Data Structures and Algorithms
(CS210A)

Lecture 40

* Search data structure for integers : Hashing

°* Quick sort : some facts

Data structures for searching

in O(1) time

Motivating Example

Input: agiven set S of 1009 positive integers
Aim: Data structure for searching

Example

{

123, 579236, 1072664, 770832456778, 61784523, 100004503210023, [L9|
762354723763099, 579, 72664,P977083245677001238] 84, 100004503210023,

Data structure ;: Array storing S in sorted order
Searching - Binary search

Can we perform

O(log |5]) time search in O(1) time ?

Problem Description

U:
ScCcU,
n=|S$|, n<m

A search query:

Aim: A data structure for a given set S
that can facilitate search in O(1) time

A trivial data structure for O(1) search time

Build a 0-1 array A of size m such that

Alil=1ifi € S.

Ali]=0ifi & S.

Time complexity for searching an element in set S : O(1).

012 3 4

This is a totally Impractical data structure because n << m !
Example: n = few thousands, m = few trillions.

Question:
Can we have a data structure of O(n) size that can answer a search query in O(1) time ?

Answer: Hashing

Hash function

Hash function:
h is a mapping from U to {0,1, ..., n — 1}
with the following characteristics.

0
1 * Space required for h
2 e h(i) computablein
h ' Example:
Hash value:

For a given hash function h,and i € U.

h(i) is called hash value of i

Hash function, hash value

Hash function:
h is a mapping from U to {0,1, ..., n — 1}
with the following characteristics.

0
1 T * Space required for h : a few words.
2 0 * h(i) computable in O(1) time in word RAM.

Example: h(i) = i mod n

Hash value:

For a given hash function h,and i € U.

h(i) is called hash value of i

Hash Table:
Anarray T[0..n — 1]

Hash function, hash value, hash table

Hash function:
h is a mapping from U to {0,1, ..., n — 1}
with the following characteristics.

0
1 T * Space required for h : a few words.
2 0 * h(i) computable in O(1) time in word RAM.

Example: h(i) = i mod n

Hash value:

For a given hash function h,and i € U.

h(i) is called hash value of i

Hash Table:
Anarray T[0..n — 1]

Hash function, hash value, hash table

Hash function:

h is a mapping from U to {0,1, ..., n — 1}

with the following characteristics.

* Space required for h : a few words.

* h(i) computable in O(1) time in word RAM.

Example: h(i) = i mod n

Hash value:

For a given hash function h,and i € U.

h(i) is called hash value of i

Hash Table:
Anarray T[0 ...n — 1] of pointers storing S.

Hash function, hash value, hash table

Question:

How to use (h,T) for searching an element i € U?

Answer:
k € h(i);
Search element i in the list T[k].

Time complexity for searching:
O(length of the longest list in T').

Efficiency of Hashing depends upon hash function

A hash function h is good if it can evenly distributes S.

Aim: To search for a good hash function for a given set S.

Bad news

There can not be any hash function h which is good for every S.

Hash function, hash value, hash table

For every h, there exists a subset of [%] elements from U which are hashed to same value under h.

So we can always construct a subset S for which all elements have same hash value
=>» All elements of this set S are present in a single list of the hah table T associated with h.
=» 0O(n) worst case search time.

Why does hashing work so well in Practice ?

h(i) =imodn

[Because the set S is usually a uniformly random subset of U. J

Let us do a theoretical analysis
to prove this fact.

Why does hashing work so well in Practice ?

h(x) = xmodn

1
Let v, V>, ..., V,, denote 1 elements 2

selected randomly uniformly from U

(-
(-
(-
(-
(-
to form S. o
Question: o
What is expected number of elements of § o— i—n
colliding with y,? o
(-
Answer: Let y, takes value I. :<_l
P(y; collides with y;) = ?? S
:<—i +n
How many possible °
(-
values can y; take ? m — 1 :<—i +2n
(-
(-
:<—i + 3n
How many possible values o
(-

can collide with i ?

Why does hashing work so well in Practice ?

h(x) = xmodn

1

Let v, V>, ..., V,, denote 1 elements 2

selected randomly uniformly from U

to form §.
Question:

What is expected number of elements of §

colliding with y,?

Answer: Let y, takes value I.
P(y; collides with y;) =

Expected number of elements of

colliding with y; =

Ly

=0(1)

-

f

+
S

|

e<— | 4+ 2n
0o
0o

&< 4+ 3n

Why does hashing work so well in Practice ?

Conclusion

1. h(i) = i mod n works so well because

for a uniformly random subset of U,
the expected number of collision at an index of T is O(1).

It is easy to fool this hash function such that it achieves O(s) search time.

(do it as a simple exercise).

This makes us think:

“How can we achieve worst case O(1) search time for a given set §.”

Hashing: theory

1953

U:{0,1,.., m—1)

ScU,
n =S|,

v
Theorem [FKS, 1984]: 1984
A hash table and hash function can be computed
Space : O(n)

Query time: Wworst case O(1)

How
complicated
would it be ?

Ingredients :
* elementary knowledge of prime numbers. O
* The algorithms use simple randomization. O

(We shall discuss such an algorithm in CS345.)

Quick Sort

Facts
(invented by Tony Hoare in 1960)

Quick sort versus Merge Sort

Average case comparisons

nlog, n 1.39nlog, n

Worst case comparisons nlog, n n(n—1)

Realization from Programming assignment 4 (part 1):

No. of times Merge sort 0.1% 0.02% 0%
outperformed Quick sort

Reasons :

. Overhead of Copying in merging ? Very few students tried to find out ®

. Technical (cache)
19

What makes Quick sort popular ?

No. of repetitions = 1000

10% 3
20% 28 17 12 3 0
50% 2 1 1 0 0
100% 0 0 0 0 0

Inference:
The chances of deviation from average case
=>» The reliability of quick sort

Can this behavior of Quick sort
be explained theoretically ?

0O

What makes Quick sort popular ?

Theorem [Colin McDiarmid, 1991]:

X

Prob. the run time exceeds average by x% = n~ 1o0Inn
> N)
Prob. run time is double the average for n = 10° is 10715 Isn’t it amazing
L_| that some of you
still don’t rely
Prob. any (INTEL/AMD/ ...) CPU failure in 720 hours is = 0.05 B \upon Quick sort!@j

Refer to the following paper (at least read the abstract):
Title: Cycles, Cells and Platters: An Empirical Analysis of Hardware Failures on a Million Consumer PCs
Authors: Edmund B. Nightingale, John R. Douceur, Vince Orgovan
Available at : research.microsoft.com/pubs/144888/eurosys84-nightingale.pdf
or just google the title

But a serious problem with Quick sort.

» Distribution sensitive ®
* (Can be fooled easily

— sortinincreasing order
— Sort in decreasing order

Solution:
Select pivot element randomly uniformly in each call

This is randomized quick sort.

