Data Structures and Algorithms
(CS210A)

Lecture 41

e Miscellaneous problems

Order notation

Definition: Let f(n) and g(n) be any two increasing functions of n.
f(n) is said to be
if there exist constants c and n such that

f(n) <cg(n) foralln>n,

E f(n) = O(g(n)) i

Order notation extended

Definition: Let f(n) and g(n) be any two increasing functions of n.
f(n) is said to be
if there exist constants c and n such that

f(n) 2cg(n) foralln>n,

E f(n)=ﬂ(g(n;z

nZ

0 = (10000 n log n)

Order notation extended

Observations:
e f(n)=0(g(n)) ifandonlyif g(n)=Q(f(n))

One more Notation:
If f(n)=0(g(n)) and g(n)=0(f(n)), then
g(n) = O(f(n))

Examples:

2
°

= (10000 n?)
100

« Time complexity of Quick Sortis (n logn)

* Time complexity of Merge sortis O(n log n)

Time complexity of a problem

Time complexity of sorting

Example: Sorting

 Algorithm 1 : Selection Sort with time complexity O(n?) 0(n?) Upper bound

* Algorithm 2 : Merge Sort with time complexity O(nlogn) Q(n logn)

* Each comparison based sorting algorithm needs to

Q(nlogn
perform (n logn) comparisons in the worst case. (gn)
e Sorting must takes (n) time since
it has to read each item at least once. Q(n) Lower bound

g Sorting has time E
complexity of @(nlogn)

Time complexity of a problem

Example: All-pairs shortest paths (APSP)

Algorithm 1 : Floyd Warshal Algorithm with time
complexity O(n?)

Algorithm 2 : Johnson’ algorithm with time
complexity O(mn logn)

All-pairs shortest paths must require Q(n?) time

Time complexity of APSP

0(n3)

O(mnlogn)

Q(n?)

zl There is still a gap between upper and |<
lower bounds for APSP. ®

Upper bound

Lower bound

Aim of theoretical computer science

For any given computational problem P

This requires designing

* Get smallest possible upper bound on its time complexity e

==

Reduce the GAP

=

* Get largest possible lower bound on its time complexity. 7

How to establish lower bound

Two ways:

* Adversarial approach

A gentle introduction today

* Limitation of the model of computation

CS345

Adversarial approach

Key aspects
Algorithm:
e Algorithm does not have free access to the input.
To access any item in the input, algorithm has to spend some time.

* The execution of an algorithm at any step is determined
only by the (partial) input it has seen till now.

Adversary

* Adversary has access to all possible inputs of a problem.

* The sole aim of adversary is to make an algorithm work really hard.
For this purpose, adversary discloses the input cleverly.

Locating 1 problem

Input: An array A[0...nn — 1] with an unknown i s.t.
* Forallj #1i, A[j]=0
e Alil=1

Aim: To locate/search 1 in A.

Upper bound: O(n)
Lower bound: Q(n)

Lower bound on Locating 1 problem

Input

0000001000 A
j ki

Adversary

Miscellaneous problems

Problem 1

Input: Given an array A storing n numbers,
there isan i < n (unknown) s.t.
Al0] <A[1] <..<A[i] >A[i + 1] >... >A[n — 1]
Aim:
To search efficiently
Answer : O(log n) is possible

sorted

3 |17 |24 (31 I[42 47 |59 (63 |71 (85191 |102|91|43 |17

Problem 2

Input:

Given an array A storing n numbers,

there is an i < n (unknown) s.t.

A0l =< A[l] < ..<A[i] =A[i +1]>..=A[n — 1]

Aim:
To search efficiently

Answer :)(n) time complexity

Locating 1 problem is a special case of

Problem 2

Problem 3

Input:
Given an array A storing n numbers,

there are i < j < n (unknown) s.t.
A[0]< A[1]< ..< A[i] > Ali + 1] >.. >A[j] <A[j +1] <.. <A[n — 1]

Aim:
To search efficiently

Answer :)(n) time complexity

Locating O problem

Input: An array A[0...nn — 1] with an unknown i s.t.
* Forallj <1, A[j]> 0 and A[j—1]<A[j]
e A[i]=0

* Forallj > i, A[j]> 0 and A[j]<A[j + 1]

Aim: To locate/search 0 in A.

Upper bound: O(n)
Lower bound: Q(n)

Lower bound on Locating 0 problem

What is A[£] ?

Input

12 31 47 59 63 67 80 0 93131 A
A | k i

Adversary

Problem 3

Input:
Given an array A storing n numbers,

there are i < j < n (unknown) s.t.
A[0]< A[1]< ..< A[i] > Ali + 1] >.. >A[j] <A[j + 1] <..<A[n —1]

Aim:
To search efficiently

Answer :)(n) time complexity

Locating O problem is a special case of Problem 3

Problem 4

Input:
Given a sorted array A storing n numbers,
Aim:

To search efficiently

Answer : O(log n) time complexity (binary search)
Q(log n) time complexity

Lower bound on Problem 4

Search for 85

Adversary

63

A
Input
7 Py
i‘ |]

Problem 5

Input:
Given a 2-dimensional square grid storing n? distinct numbers,
Aim;:

To find a Local minima efficiently

Answer :
0O(n) time complexity (in the second week of the course)

Q(n) time complexity

Prove it using Adversarial arguments during summer vacations

Final slide

o O

S—~

That’s all. | hope you enjoyed this lecture.

