with the multiplication of probabilities of outcomes in a series of independent
experiments in the probability theory.

Because of the exp function used in the model, in practice, it’s more convenient to maximize
the log-likelihood instead of likelihood. The log-likelihood is defined like follows:

LogLuwy < (L p(x)) = Dyl fur(36) + (1= i) In (1= fuw ).

Because In is a strictly increasing function, maximizing this function is the same as maximizing
its argument, and the solution to this new optimization problem is the same as the solution
to the original problem.

Contrary to linear regression, there’s no closed form solution to the above optimization
problem. A typical numerical optimization procedure used in such cases is gradient descent.
We talk about it in the next chapter.

3.3 Decision Tree Learning

A decision tree is an acyclic graph that can be used to make decisions. In each branching
node of the graph, a specific feature j of the feature vector is examined. If the value of the
feature is below a specific threshold, then the left branch is followed; otherwise, the right
branch is followed. As the leaf node is reached, the decision is made about the class to which
the example belongs.

As the title of the section suggests, a decision tree can be learned from data.
3.3.1 Problem Statement

Like previously, we have a collection of labeled examples; labels belong to the set {0,1}. We
want to build a decision tree that would allow us to predict the class given a feature vector.

3.3.2 Solution

There are various formulations of the decision tree learning algorithm. In this book, we
consider just one, called ID3.

The optimization criterion, in this case, is the average log-likelihood:
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szyz In frp3(x;) + (1 —y:) In (1 — frpa(x:)), (5)

where frps is a decision tree.

By now, it looks very similar to logistic regression. However, contrary to the logistic regression
learning algorithm which builds a parametric model fy- 3+ by finding an optimal solution
to the optimization criterion, the ID3 algorithm optimizes it approximately by constructing a

nonparametric model f7p3(x) of Pr(y = 1]x).
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Figure 4: An illustration of a decision tree building algorithm. The set S contains 12 labeled
examples. (a) In the beginning, the decision tree only contains the start node; it makes the
same prediction for any input. (b) The decision tree after the first split; it tests whether
feature 3 is less than 18.3 and, depending on the result, the prediction is made in one of the

two leaf nodes.

The ID3 learning algorithm works as follows. Let S denote a set of labeled examples. In the

beginning, the decision tree only has a start node that contains all examples: S def HEIRD e
Start with a constant model f7,; defined as,
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(x,y)ES

The prediction given by the above model, f fD3 (x), would be the same for any input x. The
corresponding decision tree built using a toy dataset of twelve labeled examples is shown in
fig 4a.

Then we search through all features j = 1,..., D and all thresholds ¢, and split the set .S
into two subsets: S_ & {(x,9)|(x,9) € S,2U) <t} and S, &f {(x,9) | (x,y) € 8,20 > t}.
The two new subsets would go to two new leaf nodes, and we evaluate, for all possible pairs
(7,t) how good the split with pieces S_ and Sy is. Finally, we pick the best such values (j, 1),
split S into S; and S_, form two new leaf nodes, and continue recursively on S, and S_ (or
quit if no split produces a model that’s sufficiently better than the current one). A decision
tree after one split is illustrated in fig 4b.

Now you should wonder what do the words “evaluate how good the split is” mean. In ID3, the
goodness of a split is estimated by using the criterion called entropy. Entropy is a measure of
uncertainty about a random variable. It reaches its maximum when all values of the random
variables are equiprobable. Entropy reaches its minimum when the random variable can have
only one value. The entropy of a set of examples S is given by,

H(S) f —f}gps In f}SD3 —(1- f}SD3) In(1 - f}SD3)-

When we split a set of examples by a certain feature j and a threshold ¢, the entropy of a
split, H(S_,S), is simply a weighted sum of two entropies:

H(S., 8.« ’%—"H(s_) + E‘H(&). (7)

So, in ID3, at each step, at each leaf node, we find a split that minimizes the entropy given
by eq. 7 or we stop at this leaf node.

The algorithm stops at a leaf node in any of the below situations:

o All examples in the leaf node are classified correctly by the one-piece model (eq. 6).

¢  We cannot find an attribute to split upon.

o The split reduces the entropy less than some € (the value for which has to be found
experimentally?).

o The tree reaches some maximum depth d (also has to be found experimentally).

Because in ID3, the decision to split the dataset on each iteration is local (doesn’t depend
on future splits), the algorithm doesn’t guarantee an optimal solution. The model can be

3In Chapter 5, I show how to do that in the section on hyperparameter tuning.



improved by using techniques like backtracking during the search for the optimal decision
tree at the cost of possibly taking longer to build a model.

The most widely used formulation of a decision tree learning algorithm is called C4.5. It has
several additional features as compared to ID3:

e it accepts both continuous and discrete features;
¢ it handles incomplete examples;
¢ it solves overfitting problem by using a bottom-up technique known as “pruning”.

Pruning consists of going back through the tree once it’s been
created and removing branches that don’t contribute significantly
enough to the error reduction by replacing them with leaf nodes.

The entropy-based split criterion intuitively makes sense: entropy
reaches its minimum of 0 when all examples in S have the same
label; on the other hand, the entropy is at its maximum of 1 when
exactly one-half of examples in S is labeled with 1, making such a
leaf useless for classification. The only remaining question is how
this algorithm approximately maximizes the average log-likelihood
criterion. I leave it for further reading.

3.4 Support Vector Machine

I already presented SVM in the introduction, so this section only fills a couple of blanks.
Two critical questions need to be answered:

1. What if there’s noise in the data and no hyperplane can perfectly separate positive
examples from negative ones?

2. What if the data cannot be separated using a plane, but could be separated by a
higher-order polynomial?

You can see both situations depicted in Figure 5. In the left case, the data could be separated
by a straight line if not for the noise (outliers or examples with wrong labels). In the right
case, the decision boundary is a circle and not a straight line.

Remember that in SVM, we want to satisfy the following constraints:

wx; —b>+1 ify; =41, (8)
WXi—bS—l lfylz—].
We also want to minimize ||w| so that the hyperplane is equally distant from the closest
examples of each class. Minimizing |w|| is equivalent to minimizing 3||w||?, and the use of
this term makes it possible to perform quadratic programming optimization later on. The
optimization problem for SVM, therefore, looks like this:
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Figure 5: Linearly non-separable cases. Left: the presence of noise. Right: inherent

nonlinearity.

1
min inHQ, such that y;(x,;w —b) —=1>0,i=1,...,N.

3.4.1 Dealing with Noise
To extend SVM to cases in which the data is not linearly separable, we introduce the hinge
loss function: max (0,1 — y;(wx; — b)).

The hinge loss function is zero if the constraints in 8 are satisfied; in other words, if wx;
lies on the correct side of the decision boundary. For data on the wrong side of the decision
boundary, the function’s value is proportional to the distance from the decision boundary.

We then wish to minimize the following cost function,

N
1
ClwiP + 1 3 max (0,1 yi(wx; — b))
1=1

where the hyperparameter C' determines the tradeoff between increasing the size of the

decision boundary and ensuring that each x; lies on the correct side of the decision boundary.
The value of C is usually chosen experimentally, just like ID3’s hyperparameters € and d.

SVMs that optimize hinge loss are called soft-margin SVMs, while the original formulation is
referred to as a hard-margin SVM.

As you can see, for sufficiently high values of C, the second term in the cost function will
become negligible, so the SVM algorithm will try to find the highest margin by completely




ignoring misclassification. As we decrease the value of C, making classification errors is
becoming more costly, so the SVM algorithm tries to make fewer mistakes by sacrificing
the margin size. As we have already discussed, a larger margin is better for generalization.
Therefore, C regulates the tradeoff between classifying the training data well (minimizing
empirical risk) and classifying future examples well (generalization).

3.4.2 Dealing with Inherent Non-Linearity

SVM can be adapted to work with datasets that cannot be separated by a hyperplane in
its original space. Indeed, if we manage to transform the original space into a space of
higher dimensionality, we could hope that the examples will become linearly separable in this
transformed space. In SVMs, using a function to implicitly transform the original space into
a higher dimensional space during the cost function optimization is called the kernel trick.

| T 120
. 100

Figure 6: The data from Figure 5 (right) becomes linearly separable after a transformation
into a three-dimensional space.

The effect of applying the kernel trick is illustrated in Figure 6. As you can see, it’s possible
to transform a two-dimensional non-linearly-separable data into a linearly-separable three-
dimensional data using a specific mapping ¢ : x — ¢(x), where ¢(x) is a vector of higher
dimensionality than x. For the example of 2D data in Figure 5 (right), the mapping ¢
for that projects a 2D example x = [g, p] into a 3D space (Figure 6) would look like this:

o([q,p]) def (¢, v2qp, p?), where -2 means - squared. You see now that the data becomes
linearly separable in the transformed space.



However, we don’t know a priori which mapping ¢ would work for our data. If we first
transform all our input examples using some mapping into very high dimensional vectors and
then apply SVM to this data, and we try all possible mapping functions, the computation
could become very inefficient, and we would never solve our classification problem.

Fortunately, scientists figured out how to use kernel functions (or, simply, kernels) to
efficiently work in higher-dimensional spaces without doing this transformation explicitly. To
understand how kernels work, we have to see first how the optimization algorithm for SVM
finds the optimal values for w and b.

The method traditionally used to solve the optimization problem in eq. 9 is the method of
Lagrange multipliers. Instead of solving the original problem from eq: 9, it is convenient to
solve an equivalent problem formulated like this:

1

N N N N
arlr.l.gc)M(N Zlai ~3 ZZyiai(xixk)ykak subject to Zaiyi =0and o; >0,2=1,...,N,

i=1 k=1 =1

where «; are called Lagrange multipliers. When formulated like this, the optimization
problem becomes a convex quadratic optimization problem, efficiently solvable by quadratic
programming algorithms.

Now, you could have noticed that in the above formulation, there is a term x;x, and this is
the only place where the feature vectors are used. If we want to transform our vector space
into higher dimensional space, we need to transform x; into ¢(x;) and xj into ¢(xx) and
then multiply ¢(x;) and ¢(xx). Doing so would be very costly.

On the other hand, we are only interested in the result of the dot-product x;xy, which, as
we know, is a real number. We don’t care how this number was obtained as long as it’s
correct. By using the kernel trick, we can get rid of a costly transformation of original
feature vectors into higher-dimensional vectors and avoid computing their dot-product. We
replace that by a simple operation on the original feature vectors that gives the same
result. For example, instead of transforming (qi,p1) into (¢?,v/2q1p1,p?) and (go,p2) into
(43, V2q2p2, p3) and then computing the dot-product of (¢f, v2¢ip1,p?) and (g3, v2q2p2, p3)
to obtain (¢2q3 +2q1q2p1p2 + p3p3) we could find the dot-product between (g1, p1) and (g2, p2)
to get (q1g2 +p1p2) and then square it to get exactly the same result (¢3¢3 +2q1qap1p2 +p3p3).

That was an example of the kernel trick, and we used the quadratic kernel k(x;, xx) def (xixp)?.
Multiple kernel functions exist, the most widely used of which is the RBF kernel:

1|12
o) — o (=
) = exp (-0,

where ||x — x'||? is the squared Euclidean distance between two feature vectors. The
Fuclidean distance is given by the following equation:
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It can be shown that the feature space of the RBF (for “radial basis function”) kernel has
an infinite number of dimensions. By varying the hyperparameter o, the data analyst can
choose between getting a smooth or curvy decision boundary in the original space.

3.5 k-Nearest Neighbors

k-Nearest Neighbors (kNN) is a non-parametric learning algorithm. Contrary to other
learning algorithms that allow discarding the training data after the model is built, KNN
keeps all training examples in memory. Once a new, previously unseen example x comes in,
the kNN algorithm finds & training examples closest to x and returns the majority label, in
case of classification, or the average label, in case of regression.

The closeness of two examples is given by a distance function. For example, Euclidean
distance seen above is frequently used in practice. Another popular choice of the distance
function is the negative cosine similarity. Cosine similarity defined as,

ZD ) SU(])CC,?)

\/Z“ G \/ZJ ()

is a measure of similarity of the directions of two vectors. If the angle between two vectors
is 0 degrees, then two vectors point to the same direction, and cosine similarity is equal to
1. If the vectors are orthogonal, the cosine similarity is 0. For vectors pointing in opposite
directions, the cosine similarity is —1. If we want to use cosine similarity as a distance metric,
we need to multiply it by —1. Other popular distance metrics include Chebychev distance,
Mahalanobis ‘distance, and Hamming distance. The choice of the distance metric, as well as
the value for k, are the choices the analyst makes before running the algorithm. So these
are hyperparameters. The distance metric could also be learned from data (as opposed to
guessing it). We talk about that in Chapter 10.

s(xi, Xk) def cos(Z(x;,Xx))



4 Anatomy of a Learning Algorithm

4.1 Building Blocks of a Learning Algorithm

You may have noticed by reading the previous chapter that each learning algorithm we saw
consisted of three parts:

1) a loss function;

2) an optimization criterion based on the loss function (a cost function, for example); and

3) an optimization routine leveraging training data to find a solution to the optimization
criterion.

These are the building blocks of any learning algorithm. You saw in the previous chapter
that some algorithms were designed to explicitly optimize a specific criterion (both linear and
logistic regressions, SVM). Some others, including decision tree learning and kNN, optimize
the criterion implicitly. Decision tree learning and kNN are among the oldest machine
learning algorithms and were invented experimentally based on intuition, without a specific
global optimization criterion in mind, and (like it often happened in scientific history) the
optimization criteria were developed later to explain why those algorithms work.

By reading modern literature on machine learning, you often encounter references to gradient
descent or stochastic gradient descent. These are two most frequently used optimization
algorithms used in cases where the optimization criterion is differentiable.

Gradient descent is an iterative optimization algorithm for finding the minimum of a function.
To find a local minimum of a function using gradient descent, one starts at some random
point and takes steps proportional to the negative of the gradient (or approximate gradient)
of the function at the current point.

Gradient descent can be used to find optimal parameters for linear and logistic regression,
SVM and also neural networks which we consider later. For many models, such as logistic
regression or SVM, the optimization criterion is convex. Convex functions have only one
minimum, which is global. Optimization criteria for neural networks are not convex, but in
practice even finding a local minimum suffices.

Let’s see how gradient descent works.

4.2 Gradient Descent

In this section, I demonstrate how gradient descent finds the solution to a linear regression
problem!. I illustrate my description with Python code as well as with plots that show how
the solution improves after some iterations of gradient descent. I use a dataset with only

L As you know, linear regression has a closed form solution. That means that gradient descent is not
needed to solve this specific type of problem. However, for illustration purposes, linear regression is a perfect
problem to explain gradient descent.



one feature. However, the optimization criterion will have two parameters: w and b. The
extension to multi-dimensional training data is straightforward: you have variables w), w(?),
and b for two-dimensional data, w™, w®, w®) and b for three-dimensional data and so on.

Sales as a function of radio ad spendings.
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Figure 1: The original data. The Y-axis corresponds to the sales in units (the quantity we
want to predict), the X-axis corresponds to our feature: the spendings on radio ads in M$.

To give a practical example, I use the real dataset (can be found on the book’s wiki) with the
following columns: the Spendings of various companies on radio advertising each year and
their annual Sales in terms of units sold. We want to build a regression model that we can
use to predict units sold based on how much a company spends on radio advertising. Each
row in the dataset represents one specific company:

Company Spendings, M$ Sales, Units

1 37.8 22.1
2 39.3 10.4
3 45.9 9.3

4 41.3 18.5

We have data for 200 companies, so we have 200 training examples in the form (z;,y;) =
(Spendings;, Sales;). Figure 1 shows all examples on a 2D plot.

Remember that the linear regression model looks like this: f(z) = wz + b. We don’t know
what the optimal values for w and b are and we want to learn them from data. To do that,



we look for such values for w and b that minimize the mean squared error:

14— (wz; + b))%

||Mz

Gradient descent starts with calculating the partial derivative for every parameter:

aw N Z —2z;(y; — (wzx; +0));
ol 1 .
W N Z —2(yi — (wz; +b)).

=1

To find the partial derivative of the term (y; — (wz + b))? with respect to w I applied the
chain rule. Here, we have the chain f = fo(f1) where f; = y; — (wx +b) and fo = f2. To find
a partial derivative of f with respect to w we have to first find the partial derivative of f with
respect to fa which is equal to 2(y; — (wz + b)) (from calculus, we know that the derivative

aax 2 = 27) and then we have to multiply it by the partial derivative of y; — (wx + b) with
respect to w which is equal to —z. So overall 8l = N Zi:l —2z;(y; — (wz; +b)). In a similar

way, the partial derivative of [ with respect to b was calculated.

) 31,7
Gradient descent proceeds in epochs. An epoch consists of using the training set entirely to
update each parameter. In the beginning, the first epoch, we initialize? w + 0 and b < 0.
The partial derivatives, aa—l and al ; given by eq. 1 equal, respectively, N2 Zf\il x;y; and

%2 Zf\;1 y;. At each epoch, we update w and b using partial derivatives. The learning rate «
controls the size of an update:

w—all.

w w Oéaw
(2)

b+ b— o

“ob

We subtract (as opposed to adding) partial derivatives from the values of parameters because
derivatives are indicators of growth of a function. If a derivative is positive at some point3,
then the function grows at this point. Because we want to minimize the objective function,

2In complex models, such as neural networks, which have thousands of parameters, the initialization of
parameters may significantly affect the solution found using gradient descent. There are different initialization
methods (at random, with all zeroes, with small values around zero, and others) and it is an important choice
the data analyst has to make.

3A point is given by the current values of parameters.
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when the derivative is positive we know that we need to move our parameter in the opposite
direction (to the left on the axis of coordinates). When the derivative is negative (function is
decreasing), we need to move our parameter to the right to decrease the value of the function
even more. Subtracting a negative value from a parameter moves it to the right.

At the next epoch, we recalculate partial derivatives using eq. 1 with the updated values of
w and b; we continue the process until convergence. Typically, we need many epochs until we
start seeing that the values for w and b don’t change much after each epoch; then we stop.

It’s hard to imagine a machine learning engineer who doesn’t use Python. So, if you waited
for the right moment to start learning Python, this is that moment. Below; I show how to
program gradient descent in Python.

The function that updates the parameters w and b during one epoch is shown below:

def update_w_and_b(spendings, sales, w, b, alpha):
dl_dw = 0.0
dl_db = 0.0
N = len(spendings)

for i in range(N):
dl_dw += -2*spendings[i]*(sales[i] - (w*spendings[i] + b))
dl_db += -2*(sales[i] - (w*spendings[i] + b))

# update w and b
w =w - (1/float(N))*dl_dw*alpha
b = b - (1/float(N))*dl_db*alpha

return w, b
The function that loops over multiple epochs is shown below:

def train(spendings, sales, w, b, alpha, epochs):
for e in range(epochs):
w, ‘b = update_w_and_b(spendings, sales, w, b, alpha)

#<log theé progress
if e % 400 ==
print("epoch:", e, "loss:

, avg_loss(spendings, sales, w, b))

return w, b
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Figure 2: The evolution of the regression line through gradient descent epochs.

The function avg loss in the above code snippet is a function that computes the mean
squared error. It is defined as:

def avg_loss(spendings, sales, w, b):
N = len(spendings)
total_error = 0.0
for i in range(N):
total_error += (sales[i] - (w*spendings[i] + Db))*x*2
return total_error / float(N)

If we run the train function for a = 0.001, w = 0.0, b = 0.0, and 15,000 epochs, we will see
the following output (shown partially):

epoch: 0 loss: 92.32078294903626
epoch: 400 loss: 33.79131790081576
epoch: 800 loss: 27.9918542960729
epoch: 1200 loss: 24.33481690722147
epoch: 1600 loss: 22.028754937538633

epoch: 2800 loss: 19.07940244306619
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You can see that the average loss decreases as the train function loops through epochs. Figure
2 shows the evolution of the regression line through epochs.

Finally, once we have found the optimal values of parameters w and b, the only missing piece
is a function that makes predictions:

def predict(x, w, b):
return wxx + b

Try to execute the following code:

w, b = train(x, y, 0.0, 0.0, 0.001, 15000)
x_new = 23.0

y_new = predict(x_new, w, b)

print (y_new)

The output is 13.97.

Gradient descent is sensitive to the choice of the learning rate «. It is also slow for large
datasets. Fortunately, several significant improvements to this algorithm have been proposed.

Minibatch stochastic gradient descent (minibatch SGD) is a version of the algorithm
that speeds up the computation by approximating the gradient using smaller batches (subsets)
of the training data. SGD itself has various “upgrades”. Adagrad is a version of SGD that
scales « for each parameter according to the history of gradients. As a result, « is reduced
for very large gradients and vice-versa. Momentum is a method that helps accelerate SGD
by orienting the gradient descent in the relevant direction and reducing oscillations. In neural
network training, variants of SGD such as RMSprop and Adam, are very frequently used.

Notice that gradient descent and its variants are not machine learning algorithms. They are
solvers of minimization problems in which the function to minimize has a gradient (in most
points of its domain).

4.3 How Machine Learning Engineers Work

Unless you are a research scientist or work for a huge corporation with a large R&D budget,
you usually don’t implement machine learning algorithms yourself. You don’t implement
gradient descent or some other solver either. You use libraries, most of which are open
source. A library is a collection of algorithms and supporting tools implemented with stability
and efficiency in mind. The most frequently used in practice open-source machine learning
library is scikit-learn. It’s written in Python and C. Here’s how you do linear regression in
scikit-learn:

def train(x, y):
from sklearn.linear_model import LinearRegression
model = LinearRegression().fit(x,y)
return model



model = train(x,y)

x_new = 23.0
y_new = model.predict(x_new)
print (y_new)

The output will, again, be 13.97. Easy, right? You can replace LinearRegression with some
other type of regression learning algorithm without modifying anything else. It just works.
The same can be said about classification. You can easily replace LogisticRegression algorithm
with SVC algorithm (this is scikit-learn’s name for the Support Vector Machine algorithm),
DecisionTreeClassifier, NearestNeighbors or many other classification learning algorithms
implemented in scikit-learn.

4.4 Learning Algorithms’ Particularities

Here, I outline some practical particularities that can differentiate one learning algorithm
from another. You already know that different learning algorithms can have different
hyperparameters (C' in SVM, € and d in ID3). Solvers such as gradient descent can also have
hyperparameters, like o for example.

Some algorithms, like decision tree learning, can accept categorical features. For example, if
you have a feature “color” that can take values “red”, “yellow”, or “green”, you can keep
this feature as is. SVM, logistic and linear regression, as well as kNN (with cosine similarity
or Euclidean distance metrics), expect numerical values for all features. All algorithms
implemented in scikit-learn expect numerical features. In the next chapter, I show how to
convert categorical features into numerical ones.

Some algorithms, like SVM, allow the data analyst to provide weightings for each class.
These weightings influence how the decision boundary is drawn. If the weight of some class
is high, the learning algorithm tries to not make errors in predicting training examples of
this class (typically, for the cost of making an error elsewhere). That could be important if
instances of some class are in the minority in your training data, but you would like to avoid
misclassifying examples of that class as much as possible.

Some classification models, like SVM and kNN, given a feature vector only output the class.
Others, like logistic regression or decision trees, can also return the score between 0 and 1
which can be interpreted as either how confident the model is about the prediction or as the
probability that the input example belongs to a certain class®.

Some classification algorithms (like decision tree learning, logistic regression, or SVM) build the
model using the whole dataset at once. If you have got additional labeled examples, you have

41f it’s really necessary, the score for SVM and kNN predictions could be synthetically created using simple
techniques.



5 Basic Practice

Until now, I only mentioned in passing some issues that a data analyst needs to consider when
working on a machine learning problem: feature engineering, overfitting, and hyperparameter
tuning. In this chapter, we talk about these and other challenges that have to be addressed
before you can type model = LogisticRegression().fit(x,y) in scikit-learn.

5.1 Feature Engineering

When a product manager tells you “We need to be able to predict whether a particular
customer will stay with us. Here are the logs of customers’ interactions with our product for
five years.” you cannot just grab the data, load it into a library and get a prediction. You
need to build a dataset first.

Remember from the first chapter that the dataset is the collection of labeled examples
{(xi,9:)}¥,. Each element x; among N is called a feature vector. A feature vector is a
vector in which each dimension j = 1,..., D contains a value that describes the example
somehow. That value is called a feature and is denoted as z(/).

The problem of transforming raw data into a dataset is called feature engineering. For
most practical problems, feature engineering is a labor-intensive process that demands from
the data analyst a lot of creativity and, preferably, domain knowledge.

For example, to transform the logs of user interaction with a computer system, one could
create features that contain information about the user and various statistics extracted from
the logs. For each user, one feature would contain the price of the subscription; other features
would contain the frequency of connections per day, week and year. Another feature would
contain the average session duration in seconds or the average response time for one request,
and so on. Everything measurable can be used as a feature. The role of the data analyst is to
create informative features: those would allow the learning algorithm to build a model that
predicts well labels of the data used for training. Highly informative features are also called
features with high predictive power. For example, the average duration of a user’s session
has high predictive power for the problem of predicting whether the user will keep using the
application in the future.

We say that a model has a low bias when it predicts the training data well. That is, the
model makes few mistakes when we use it to predict labels of the examples used to build the
model.

5.1.1 One-Hot Encoding

Some learning algorithms only work with numerical feature vectors. When some feature in
your dataset is categorical, like “colors” or “days of the week,” you can transform such a
categorical feature into several binary ones.



5.1.3 Normalization
Normalization is the process of converting an actual range of values which a numerical
feature can take, into a standard range of values, typically in the interval [—1,1] or [0, 1].

For example, suppose the natural range of a particular feature is 350 to 1450. By subtracting
350 from every value of the feature, and dividing the result by 1100, one can normalize those
values into the range [0, 1].

More generally, the normalization formula looks like this:

-6 — () — min(@)

max(?) — min()’

where min) and maz?) are, respectively, the minimum and the maximum value of the
feature j in the dataset.

Why do we normalize? Normalizing the data is not a strict requirement. However, in practice,
it can lead to an increased speed of learning. Remember the gradient descent example from
the previous chapter. Imagine you have a two-dimensional feature vector. When you update
the parameters of w(!) and w®, you use partial derivatives of the mean squared error with
respect to w1 and w®. If z(V is in the range [0,1000] and z(?) the range [0,0.0001], then
the derivative with respect to a larger feature will dominate the update.

Additionally, it’s useful to ensure that our inputs are roughly in the same relatively small
range to avoid problems which computers have when working with very small or very big
numbers (known as numerical overflow).

5.1.4 Standardization

Standardization (or z-score normalization) is the procedure during which the feature
values are rescaled so that they have the properties of a standard normal distribution with
i =0 and o = 1, where u is the mean (the average value of the feature, averaged over all
examples in the dataset) and o is the standard deviation from the mean.

Standard scores (or z-scores) of features are calculated as follows:

20 _ @) — 1, (0)

o(@)

You may ask when you should use normalization and when standardization. There’s no
definitive answer to this question. Usually, if your dataset is not too big and you have time,
you can try both and see which one performs better for your task.

If you don’t have time to run multiple experiments, as a rule of thumb:



e unsupervised learning algorithms, in practice, more often benefit from standardization
than from normalization;

o standardization is also preferred for a feature if the values this feature takes are
distributed close to a normal distribution (so-called bell curve);

e again, standardization is preferred for a feature if it can sometimes have extremely high
or low values (outliers); this is because normalization will “squeeze” the normal values
into a very small range;

« in all other cases, normalization is preferable.

Feature rescaling is usually beneficial to most learning algorithms. However, modern imple-
mentations of the learning algorithms, which you can find in popular libraries, are robust to
features lying in different ranges.

5.1.5 Dealing with Missing Features

In some cases, the data comes to the analyst in the form of a dataset with features already
defined. In some examples, values of some features can be missing. That often happens when
the dataset was handcrafted, and the person working on it forgot to fill some values or didn’t
get them measured at all.

The typical approaches of dealing with missing values for a feature include:

o removing the examples with missing features from the dataset (that can be done if your
dataset is big enough so you can sacrifice some training examples);

o using a learning algorithm that can deal with missing feature values (depends on the
library and a specific implementation of the algorithm);

o using a data imputation technique.

5.1.6 Data Imputation Techniques

One data imputation technique consists in replacing the missing value of a feature by an
average value of this feature in the dataset:

, 1 .
7)) Nx(J)‘

Another technique is to replace the missing value with a value outside the normal range of
values. For example, if the normal range is [0, 1], then you can set the missing value to 2 or
—1. The idea is that the learning algorithm will learn what is best to do when the feature has
a value significantly different from regular values. Alternatively, you can replace the missing
value by a value in the middle of the range. For example, if the range for a feature is [—1, 1],
you can set the missing value to be equal to 0. Here, the idea is that the value in the middle
of the range will not significantly affect the prediction.



How many training examples do you have in your dataset? How many features does each
example have? Some algorithms, including neural networks and gradient boosting (we
consider both later), can handle a huge number of examples and millions of features. Others,
like SVM, can be very modest in their capacity.

e Categorical vs. numerical features

Is your data composed of categorical only, or numerical only features, or a mix of both?
Depending on your answer, some algorithms cannot handle your dataset directly, and you
would need to convert your categorical features into numerical ones.

e Nonlinearity of the data

Is your data linearly separable or can it be modeled using a linear model? If yes, SVM with
the linear kernel, logistic or linear regression can be good choices. Otherwise, deep neural
networks or ensemble algorithms, discussed in Chapters 6 and 7, might work better.

e Training speed

How much time is a learning algorithm allowed to use to build a model? Neural networks are
known to be slow to train. Simple algorithms like logistic and linear regression or decision
trees are much faster. Specialized libraries contain very efficient implementations of some
algorithms; you may prefer to do research online to find such libraries. Some algorithms,
such as random forests, benefit from the availability of multiple CPU cores, so their model
building time can be significantly reduced on a machine with dozens of cores.

e Prediction speed

How fast does the model have to be when generating predictions? Will your model be used
in production where very high throughput is required? Algorithms like SVMs, linear and
logistic regression, and (some types of) neural networks, are extremely fast at the prediction
time. Others, like kNN, ensemble algorithms, and very deep or recurrent neural networks,

are slower2.

If you don’t want to guess the best algorithm for your data, a popular way to choose one
is by testing it on the validation set. We talk about that below. Alternatively, if you use
scikit-learn, you could try their algorithm selection diagram shown in Figure 1.

5.3 Three Sets

Until now, I used the expressions “dataset” and “training set” interchangeably. However, in
practice data analysts work with three distinct sets of labeled examples:

1) training set,

2) validation set, and

2The prediction speed of kNN and ensemble methods implemented in the modern libraries are still pretty
fast. Don’t be afraid of using these algorithms in your practice.



3) test set.

Once you have got your annotated dataset, the first thing you do is you shuffle the examples
and split the dataset into three subsets: training, validation, and test. The training set is
usually the biggest one; you use it to build the model. The validation and test sets are
roughly the same sizes, much smaller than the size of the training set. The learning algorithm
cannot use examples from these two subsets to build the model. That is why those two sets
are often called holdout sets.

There’s no optimal proportion to split the dataset into these three subsets. In the past, the
rule of thumb was to use 70% of the dataset for training, 15% for validation and 15% for
testing. However, in the age of big data, datasets often have millions of examples. In such
cases, it could be reasonable to keep 95% for training and 2.5%/2.5% for validation/testing.

You may wonder, what is the reason to have three sets and not one. The answer is simple:
when we build a model, what we do not want is for the model to only do well at predicting
labels of examples the learning algorithms has already seen. A trivial algorithm that simply
memorizes all training examples and then uses the memory to “predict” their labels will make
no mistakes when asked to predict the labels of the training examples, but such an algorithm
would be useless in practice. What we really want is a model that is good at predicting
examples that the learning algorithm didn’t see: we want good performance on a holdout set.

Why do we need two holdout sets and not one? We use the validation set to 1) choose the
learning algorithm and 2) find the best values of hyperparameters. We use the test set to
assess the model before delivering it to the client or putting it in production.

5.4 Underfitting and Overfitting

I mentioned above the notion of bias. I said that a model has a low bias if it predicts well
the labels of the training data. If the model makes many mistakes on the training data, we
say that the model has a high bias or that the model underfits. So, underfitting is the
inability of the model to predict well the labels of the data it was trained on. There could be
several reasons for underfitting, the most important of which are:

» your model is too simple for the data (for example a linear model can often underfit);
o the features you engineered are not informative enough.

The first reason is easy to illustrate in the case of one-dimensional regression: the dataset can
resemble a curved line, but our model is a straight line. The second reason can be illustrated
like this: let’s say you want to predict whether a patient has cancer, and the features you
have are height, blood pressure, and heart rate. These three features are clearly not good
predictors for cancer so our model will not be able to learn a meaningful relationship between
these features and the label.

The solution to the problem of underfitting is to try a more complex model or to engineer
features with higher predictive power.
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Figure 2: Examples of underfitting (linear model), good fit (quadratic model), and overfitting
(polynomial of degree 15).

Overfitting is another problem a model can exhibit. The model that overfits predicts very
well the training data but poorly the data from at least one of the two holdout sets. I already
gave an illustration of overfitting in Chapter 3. Several reasons can lead to overfitting, the
most important of which are:

 your model is too complex for the data (for example a very tall decision tree or a very
deep or wide neural network often overfit);
e you have too many features but a small number of training examples.

In the literature, you can find another name for the problem of overfitting: the problem of
high variance. This term comes from statistics. The variance is an error of the model due
to its sensitivity to small fluctuations in the training set. It means that if your training data
was sampled differently, the learning would result in a significantly different model. Which
is why the model that overfits performs poorly on the test data: test and training data are
sampled from the dataset independently of one another.

Even the simplest model, such as linear, can overfit the data. That usually happens when the
data is high-dimensional, but the number of training examples is relatively low. In fact, when
feature vectors are very high-dimensional, the linear learning algorithm can build a model
that assigns non-zero values to most parameters w) in the parameter vector w, trying to
find very complex relationships between all available features to predict labels of training
examples perfectly.

Such a complex model will most likely predict poorly the labels of the holdout examples.
This is because by trying to perfectly predict labels of all training examples, the model will
also learn the idiosyncrasies of the training set: the noise in the values of features of the
training examples, the sampling imperfection due to the small dataset size, and other artifacts
extrinsic to the decision problem at hand but present in the training set.

Figure 2 illustrates a one-dimensional dataset for which a regression model underfits, fits well
and overfits the data.




Several solutions to the problem of overfitting are possible:

1. Try a simpler model (linear instead of polynomial regression, or SVM with a linear
kernel instead of RBF, a neural network with fewer layers/units).

2. Reduce the dimensionality of examples in the dataset (for example, by using one of the
dimensionality reduction techniques discussed in Chapter 9).

3. Add more training data, if possible.

4. Regularize the model.

Regularization is the most widely used approach to prevent overfitting.

5.5 Regularization

Regularization is an umbrella-term that encompasses methods that force the learning al-
gorithm to build a less complex model. In practice, that often leads to slightly higher
bias but significantly reduces the variance. This problem is known in the literature as the
bias-variance tradeoff.

The two most widely used types of regularization are called L1 and L2 regularization. The
idea is quite simple. To create a regularized model, we modify the objective function by
adding a penalizing term whose value is higher when the model is more complex.

For simplicity, I illustrate regularization using the example of linear regression. The same
principle can be applied to a wide variety of models.

Recall the linear regression objective:

An Ll-regularized objective looks like this:

N

%15 Clw| + % Z(fw,b(xi) — i), (3)

=1

where |w| &f ZJDZI |w)| and C is a hyperparameter that controls the importance of regular-
ization. If we set C' to zero, the model becomes a standard non-regularized linear regression
model. On the other hand, if we set to C to a high value, the learning algorithm will try to
set most w) to a very small value or zero to minimize the objective, the model will become
very simple which can lead to underfitting. Your role as the data analyst is to find such
a value of the hyperparameter C' that doesn’t increase the bias too much but reduces the
variance to a level reasonable for the problem at hand. In the next section, I will show how
to do that.



An L2-regularized objective looks like this:

N D

1 def ;
. 2, L N )2 2 ¢¢ (4)y2
min | Cl[wl* + 5 D (fwa () = 91)? |, where w2 <" (w!)2, (4)

i=1 j=1

In practice, L1 regularization produces a sparse model, a model that has most of its
parameters (in case of linear models, most of wld )) equal to zero, provided the hyperparameter
C is large enough. So L1 makes feature selection by deciding which features are essential
for prediction and which are not. That can be useful in case you want to increase model
explainability. However, if your only goal is to maximize the performance of the model on
the holdout data, then L2 usually gives better results. L2 also has the advantage of being
differentiable, so gradient descent can be used for optimizing the ‘objective function.

L1 and L2 regularization methods were also combined in what is called elastic net regu-
larization with L1 and L2 regularizations being special cases. You can find in the literature
the name ridge regularization for 1.2 and lasso for L1.

In addition to being widely used with linear models, L1 and L2 regularization are also
frequently used with neural networks and many other types of models, which directly
minimize an objective function.

Neural networks also benefit from two other regularization techniques: dropout and batch-
normalization. There are also non-mathematical methods that have a regularization effect:
data augmentation and early stopping. We talk about these techniques in Chapter 8.

5.6 Model Performance Assessment

Once you have a model which our learning algorithm has built using the training set, how
can you say how good the model is? You use the test set to assess the model.

The test set contains the examples that the learning algorithm has never seen before, so if
our model performs well on predicting the labels of the examples from the test set, we say
that our model generalizes well or, simply, that it’s good.

To be more rigorous, machine learning specialists use various formal metrics and tools to
assess the model performance. For regression, the assessment of the model is quite simple. A
well-fitting regression model results in predicted values close to the observed data values. The
mean model, which always predicts the average of the labels in the training data, generally
would be used if there were no informative features. The fit of a regression model being
assessed should, therefore, be better than the fit of the mean model. If this is the case, then
the next step is to compare the performances of the model on the training and the test data.

To do that, we compute the mean squared error® (MSE) for the training, and, separately,
for the test data. If the MSE of the model on the test data is substantially higher than

30r any other type of average loss function that makes sense.



the MSE obtained on the training data, this is a sign of overfitting. Regularization or a
better hyperparameter tuning could solve the problem. The meaning of “substantially higher’
depends on the problem at hand and has to be decided by the data analyst jointly with the
decision maker/product owner who ordered the model.

Y

For classification, things are a little bit more complicated. The most widely used metrics and
tools to assess the classification model are:

e confusion matrix,

e accuracy,

e cost-sensitive accuracy,

e precision/recall, and

e area under the ROC curve.

To simplify the illustration, I use a binary classification problem. Where necessary, I show
how to extend the approach to the multiclass case.

5.6.1 Confusion Matrix

The confusion matrix is a table that summarizes how successful the classification model
is at predicting examples belonging to various classes. One axis of the confusion matrix
is the label that the model predicted, and the other axis is the actual label. In a binary
classification problem, there are two classes. Let’s say, the model predicts two classes: “spam”
and “not_spam”:

spam (predicted) not_spam (predicted)

spam (actual) 23 (TP) 1 (FN)
not_spam (actual) 12 (FP) 556 (TN)

The above confusion matrix shows that of the 24 examples that actually were spam, the
model correctly classified 23 as spam. In this case, we say that we have 23 true positives
or TP = 23. The model incorrectly classified 1 example as not_ spam. In this case, we have 1
false negative, or FN = 1. Similarly, of 568 examples that actually were not spam, 556 were
correctly classified (556 true negatives or TN = 556), and 12 were incorrectly classified (12
false positives, FP = 12).

The confusion matrix for multiclass classification has as many rows and columns as there are
different classes. It can help you to determine mistake patterns. For example, a confusion
matrix could reveal that a model trained to recognize different species of animals tends to
mistakenly predict “cat” instead of “panther,” or “mouse” instead of “rat.” In this case, you
can decide to add more labeled examples of these species to help the learning algorithm
to “see” the difference between them. Alternatively, you might add additional features the
learning algorithm can use to build a model that would better distinguish between these
species.



Confusion matrix is used to calculate two other performance metrics: precision and recall.

5.6.2 Precision/Recall

The two most frequently used metrics to assess the model are precision and recall. Precision
is the ratio of correct positive predictions to the overall number of positive predictions:

TP
TP + FP’

.. de
precision =

Recall is the ratio of correct positive predictions to the overall number of positive examples
in the dataset:

To understand the meaning and importance of precision and recall for the model assessment it
is often useful to think about the prediction problem as the problem of research of documents
in the database using a query. The precision is the proportion of relevant documents in the
list of all returned documents. The recall is the ratio of the relevant documents returned
by the search engine to the total number of the relevant documents that could have been
returned.

In the case of the spam detection problem, we want to have high precision (we want to avoid
making mistakes by detecting that a legitimate message is spam) and we are ready to tolerate
lower recall (we tolerate some spam messages in our inbox).

Almost always, in practice, we have to choose between a high precision or a high recall. Tt’s
usually impossible to have both. We can achieve either of the two by various means:

« by assigning a higher weighting to the examples of a specific class (the SVM algorithm
accepts weightings of classes as input);

e by tuning hyperparameters to maximize precision or recall on the validation set;

e by varying the decision threshold for algorithms that return probabilities of classes;
for instance, if we use logistic regression or decision tree, to increase precision (at the
cost of a lower recall), we can decide that the prediction will be positive only if the
probability returned by the model is higher than 0.9.

Even if precision and recall are defined for the binary classification case, you can always use
it to assess a multiclass classification model. To do that, first select a class for which you
want to assess these metrics. Then you consider all examples of the selected class as positives
and all examples of the remaining classes as negatives.



5.6.3 Accuracy

Accuracy is given by the number of correctly classified examples divided by the total number
of classified examples. In terms of the confusion matrix, it is given by:

def TP + TN
accurac = .
Y= TP L TN + FP + FN

()

Accuracy is a useful metric when errors in predicting all classes are equally important. In
case of the spam/not spam, this may not be the case. For example, you would tolerate false
positives less than false negatives. A false positive in spam detection is the situation in which
your friend sends you an email, but the model labels it as spam and doesn’t show you. On
the other hand, the false negative is less of a problem: if your model doesn’t detect a small
percentage of spam messages, it’s not a big deal.
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Fi @ The area under the ROC curve (shown on gray).

5.6.4 Co e ive Accuracy

For dealin h the situation in which different classes have different importance, a useful
tric is cost-sensitive accuracy. To compute a cost-sensitive accuracy, you first assign a
t (a positive number) to both types of mistakes: FP and FN. You then compute the counts
, TN, FP, FN as usual and multiply the counts for FP and FN by the corresponding cost
before calculating the accuracy using eq. 5.



5.6.5 Area under the ROC Curve (AUC)

The ROC curve (stands for “receiver operating characteristic,” the term comes from radar
engineering) is a commonly used method to assess the performance of classification models.
ROC curves use a combination of the true positive rate (defined exactly as recall) and
false positive rate (the proportion of negative examples predicted incorrectly) to build up a
summary picture of the classification performance.

The true positive rate (TPR) and the false positive rate (FPR) are respectively defined as,

def TP def FP
TPRE & FPRE 5
R=Tp7rn 4 FPR= 557w

ROC curves can only be used to assess classifiers that return some confidence score (or a
probability) of prediction. For example, logistic regression, neural networks, and decision
trees (and ensemble models based on decision trees) can be assessed using ROC curves.

To draw a ROC curve, you first discretize the range of the confidence score. If this range for
a model is [0, 1], then you can discretize it like this: [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1].
Then, you use each discrete value as the prediction threshold and predict the labels of
examples in your dataset using the model and this threshold. For example, if you want to
compute TPR and FPR for the threshold equal to 0.7, you apply the model to each example,
get the score, and, if the score is higher than or equal to 0.7, you predict the positive class;
otherwise, you predict the negative class.

Look at the illustration in Figure 3. It’s easy to see that if the threshold is 0, all our
predictions will be positive, so both TPR and FPR will be 1 (the upper right corner). On
the other hand, if the threshold is 1, then no positive prediction will be made, both TPR
and FPR will be 0 which corresponds to the lower left corner.

The higher the area under the ROC curve (AUC), the better the classifier. A classifier
with an AUC higher than 0.5 is better than a random classifier. If AUC is lower than 0.5,
then something is wrong with your model. A perfect classifier would have an AUC of 1.
Usually, if your model behaves well, you obtain a good classifier by selecting the value of the
threshold that gives TPR close to 1 while keeping FPR, near 0.

ROC curves are popular because they are relatively simple to understand, they capture more
than one aspect of the classification (by taking both false positives and negatives into account)
and allow visually and with low effort comparing the performance of different models.

5.7 Hyperparameter Tuning

When I presented learning algorithms, I mentioned that you as a data analyst have to select
good values for the algorithm’s hyperparameters, such as € and d for ID3, C' for SVM, or «



6 Neural Networks and Deep Learning

First of all, you already know what a neural network is, and you already know how to build
such a model. Yes, it’s logistic regression! As a matter of fact, the logistic regression model,
or rather its generalization for multiclass classification, called the softmax regression model,
is a standard unit in a neural network.

6.1 Neural Networks

If you understood linear regression, logistic regression, and gradient descent, understanding
neural networks should not be a problem.

A neural network (NN), just like a regression or an SVM model, is a mathematical function:

y = fnn(x).

The function fyn has a particular form: it’s a nested function. You have probably already
heard of neural network layers. So, for a 3-layer neural network that returns a scalar, fyn
looks like this:

y = fan(x) = fa(f2(f1(x))).

In the above equation, f; and f; are vector functions of the following form:

Fi(2) = gi(Wiz + by), (1)

where [ is called the layer index and can span from 1 to any number of layers. The function
g; is called an activation function. It is a fixed, usually nonlinear function chosen by the
data analyst before the learning is started. The parameters W, (a matrix) and b; (a vector)
for each layer are learned using the familiar gradient descent by optimizing, depending on the
task, a particular cost function (such as MSE). Compare eq. 1 with the equation for logistic
regression, where you replace g; by the sigmoid function, and you will not see any difference.
The function f3 is a scalar function for the regression task, but can also be a vector function
depending on your problem.

You may probably wonder why a matrix W; is used and not a vector w;. The reason is
that g; is a vector function. Each row w;, (u for unit) of the matrix W, is a vector of
the same dimensionality as z. Let a;, = w;,2z + b;,. The output of f;(z) is a vector
[gi(ai1), gi(ar2), .., gi(ai size, )], where g; is some scalar function', and size; is the number of
units in layer [. To make it more concrete, let’s consider one architecture of neural networks
called multilayer perceptron and often referred to as a vanilla neural network.

LA scalar function outputs a scalar, that is a simple number and not a vector.



6.1.1 Multilayer Perceptron Example

We have a closer look at one particular configuration of neural networks called feed-forward
neural networks (FFNN), and more specifically the architecture called a multilayer
perceptron (MLP). As an illustration, let’s consider an MLP with three layers. Our network
takes a two-dimensional feature vector as input and outputs a number. This FFNN can be a
regression or a classification model, depending on the activation function used in the third,
output layer.

Our MLP is depicted in Figure 1. The neural network is represented graphically as a
connected combination of units logically organized into one or more layers. Each unit is
represented by either a circle or a rectangle. The inbound arrow represents an input of a unit
and indicates where this input came from. The outbound arrow indicates the output of a
unit.

The output of each unit is the result of the mathematical operation written inside the
rectangle. Circle units don’t do anything with the input; they just send their input directly
to the output.

The following happens in each rectangle unit. Firstly, all inputs of the unit are joined together
to form an input vector. Then the unit applies a linear transformation to the input vector,
exactly like linear regression model does with its input feature vector. Finally, the unit
applies an activation function g to the result of the linear transformation and obtains the
output value, a real number. In a vanilla FFNN, the output value of a unit of some layer
becomes an input value of each of the units of the subsequent layer.

In Figure 1, the activation function g; has one index: [, the index of the layer the unit belongs
to. Usually, all units of a layer use the same activation function, but it’s not a rule. Each
layer can have a different number of units. Each unit has its parameters w; ,, and b;,,, where
u is the index of the unit, and [ is the index of the layer. The vector y;_; in each unit is

defined as [yz(i)p yl(i)l, yl(i)l, yl(f)l]. The vector x in the first layer is defined as [z(1), ... 2(P)].

As you can see in Figure 1, in multilayer perceptron all outputs of one layer are connected to
each input of the succeeding layer. This architecture is called fully-connected. A neural
network can contain fully-connected layers. Those are the layers whose units receive as
inputs the outputs of each of the units of the previous layer.

6.1.2 Feed-Forward Neural Network Architecture

If we want to solve a regression or a classification problem discussed in previous chapters, the
last (the rightmost) layer of a neural network usually contains only one unit. If the activation
function gj,s of the last unit is linear, then the neural network is a regression model. If the
Jiast 18 a logistic function, the neural network is a binary classification model.
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The data analyst can choose any mathematical function as g, ,,, assuming it’s differentiable?.
The latter property is essential for gradient descent used to find the values of the parameters
w; ., and by, for all [ and u. The primary purpose of having nonlinear components in the
function fyn is to allow the neural network to approximate nonlinear functions. Without
nonlinearities, fyny would be linear, no matter how many layers it has. The reason is that
W,z + b; is a linear function and a linear function of a linear function is also linear.

Popular choices of activation functions are the logistic function, already known to-you, as well
as TanH and ReLU. The former is the hyperbolic tangent function, similar tothe logistic
function but ranging from —1 to 1 (without reaching them). The latter is the rectified linear
unit function, which equals to zero when its input z is negative and to z otherwise:

e* —e %

e? +e %’

if
relu(z) = {O ifz<0

tanh(z) =

z otherwise

As I said above, W in the expression W;z + by, is a matrix, while b; is a vector. That looks
different from linear regression’s wz + b. In matrix W7, each row u corresponds to a vector of
parameters w; ,,. The dimensionality of the vector wy, equals to the number of units in the

layer | — 1. The operation W,z results in a vector a; def [Wi12, W 2Z, ..., W] size, 2. Then

the sum a; + b; gives a size;-dimensional vector ¢;. Finally, the function g;(c;) produces the
def [ (1) (2) (sizep)

vector y; = [y, Y-, Y, | as output.

6.2 Deep Learning

Deep learning refers to training neural networks with more than two non-output layers. In the
past, it became more difficult to train such networks as the number of layers grew. The two
biggest challenges were referred to as the problems of exploding gradient and vanishing
gradient as gradient descent was used to train the network parameters.

While the problem of exploding gradient was easier to deal with by applying simple techniques
like gradient clipping and L1 or L2 regularization, the problem of vanishing gradient
remained intractable for decades.

What is vanishing gradient and why does it arise? To update the values of the parameters in
neural networks the algorithm called backpropagation is typically used. Backpropagation
is an efficient algorithm for computing gradients on neural networks using the chain rule. In
Chapter 4, we have already seen how the chain rule is used to calculate partial derivatives of
a complex function. During gradient descent, the neural network’s parameters receive an

2The function has to be differentiable across its whole domain or in the majority of the points of its
domain. For example, ReLLU is not differentiable at 0.
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Figure 4: Convolution of a volume consisting of three matrices.

An example of a convolution of a patch of a volume consisting of depth 3 is shown in Figure
4. The value of the convolution, —3, was obtained as (—2-3+3-1+5-4+—1-1)+ (—-2-2+
3-(-1)+5-(=3)+-1-1)+(=2-1+3-(-1)+5-2+—1-(—1)) + (-2).

In computer vision, CNNs often get volumes as input, since an image is usually represented
by three channels: R, G, and B, each channel being a monochrome picture.

Two important properties of convolution are stride and padding.
Stride is the step size of the moving window. In Figure 3, the
stride is 1, that is the filter slides to the right and to the bottom
by one cell at a time. In Figure 5, you can see a partial example
of convolution with stride 2. You can see that the output matrix
is smaller when stride is bigger.

Padding allows getting a larger output matrix; it’s the width of
the square of additional cells with which you surround the image
(or volume) before you convolve it with the filter. The cells added
by padding usually contain zeroes. In Figure 3, the padding is 0, so no additional cells are
added to the image. In Figure 6, on the other hand, the stride is 2 and padding is 1, so a
square of width 1 of additional cells are added to the image. You can see that the output
matrix is bigger when padding is bigger®.

5To save space, in Figure 6, only the first two of the nine convolutions are shown.
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Figure 6: Convolution with stride 2 and padding 1.




An example of an image with padding 2 is shown in Figure 7. Padding is helpful with larger
filters because it allows them to better “scan” the boundaries of the image.
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Figure 7: Image with padding 2.

This section would not be complete without presenting pooling, a technique very often used
in CNNs. Pooling works in a way very similar to convolution, as a filter applied using a
moving window approach. However, instead of applying a trainable filter to an input matrix
or a volume, pooling layer applies a fixed operator, usually either max or average. Similarly
to convolution, pooling has hyperparameters: the size of the filter and the stride. An example
of max pooling with filter of size 2 and stride 2 is shown in Figure 8.

Usually, a pooling layer follows a convolution layer, and it gets the output of convolution
as input. When pooling is applied to a volume, each matrix in the volume is processed
independently of others. Therefore, the output of the pooling layer applied to a volume is a
volume of the same depth as the input.

As you can see, pooling only has hyperparameters and doesn’t have parameters to learn.
Typically, the filter of size 2 or 3 and stride 2 are used in practice. Max pooling is more
popular than average and often gives better results.

Typically pooling contributes to the increased accuracy of the model. It also improves the
speed of training by reducing the number of parameters of the neural network. (As you can
see in Figure 8, with filter size 2 and stride 2 the number of parameters is reduced to 25%,
that is to 4 parameters instead of 16.)
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Figure 8: Pooling with filter of size 2 and stride 2.

6.2.2 Recurrent Neural Network

Recurrent neural networks (RNNs) are used to label, classify, or generate sequences. A
sequence is a matrix, each row of which is a feature vector and the order of rows matters.
To label a sequence is to predict a class for each feature vector in a sequence. To classify a
sequence is to predict a class for the entire sequence. To generate a sequence is to output
another sequence (of a possibly different length) somehow relevant to the input sequence.

RNNs are often used in text processing because sentences and texts are naturally sequences
of either words/punctuation marks or sequences of characters. For the same reason, recurrent
neural networks are also used in speech processing.

A recurrent neural network is not feed-forward: it contains loops. The idea is that each unit
u of recurrent layer [ has a real-valued state h;,. The state can be seen as the memory of
the unit. In RNN, each unit u in each layer [ receives two inputs: a vector of states from the
previous layer [ — 1 and the vector of states from this same layer [ from the previous time
step.

To illustrate the idea, let’s consider the first and the second recurrent layers of an RNN. The
first (leftmost) layer receives a feature vector as input. The second layer receives the output
of the first layer as input.

This situation is schematically depicted in Figure 9. As I said above, each training example
is a matrix in which each row is a feature vector. For simplicity, let’s illustrate this matrix
as a sequence of vectors X = [x!,x2, ... x!7! xt xt+1 ... xlen9thx] where lengthx is the
length of the input sequence. If our input example X is a text sentence, then feature vector
x! for each t = 1,...,lengthx represents a word in the sentence at position ¢.
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As depicted in Figure 9, in an RNN;, the feature vectors from an input example are “read” by
the neural network sequentially in the order of the timesteps. The index t denotes a timestep.
To update the state ht at each timestep t in each unit u of each layer [ we first calculate a

linear combination of the input feature vector with the state vector ht 1 of this same layer
from the previous timestep, ¢ — 1. The linear combination of two vectors is calculated using
two parameter vectors wy ,, u;,, and a parameter b; ,,. The value of hl ., is then obtained by
applying activation function g; to the result of the linear combination. A typical choice for
function g; is tanh. The output y! is typically a vector calculated for the whole layer [ at
once. To obtain y!, we use activation function g that takes a vector as input and returns a
different vector of the same dimensionality. The function g5 is applied to a linear combination
of the state vector values ht calculated using a parameter matrix V; and a parameter vector
c,u- In classification, a typlcal choice for g5 is the softmax function:

B ZkD:I exp (Z(k)) '

The softmax function is a generalization of the sigmoid function to multidimensional outputs.
It has the property that ZJ'D:1 o) =1 and ¢\ >0 for all j.

o(z) def [0(1), .. ,U(D)], where U

The dimensionality of V; is chosen by the data analyst such that multiplication of matrix V;
by the vector h{ results in a vector of the same dimensionality as that of the vector ¢;. This
choice depends on the dimensionality for the output label y in your training data. (Until
now we only saw one-dimensional labels, but we will see in the future chapters that labels
can be multidimensional as well.)

The values of Wy, U 4, 1w, Vi, and c;,, are computed from the training data using gradient
descent with backpropagation. To train RNN models, a special version of backpropagation is
used called backpropagation through time.

Both tanh and softmax suffer from the vanishing gradient problem. Even if our RNN has just
one or two recurrent layers, because of the sequential nature of the input, backpropagation
has to “unfold” the network over time. From the point of view of the gradient calculation, in
practice this means that the longer is the input sequence, the deeper is the unfolded network.

Another problem RNNs have is that of handling long-term dependencies. As the length of
the input sequence grows, the feature vectors from the beginning of the sequence tend to
be “forgotten,” because the state of each unit, which serves as network’s memory, becomes
significantly affected by the feature vectors read more recently. Therefore, in text or speech
processing, the cause-effect link between distant words in a long sentence can be lost.

The most effective recurrent neural network models used in practice are gated RININs. These
include the long short-term memory (LSTM) networks and networks based on the gated
recurrent unit (GRU).

The beauty of using gated units in RNNs is that such networks can store information in their
units for future use, much like bits in a computer’s memory. The difference with the real
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Figure 5: A seq2seq architecture with attention.

A seq2seq architecture with attention is illustrated in Figure 5.

seq2seq learning is a relatively new research domain. Novel network
architectures are regularly discovered and published. Training such
architectures can be challenging as the number of hyperparameters
to tune and other architectural decisions can be overwhelming.
Consult the book’s wiki for the state of the art material, tutorials
and code samples.

7.8 Active Learning

Active learning is an interesting supervised learning paradigm.
It is usually applied when obtaining labeled examples is costly. That is often the case in the
medical or financial domains, where the opinion of an expert may be required to annotate
patients’” or customers’ data. The idea is to start learning with relatively few labeled examples,
and a large number of unlabeled ones, and then label only those examples that contribute
the most to the model quality.

There are multiple strategies of active learning. Here, we discuss only the following two:

1) data density and uncertainty based, and
2) support vector-based.

The former strategy applies the current model f, trained using the existing labeled examples,
to each of the remaining unlabelled examples (or, to save the computing time, to some



random sample of them). For each unlabeled example x, the following importance score is
computed: density(x) - uncertaintys(x). Density reflects how many examples surround x in
its close neighborhood, while uncertaintys(x) reflects how uncertain the prediction of the
model f is for x. In binary classification with sigmoid, the closer the prediction score is to
0.5, the more uncertain is the prediction. In SVM, the closer the example is to the decision
boundary, the most uncertain is the prediction.

In multiclass classification, entropy can be used as a typical measure of uncertainty:

C
Hy(x) = = 3 Pr(y@s () In [Pr(y; £(x))]

where Pr(y(%); f(x)) is the probability score the model f assigns to class 3(®) when classifying
x. You can see that if for each y(®, f(y(?) = % then the model is the most uncertain and
the entropy is at its maximum of 1; on the other hand, if for some y(®), f(y(?)) = 1, then the
model is certain about the class y(©) and the entropy is at its minimum of 0.

[=]:

| |
EE.' Once we know the importance score of each unlabeled example,
| -EI we pick the one with the highest importance score and ask the
-

Density for the example x can be obtained by taking the average
of the distance from x to each of its k nearest neighbors (with &

E being a hyperparameter).
g I

expert to annotate it. Then we add the new annotated example

to the training set, rebuild the model and continue the process

- until some stopping criterion is satisfied. A stopping criterion can

be chosen in advance (the maximum number of requests to the

expert based on the available budget) or depend on how well our model performs according
to some metric.

The support vector-based active learning strategy consists in building an SVM model using
the labeled data. We then ask our expert to annotate the unlabeled example that lies the
closest to the hyperplane that separates the two classes. The idea is that if the example lies
closest to the hyperplane, then it is the least certain and would contribute the most to the
reduction of possible places where the true (the one we look for) hyperplane could lie.

Some active learning strategies can incorporate the cost of asking an expert for a label.
Others learn to ask expert’s opinion. The “query by committee” strategy consists of training
multiple models using different methods and then asking an expert to label example on which
those models disagree the most. Some strategies try to select examples to label so that the
variance or the bias of the model are reduced the most.
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8 Advanced Practice

This chapter contains the description of techniques that you could find useful in your practice
in some contexts. It’s called “Advanced Practice” not because the presented techniques are
more complex, but rather because they are applied in some very specific contexts. In many
practical situations, you will most likely not need to resort to using these techniques, but
sometimes they are very helpful.

8.1 Handling Imbalanced Datasets

Often in practice, examples of some class will be underrepresented in your training data.
This is the case, for example, when your classifier has to distinguish between genuine and
fraudulent e-commerce transactions: the examples of genuine transactions are much more
frequent. If you use SVM with soft margin, you can define a cost for misclassified examples.
Because noise is always present in the training data, there are high chances that many
examples of genuine transactions would end up on the wrong side of the decision boundary
by contributing to the cost.
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Figure 1: An illustration of an imbalanced problem. (a) Both classes have the same weight;
(b) examples of the minority class have a higher weight.

The SVM algorithm will try to move the hyperplane to avoid as much as possible misclassified
examples. The “fraudulent” examples, which are in the minority, risk being misclassified in
order to classify more numerous examples of the majority class correctly. This situation is
illustrated in Figure 1la. This problem is observed for most learning algorithms applied to
imbalanced datasets.



If you set the cost of misclassification of examples of the minority class higher, then the
model will try harder to avoid misclassifying those examples, obviously for the cost of
misclassification of some examples of the majority class, as illustrated in Figure 1b.

Some SVM implementations allow you to provide weights for every class. The learning
algorithm takes this information into account when looking for the best hyperplane.

If a learning algorithm doesn’t allow weighting classes, you can try the technique of over-
sampling. It consists of increasing the importance of examples of some class by making
multiple copies of the examples of that class.

An opposite approach, undersampling, is to randomly remove from the training set some
examples of the majority class.

You might also try to create synthetic examples by randomly sampling feature values of
several examples of the minority class and combining them to obtain a new example of that
class. There are two popular algorithms that oversample the minority class by creating
synthetic examples: the synthetic minority oversampling technique (SMOTE) and the
adaptive synthetic sampling method (ADASYN).

SMOTE and ADASYN work similarly in many ways. For a given example x; of the minority
class, they pick k nearest neighbors of this example (let’s denote this set of k examples Sk)
and then create a synthetic example X;,c, as X; + A(X,; — X;), where x,; is an example of the
minority class chosen randomly from Si. The interpolation hyperparameter A is a random
number in the range [0, 1].

Both SMOTE and ADASYN randomly pick all possible x; in the dataset. In ADASYN,
the number of synthetic examples generated for each x; is proportional to the number of
examples in S which are not from the minority class. Therefore, more synthetic examples
are generated in the area where the examples of the minority class are rare.

Some algorithms are less sensitive to the problem of an imbalanced dataset. Decision trees,
as well as random forest and gradient boosting, often perform well on imbalanced datasets.

8.2 Combining Models

Ensemble algorithms, like Random Forest, typically combine models of the same nature. They
boost performance by combining hundreds of weak models. In practice, we can sometimes
get an additional performance gain by combining strong models made with different learning
algorithms. In this case, we usually use only two or three models.

Three typical ways to combine models are 1) averaging, 2) majority vote and 3) stacking.

Averaging works for regression as well as those classification models that return classification
scores. You simply apply all your models, let’s call them base models, to the input x and
then average the predictions. To see if the averaged model works better than each individual
algorithm, you test it on the validation set using a metric of your choice.



Majority vote works for classification models. You apply all your base models to the input
x and then return the majority class among all predictions. In the case of a tie, you either
randomly pick one of the classes, or, you return an error message (if the fact of misclassifying
would incur a significant cost).

Stacking consists of building a meta-model that takes the output of base models as input.
Let’s say you want to combine classifiers f; and fo, both predicting the same set of classes. To
create a training example (X;,7;) for the stacked model, set X; = [f1(x), f2(x)] and §; = ;.

If some of your base models return not just a class, but also a score for each class, you can
use these values as features too.

To train the stacked model, it is recommended to use examples from the training set and
tune the hyperparameters of the stacked model using cross-validation.

Obviously, you have to make sure that your stacked model performs better on the validation
set than each of the base models you stacked.

The reason that combining multiple models can bring better performance is the observation
that when several uncorrelated strong models agree they are more likely to agree on the
correct outcome. The keyword here is “uncorrelated.” Ideally, base models should be obtained
using different features or using algorithms of a different nature — for example, SVMs and
Random Forest. Combining different versions of decision tree learning algorithm, or several
SVMs with different hyperparameters may not result in a significant performance boost.

8.3 Training Neural Networks

In neural network training, one challenging aspect is to convert your data into the input the
network can work with. If your input is images, first of all, you have to resize all images so
that they have the same dimensions. After that, pixels are usually first standardized and
then normalized to the range [0, 1].

Texts have to be tokenized (that is split into pieces, such as words, punctuation marks, and
other symbols). For CNN and RNN;, each token is converted into a vector using the one-hot
encoding, so the text becomes a list of one-hot vectors. Another, often a better way to
represent tokens is by using word embeddings. For multilayer perceptron, to convert texts
to vectors the bag of words approach may work well, especially for larger texts (larger than
SMS messages and tweets).

The choice of specific neural network architecture is a difficult one. For the same problem,
like seq2seq learning, there is a variety of architectures, and new ones are proposed almost
every year. I recommend researching state of the art solutions for your problem using Google
Scholar or Microsoft Academic search engines that allow searching for scientific publications
using keywords and time range. If you don’t mind working with less modern architecture, I
recommend looking for implemented architectures on GitHub and finding one that could be
applied to your data with minor modifications.



In practice, the advantage of modern architecture over an older one becomes less significant
as you preprocess, clean and normalize your data, and create a larger training set. Modern
neural network architectures are a result of the collaboration of scientists from several labs
and companies; such models could be very complex to implement on your own and usually
require much computational power to train. Time spent trying to replicate results from a
recent scientific paper may not be worth it. This time could better be spent on building the
solution around a less modern but stable model and getting more training data.

Once you decided on the architecture of your network, you have to decide on the number of
layers, their type, and size. It is recommended to start with one or two layers, train a model
and see if it fits the training data well (has a low bias). If not, gradually increase the size of
each layer and the number of layers until the model perfectly fits the training data. Once this
is the case, if the model doesn’t perform well on the validation data (has a high variance), you
should add regularization to your model. If, after adding regularization, the model doesn’t
fit the training data anymore, slightly increase the size of the network. Continue iteratively
until the model fits both training and validation data well enough according to your metric.

8.4 Advanced Regularization

In neural networks, besides L1 and L2 regularization, you can use neural network specific
regularizers: dropout, early stopping, and batch normalization. The latter is technically
not a regularization technique, but it often has a regularization effect on the model.

The concept of dropout is very simple. Each time you run a training example through the
network, you temporarily exclude at random some units from the computation. The higher
the percentage of units excluded the higher the regularization effect. Neural network libraries
allow you to add a dropout layer between two successive layers, or you can specify the dropout
parameter for the layer. The dropout parameter is in the range [0, 1] and it has to be found
experimentally by tuning it on the validation data.

Early stopping is the way to train a neural network by saving the preliminary model after
every epoch and assessing the performance of the preliminary model on the validation set. As
you remember from the section about gradient descent in Chapter 4, as the number of epochs
increases, the cost decreases. The decreased cost means that the model fits the training data
well. However, at some point, after some epoch e, the model can start overfitting: the cost
keeps decreasing, but the performance of the model on the validation data deteriorates. If
you keep, in a file, the version of the model after each epoch, you can stop the training once
you start observing a decreased performance on the validation set. Alternatively, you can
keep running the training process for a fixed number of epochs and then, in the end, you
pick the best model. Models saved after each epoch are called checkpoints. Some machine
learning practitioners rely on this technique very often; others try to properly regularize the
model to avoid such an undesirable behavior.

Batch normalization (which rather has to be called batch standardization) is a technique
that consists of standardizing the outputs of each layer before the units of the subsequent



layer receive them as input. In practice, batch normalization results in faster and more stable
training, as well as some regularization effect. So it’s always a good idea to try to use batch
normalization. In neural network libraries, you can often insert a batch normalization layer
between two layers.

Another regularization technique that can be applied not just to neural networks, but to
virtually any learning algorithm, is called data augmentation. This technique is often
used to regularize models that work with images. Once you have your original labeled
training set, you can create a synthetic example from an original example by applying various
transformations to the original image: zooming it slightly, rotating, flipping, darkening, and
so on. You keep the original label in these synthetic examples. In practice, this often results
in increased performance of the model.

8.5 Handling Multiple Inputs

Often in practice, you will work with multimodal data. For example, your input could be an
image and text and the binary output could indicate whether the text describes this image.

It’s hard to adapt shallow learning algorithms to work with multimodal data. However, it’s
not impossible. You could train one shallow model on the image and another one on the text.
Then you can use a model combination technique we discussed above.

If you cannot divide your problem into two independent subproblems, you can try to vectorize
each input (by applying the corresponding feature engineering method) and then simply
concatenate two feature vectors together to form one wider feature vector. For example,
if your image has features [i(V),i(?) (3] and your text has features [t(1),¢(2) ¢(3) +(*)] your
concatenated feature vector will be [i(1),i(2),i(3) ¢(1) ¢(2) ¢(3) ()],

With neural networks, you have more flexibility. You can build two subnetworks, one for
each type of input. Forexample, a CNN subnetwork would read the image while an RNN
subnetwork would read the text. Both subnetworks have as their last layer an embedding:
CNN has an embedding of the image, while RNN has an embedding of the text. You can now
concatenate two embeddings and then add a classification layer, such as softmax or sigmoid,
on top of the concatenated embeddings. Neural network libraries provide simple to use tools
that allow concatenating or averaging layers from several subnetworks.

8.6 Handling Multiple Outputs

In some problems, you would like to predict multiple outputs for one input. We considered
multi-label classification in the previous chapter. Some problems with multiple outputs can
be effectively converted into a multi-label classification problem. Especially those that have
labels of the same nature (like tags) or fake labels can be created as a full enumeration of
combinations of original labels.



However, in some cases the outputs are multimodal, and their combinations cannot be
effectively enumerated. Consider the following example: you want to build a model that
detects an object on an image and returns its coordinates. In addition, the model has to
return a tag describing the object, such as “person,” “cat,” or “hamster.” Your training
example will be a feature vector that represents an image. The label will be represented as a
vector of coordinates of the object and another vector with a one-hot encoded tag.

To handle a situation like that, you can create one subnetwork that would work as an
encoder. It will read the input image using, for example, one or several convolution layers.
The encoder’s last layer would be the embedding of the image. Then you add two other
subnetworks on top of the embedding layer: one that takes the embedding vector as input
and predicts the coordinates of an object. This first subnetwork can have a ReLLU as the
last layer, which is a good choice for predicting positive real numbers, such as coordinates;
this subnetwork could use the mean squared error cost C;. The second subnetwork will take
the same embedding vector as input and predict the probabilities for each tag. This second
subnetwork can have a softmax as the last layer, which is appropriate for the probabilistic
output, and use the averaged negative log-likelihood cost Cy (also called cross-entropy cost).

Obviously, you are interested in both accurately predicted coordinates and the tags. However,
it is impossible to optimize the two cost functions at the same time. By trying to optimize one,
you risk hurting the second one and the other way around. What you can do is add another
hyperparameter «y in the range (0, 1) and define the combined cost function as vC7 4 (1 —~)Cs.
Then you tune the value for v on the validation data just like any other hyperparameter.

8.7 Transfer Learning

Transfer learning is probably where neural networks have a unique advantage over the
shallow models. In transfer learning, you pick an existing model trained on some dataset,
and you adapt this model to predict examples from another dataset, different from the one
the model was built on. This second dataset is not like holdout sets you use for validation
and test. It may represent some other phenomenon, or, as machine learning scientists say, it
may come from another statistical distribution.

For example, imagine you have trained your model to recognize (and label) wild animals on a
big labeled dataset. After some time, you have another problem to solve: you need to build a
model that would recognize domestic animals. With shallow learning algorithms, you do not
have many options: you have to build another big labeled dataset, now for domestic animals.

With neural networks, the situation is much more favorable. Transfer learning in neural
networks works like this.

1. You build a deep model on the original big dataset (wild animals).

2. You compile a much smaller labeled dataset for your second model (domestic animals).

3. You remove the last one or several layers from the first model. Usually, these are layers
responsible for the classification or regression; they usually follow the embedding layer.



4. You replace the removed layers with new layers adapted for your new problem.

You “freeze” the parameters of the layers remaining from the first model.

6. You use your smaller labeled dataset and gradient descent to train the parameters of
only the new layers.

ot

Usually, there is an abundance of deep models for visual problems available online. You can
find one that has high chances to be of use for your problem, download that model, remove
several last layers (the quantity of layers to remove is a hyperparameter), put your own
prediction layers and train your model.

Even if you don’t have an existing model, transfer learning can still help you in situations when
your problem requires a labeled dataset very costly to obtain, but you can get another dataset
for which labels are more readily available. Let’s say you build a document classification
model. You got the taxonomy of labels from your employer, and it contains a thousand
categories. In this case, you would need to pay someone to a) read, understand and memorize
the differences between categories and b) read up to a million documents and annotate them.

To save on labeling so many examples, you could consider using Wikipedia pages as the dataset
to build your first model. The labels for a Wikipedia page can be obtained automatically by
taking the category the Wikipedia page belongs to. Once your first model has learned to
predict Wikipedia categories, you can “fine tune” this model to predict the categories of your
employer’s taxonomy. You will need much fewer annotated examples for your employer’s
problem than you would need if you started solving your original problem from scratch.

8.8 Algorithmic Efficiency

Not all algorithms capable of solving a problem are practical. Some can be too slow. Some
problems can be solved by a fast algorithm, for others, no fast algorithms can exist.

The subfield of computer science called analysis of algorithms is concerned with determining
and comparing the complexity of algorithms. The big O notation is used to classify
algorithms according to how their running time or space requirements grow as the input size
grows.

For example, let’s say we have the problem of finding the two most distant one-dimensional
examples in the set of examples S of size N. One algorithm we could craft to solve this
problem would look like this (here and below, in Python):

def find max_distance(S):
result = None
max_distance = 0O
for x1 in S:
for x2 in S:
if abs(xl - x2) >= max_distance:
max_distance = abs(xl - x2)
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result = (x1, x2)
return result

In the above algorithm, we loop over all values in S, and at every iteration of the first loop, we
loop over all values in S once again. Therefore, the above algorithm makes N? comparisons of
numbers. If we take as a unit time the time the comparison, abs and assignment operations
take, then the time complexity (or, simply, complexity) of this algorithm is at most 5N2. (At
each iteration, we have one comparison, two abs and two assignment operations.) When the
complexity of an algorithm is measured in the worst case, the big O notation is used. For
the above algorithm, using the big O notation, we write that the algorithm’s complexity is
O(N?); the constants, like 5, are ignored.

For the same problem, we can craft another algorithm like this:

def find_max_distance(S):
result = None
min_x = float("inf")
max_x = float("-inf")
for x in S:
if x < min_x:
min_xX = X
elif x > max_x:
max_x = X
result = (max_x, min_x)
return result

In the above algorithm, we loop over all values in S only once, so the algorithm’s complexity
is O(N). In this case, we say that the latter algorithm is more efficient than the former.

An algorithm is called efficient when its complexity is polynomial in the size of the input.
Therefore both O(N) and O(N?) are efficient because N is a polynomial of degree 1 and N?
is a polynomial of degree 2. However, for very large inputs, an O(N?) algorithm can be slow.
In the big data era, scientists often look for O(log N) algorithms.

From a practical standpoint, when you implement your algorithm, you should avoid using
loops whenever possible. For example, you should use operations on matrices and vectors,
instead of loops. In Python, to compute wx, you should write,

import numpy
wx = numpy.dot (w,x)

and not,

wx = 0
for i in range(N):
wx += wl[i]#*x[i]

Use appropriate data structures. If the order of elements in a collection doesn’t matter, use
set instead of list. In Python, the operation of verifying whether a specific example x belongs



9 Unsupervised Learning

Unsupervised learning deals with problems in which data doesn’t have labels. That property
makes it very problematic for many applications. The absence of labels representing the
desired behavior for your model means the absence of a solid reference point to judge the
quality of your model. In this book, I only present unsupervised learning methods that allow
building models that can be evaluated based on data as opposed to human judgment.

9.1 Density Estimation

Density estimation is a problem of modeling the probability density function (pdf) of the
unknown probability distribution from which the dataset has been drawn. It can be useful for
many applications, in particular for novelty or intrusion detection. In Chapter 7, we already
estimated the pdf to solve the one-class classification problem. To do that, we decided that
our model would be parametric, more precisely a multivariate normal distribution (MVN).
This decision was somewhat arbitrary because if the real distribution from which our dataset
was drawn is different from the MVN, our model will be very likely far from perfect. We
also know that models can be nonparametric. We used a nonparametric model in kernel
regression. It turns out that the same approach can work for density estimation.

Let {z;}XY | be a one-dimensional dataset (a multi-dimensional case is similar) whose examples
were drawn from a distribution with an unknown pdf f with z; € Rforalli=1,..., N. We
are interested in modeling the shape of f. Our kernel model of f, denoted as fp, is given by,

fb<x>:]§bgk(”’“’;”’“), 0

where b is a hyperparameter that controls the tradeoff between bias and variance of our
model and k is a kernel. Again, like in Chapter 7, we use a Gaussian kernel:

k(2) = \/%exp <_2“”2>
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Figure 1: Kernel density estimation: (a) good fit; (b) overfitting; (¢) underfitting; (d) the
curve of grid search for the best value for b.

We look for such a value of b that minimizes the difference between the real shape of f and
theshape of our model f;,. A reasonable choice of measure of this difference is called the
mean integrated squared error (MISE):

MISE(0) = B | [ (o) = f()?da] @)

Intuitively, you see in eq. 2 that we square the difference between the real pdf f and our
model of it fb The integral fR replaces the summation Z _, we employed in the mean




squared error, while the expectation operator E replaces the average %

Indeed, when our loss is a function with a continuous domain, such as (f,(z) — f(x))2, we
have to replace the summation with the integral. The expectation operation & means that
we want b to be optimal for all possible realizations of our training set {z;}~,. That is
important because fb is defined on a finite sample of some probability distribution, while the
real pdf f is defined on an infinite domain (the set R).

Now, we can rewrite the right-hand side term in eq. 2 like this:

o[ o] [ o] o5 o]

The third term in the above summation is independent of b and thus can be ignored. An
unbiased estimator of the first term is given by fR fZ(z)dz while the unbiased estimator of

the second term can be approximated by cross-validation — % ZZ Wi ( i), where fb(i) is
a kernel model of f computed on our training set with the example x; excluded.

The term Zfil f;l) (x;) is known in statistics as the leave one out estimate, a form of cross-
vahdatlon in which each fold consists of one example. You could have noticed that the term
fR fb x)dx (let’s call it a) is the expected value of the function fb, because f is a pdf. It
can be demonstrated that the leave one out estimate is an unbiased estimator of E [a].

Now, to find the optimal value b* for b, we minimize the cost defined as,

| Frtwyta - NZ i

We can find b* using grid search. For D-dimensional feature vectors x, the error term = — x;
in eq. 1 can be replaced by the Euclidean distance ||x — x;||. In Figure 1 you can see the
estimates for the same pdf obtained with three different values of b from a 100-example
dataset, as well as the grid search curve. We pick b* at the minimum of the grid search curve.

9.2 Clustering

Clustering is a problem of learning to assign a label to examples by leveraging an unlabeled
dataset. Because the dataset is completely unlabeled, deciding on whether the learned model
is optimal is much more complicated than in supervised learning.



(b) iteration 1

(d) iteration 5

igure 2: The progress of the k-means algorithm for k = 3.

There is riety of clustering algorithms, and, unfortunately, it’s hard to tell which one is

tter in quality for your dataset. Usually, the performance of each algorithm depends on

unknown properties of the probability distribution the dataset was drawn from. In this
apter, I outline the most useful and widely used clustering algorithms.



9.2.1 K-Means

The k-means clustering algorithm works as follows. First, you choose & — the number of
clusters. Then you randomly put k feature vectors, called centroids, to the feature space.

We then compute the distance from each example x to each centroid ¢ using some metric,
like the Euclidean distance. Then we assign the closest centroid to each example (like if we
labeled each example with a centroid id as the label). For each centroid, we calculate the
average feature vector of the examples labeled with it. These average feature vectors become
the new locations of the centroids.

We recompute the distance from each example to each centroid, modify the assignment and
repeat the procedure until the assignments don’t change after the centroid locations were
recomputed. The model is the list of assignments of centroids IDs to the examples.

The initial position of centroids influence the final positions, so two runs of k-means can
result in two different models. Some variants of k-means compute the initial positions of
centroids based on some properties of the dataset.

One run of the k-means algorithm is illustrated in Figure 2. The circles in Figure 2 are
two-dimensional feature vectors; the squares are moving centroids. Different background
colors represent regions in which all points belong to the same cluster.

The value of k, the number of clusters, is a hyperparameter that has to be tuned by the
data analyst. There are some techniques for selecting k. None of them is proven optimal.
Most of those techniques require the analyst to make an “educated guess” by looking at some
metrics or by examining cluster assignments visually. In this chapter, I present one approach
to choose a reasonably good value for k£ without looking at the data and making guesses.

9.2.2 DBSCAN and HDBSCAN

While k-means and similar algorithms are centroid-based, DBSCAN is a density-based
clustering algorithm. Instead of guessing how many clusters you need, by using DBSCAN,
you define two hyperparameters: € and n. You start by picking an example x from your
dataset at random and assign it to cluster 1. Then you count how many examples have
the distance from x less than or equal to e. If this quantity is greater than or equal to n,
then you put all these e-neighbors to the same cluster 1. You then examine each member of
cluster 1 and find their respective e-neighbors. If some member of cluster 1 has n or more
e-neighbors, you expand cluster 1 by putting those e-neighbors to the cluster. You continue
expanding cluster 1 until there are no more examples to put in it. In the latter case, you pick
from the dataset another example not belonging to any cluster and put it to cluster 2. You
continue like this until all examples either belong to some cluster or are marked as outliers.
An outlier is an example whose e-neighborhood contains less than n examples.

The advantage of DBSCAN is that it can build clusters that have an arbitrary shape, while k-
means and other centroid-based algorithms create clusters that have a shape of a hypersphere.



An obvious drawback of DBSCAN is that it has two hyperparameters and choosing good
values for them (especially €) could be challenging. Furthermore, having e fixed, the clustering
algorithm cannot effectively deal with clusters of varying density.

HDBSCAN is the clustering algorithm that keeps the advantages of DBSCAN, by removing
the need to decide on the value of e. The algorithm is capable of building clusters of
varying density. HDBSCAN is an ingenious combination of multiple ideas and describing the
algorithm in full is beyond the scope of this book.

HDBSCAN only has one important hyperparameter: n, the minimum number of examples to
put in a cluster. This hyperparameter is relatively simple to choose by intuition. HDBSCAN
has very fast implementations: it can deal with millions of examples effectively. Modern
implementations of k-means are much faster than HDBSCAN though, but the qualities of
the latter may outweigh its drawbacks for many practical tasks. I recommend to always try
HDBSCAN on your data first.

9.2.3 Determining the Number of Clusters

The most important question is how many clusters does your dataset have? When the feature
vectors are one-, two- or three-dimensional, you can look at the data and see “clouds” of
points in the feature space. Each cloud is a potential cluster. However, for D-dimensional
data, with D > 3, looking at the data is problematic®.

One way of determining the reasonable number of clusters is based on the concept of
prediction strength. The idea is to split the data into training and test set, similarly to
how we do in supervised learning. Once you have the training and test sets, S, of size
Ny, and Sge of size Ny, respectively, you fix k, the number of clusters, and run a clustering
algorithm C on sets Sy, and S;. and obtain the clustering results C(Sy,, k) and C(Ste, k).

Let A be the clustering C(Sy,, k) built using the training set. The clusters in A can be seen
as regions. If an example falls within one of those regions, then that example belongs to
some specific cluster. For example, if we apply the k-means algorithm to some dataset, it
results in a partition of the feature space into k polygonal regions, as we saw in Figure 2.

Define the Ny % Ny co-membership matriz D[A, S;.] as follows: D[A,Ste](i’i/) =1 if and
only if examples x; and x;» from the test set belong to the same cluster according to the
clustering A. Otherwise D[A, S;.]") = 0.

Let’s take a break and see what we have here. We have built, using the training set of
examples, a clustering A that has k clusters. Then we have built the co-membership matrix
that indicates whether two examples from the test set belong to the same cluster in A.

LSome analysts look at multiple two-dimensional plots, in which only a pair of features are present at the
same time. It might give an intuition about the number of clusters. However, such an approach suffers from
subjectivity, is prone to error and counts as an educated guess rather than a scientific method.



Intuitively, if the quantity k is the reasonable number of clusters, then two examples that
belong to the same cluster in clustering C'(S;e, k) will most likely belong to the same cluster
in clustering C(Sy-, k). On the other hand, if k is not reasonable (too high or too low), then
training data-based and test data-based clusterings will likely be less consistent.
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Figure 4: The clustering for k = 4: (a) training data clustering; (b) test data clustering; (c)
test data plotted over the training clustering.

Using the data shown in Figure 3, the idea is illustrated in Figure 4. The plots in Figure 4a
and 4b show respectively C(Sy,4) and C(Ste,4) with their respective cluster regions. Figure
4c shows the test examples plotted over the training data cluster regions. You can see in
4c that orange test examples don’t belong anymore to the same cluster according to the
clustering regions obtained from the training data. This will result in many zeroes in the
matrix D[A, St.] which, in turn, is an indicator that k = 4 is likely not the best number of

clusters.

More formally, the prediction strength for the number of clusters k is given by,




e 1
ps(k) def “min

I D[A, S;.] @),
j=L.k [A](JAs] = 1) Z s

i €A,

where A &' C (Sir, k), Aj is j* cluster from the clustering C(Sie, k) and |4;] is the number
of examples in cluster A;.

Given a clustering C'(Sy-, k), for each test cluster, we compute the proportion of observation
pairs in that cluster that are also assigned to the same cluster by the training set centroids.
The prediction strength is the minimum of this quantity over the k test clusters.

Experiments suggest that a reasonable number of clusters is the
largest k& such that ps(k) is above 0.8: You can see in Figure 5
examples of predictive strength for different values of k£ for two-,
three- and four-cluster data.

For non-deterministic clustering algorithms, such as k-means,
which can generate different clusterings depending on the ini-
tial positions of centroids, it is recommended to do multiple runs of
the clustering algorithm for the same k£ and compute the average
prediction strength ps(k) over multiple runs.

Another effective method to estimate the number of clusters is the gap statistic method.
Other, less automatic methods, which some analysts still use, include the elbow method
and the average silhouette method.
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Figure 5: Predictive strength for different values of k for two-, three- and four-cluster data.

9.2.4 Other Clustering Algorithms

DBSCAN and k-means compute so-called hard clustering, in which each example can
belong to only one cluster. Gaussian mixture model (GMM) allow each example to be
a member of several clusters with different membership score (HDBSCAN allows that
too). Computing a GMM is very similar to doing model-based density estimation. In GMM,
instead of having just one multivariate normal distribution (MND), we have a weighted sum
of several MNDs:

k
fx =Y bifu,

j=1

where f“j,gj is a MND j, and ¢; is its weight in the sum. The values of parameters p;, 3;,
and ¢;, for all j =1,...,k are obtained using the expectation maximization algorithm
(EM) to optimize the maximum likelihood criterion.

Again, for simplicity, let us look at the one-dimensional data. Also assume that there are two
clusters: k = 2. In this case, we have two Gaussian distributions,



1 (IE—M1)2 (x—u2)2
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f(x| p,07) = exp — and f(x | po,03) = exp — 5, (3

where f(z | u1,0%) and f(x | pu2,03) are two pdf defining the likelihood of X = .

We use the EM algorithm to estimate u1, 07, po, 03, ¢1, and ¢o. The parameters ¢; and ¢o
are useful for the density estimation and less useful for clustering, as we will see below.

EM works like follows. In the beginning, we guess the initial values for u1, 0%, s, and o3,
and set ¢1 = ¢ = 5 (in general, it’s % for each ¢;, j € 1,...,k).

At each iteration of EM, the following four steps are executed:

1. For alli=1,..., N, calculate the likelihood of each z; using eq. 3:

1 (21 — p1)? 2 1 (zi — p2)?
flx; | py,02) exp —————5—— and f(x; | p2, 05) < exp ———5——.
( ‘ 1 1) 27‘r0’% 20-% ( ‘ % 2) 27-‘-0% 20’%

2. Using Bayes’ Rule, for each example x;, calculate the likelihood bl(-j ) that the example
belongs to cluster j € {1,2} (in other words, the likelihood that the example was drawn

from the Gaussian j):

f(xl | [Lj,O']Z)qu
fli | paiot)éy + f(ai | g, 03)2

bgj) —

The parameter ¢; reflects how likely is that our Gaussian distribution j with parameters p;
and 02 may have produced our dataset. That is why in the beginning we set ¢, = ¢y = %:
we don’t know how each of the two Gaussians is likely, and we reflect our ignorance by setting
the likelihood of both to one half.
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Figure 6: The progress of the Gaussian mixture model estimation using the EM algorithm
for two clusters (k = 2).

3. Compute the new values of y; and UJZ», Jj €{1,2} as,

N 2(5) N 2(5) 2
N pWg, N b9 (2 —
Mj Zz?\[l z(;)n and O_JZ Zz_l ZN(x o /‘LJ) ] (4)
ST b > . b
1=1"1 =1 "1

4. Update ¢;, j € {1,2} as,



L=, )
J
¢j<—N;bi.

The steps 1 — 4 are executed iteratively until the values p; and O'JQ- don’t change much: for
example, the change is below some threshold e. Figure 6 illustrates this process.

You may have noticed that the EM algorithm is very similar to the k-means algorithm: start
with random clusters, then iteratively update each cluster’s parameters by averaging the
data that is assigned to that cluster. The only difference in the case of the GMM is that the
assignment of an example x; to the cluster j is soft: x; belongs to cluster j with probability
bgj ). This is why we calculate the new values for p; and cr]2- in eq. 4 not as an average (used
in k-means) but as a weighted average with weights bl(-j).

Once we have learned the parameters p; and ajz- for each cluster j, the membership score of

example z in cluster j is given by f(z | ,uj,af-).

The extension to D-dimensional data (D > 1) is straightforward. The only difference is
that instead of the variance 02, we now have the covariance matrix ¥ that parametrizes the
multinomial normal distribution (MND).

Contrary to k-means where clusters can only be circular, the
clusters in GMM have a form of an ellipse that can have an
arbitrary elongation and rotation. The values in the covariance
matrix control these properties.

There’s no universally recognized method to choose the right &
in GMM. I recommend to first split the dataset into training and
test set. Then you try different & and build a different model
fE for each k on the training data. You pick the value of k that
maximizes the likelihood of examples in the test set:

|Nte|

arglrcnax H fE (),
i=1

where | Vy| is the size of the test set.

There is a variety of clustering algorithms described in the literature. Worth mentioning are
spectral clustering and hierarchical clustering. For some datasets, you may find those
more appropriate. However, in most practical cases, kmeans, HDBSCAN and the Gaussian
mixture model would satisfy your needs.
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9.3 Dimensionality Reduction

Modern machine learning algorithms, such as ensemble algorithms and neural networks handle
well very high-dimensional examples, up to millions of features. With modern computers
and graphical processing units (GPUs), dimensionality reduction techniques are used less in
practice than in the past. The most frequent use case for dimensionality reduction is data
visualization: humans can only interpret on a plot the maximum of three dimensions.

Another situation in which you could benefit from dimensionality reduction is when you
have to build an interpretable model and to do so you are limited in your choice of learning
algorithms. For example, you can only use decision tree learning or linear regression. By
reducing your data to lower dimensionality and by figuring out which quality of the original
example each new feature in the reduced feature space reflects, one can use simpler algorithms.
Dimensionality reduction removes redundant or highly correlated features; it also reduces the
noise in the data — all that contributes to the interpretability of the model.

Three widely used techniques of dimensionality reduction are principal component anal-
ysis (PCA), uniform manifold approximation and projection (UMAP), and autoen-
coders.

I already explained autoencoders in Chapter 7. You can use the low-dimensional output of the
bottleneck layer of the autoencoder as the vector of reduced dimensionality that represents
the high-dimensional input feature vector. You know that this low-dimensional vector
represents the essential information contained in the input vector because the autoencoder is
capable of reconstructing the input feature vector based on the bottleneck layer output alone.
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Figure 7: PCA: (a) the original data; (b) two principal components displayed as vectors; (c)
the data projected on the first principal component.
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