
Data Structures and Algorithms 
(CS210A) 

 

Lecture 40 
• Search data structure for integers : 

• Quick sort : some facts 
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Hashing 



Data structures for searching 

in O(1) time 



Motivating Example 

Input:  a given set 𝑺 of        1009      positive integers 

Aim:    Data structure for searching 

 

Example  

{ 

123, 579236, 1072664, 770832456778, 61784523, 100004503210023, 19 ,  

762354723763099, 579, 72664, 977083245677001238, 84, 100004503210023,  

 … 

} 

 

Data structure :    ? 

Searching         :    ?  

 

 

 

 

Array storing 𝑺 in sorted order 

Binary search 

O(log |𝑺|) time 
Can we perform 

search in O(𝟏) time ? 



Problem Description 

 

𝑼 : {0,1, … , 𝒎 − 𝟏}  called universe 

𝑺 ⊆ 𝑼, 

 𝒏 = 𝑺 ,  

 

 
A search query: Given any 𝒋 ∈ 𝑼, is 𝒋 present in 𝑺 ? 

 

Aim: A data structure for a given set 𝑺  

            that can facilitate search in O(𝟏) time  in word RAM model. 

 

 

 

𝒏 ≪ 𝒎  



A trivial data structure for O(1) search time 

Build a 0-1 array A of size 𝒎 such that 

A[𝒊] = 1 if 𝒊 ∈ 𝑺. 

A[𝒊] = 0 if 𝒊 ∉ 𝑺. 

Time complexity for searching an element in set 𝑺 : O(1). 

 

 

 

 

                           This is a totally Impractical data structure because 𝒏 ≪ 𝒎 ! 

                                     Example: 𝒏 = few thousands, 𝒎 = few trillions. 

Question:  

Can we have a data structure of O(𝒏) size that can answer a search query in O(1) time ? 

Answer:  Hashing 
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Hash function, hash value, hash table 

 Hash function: 

𝒉 is a mapping from 𝑼 to {0,1, … , 𝒏 − 𝟏}  

with the following characteristics. 

• Space required for 𝒉 : a few words. 

• 𝒉(𝒊) computable in O(1) time in word RAM.  

 

Example: 𝒉(𝒊) =  𝒊 mod 𝒏 

 

Hash value: 

For a given hash function 𝒉, and 𝒊 ∈ 𝑼.  

𝒉(𝒊) is called hash value of 𝒊 
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Hash function, hash value, hash table 

 Hash function: 

𝒉 is a mapping from 𝑼 to {0,1, … , 𝒏 − 𝟏}  

with the following characteristics. 

• Space required for 𝒉 : a few words. 

• 𝒉(𝒊) computable in O(1) time in word RAM.  

 

Example: 𝒉(𝒊) =  𝒊 mod 𝒏 

 

Hash value:   

For a given hash function 𝒉, and 𝒊 ∈ 𝑼. 

𝒉(𝒊) is called hash value of 𝒊 

 

Hash Table:  

An array 𝑻[0 … 𝒏 − 𝟏] 
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Hash function, hash value, hash table 
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of pointers storing 𝑺. 



Hash function, hash value, hash table 

  

 

 

 

Question:   

How to use (𝒉,𝑻) for searching an element 𝒊 ∈ 𝑼? 

Answer:  

𝒌  𝒉(𝒊);  

Search element 𝒊 in the list 𝑻[𝒌]. 

 

Time complexity for searching:  

O(length of the longest list in 𝑻). 
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Efficiency of Hashing depends upon hash function 

 

A hash function 𝒉 is good if it can evenly distributes 𝑺.  

 

Aim: To search for a good hash function for a given set 𝑺. 

 

 

 

 

 

                      There can not be any hash function 𝒉 which is good for every 𝑺. 

Bad news  



Hash function, hash value, hash table 

 

 

 

 

 

 

 

 

 

 

 

For every 𝒉, there exists a subset of 
𝒎

𝒏
 elements from 𝑼 which are hashed to same value under 𝒉. 

So we can always construct a subset 𝑺 for which all elements have same hash value  

 All elements of this set 𝑺 are present in a single list of the hah table 𝑻 associated with 𝒉. 

 O(𝒏) worst case search time. 
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Why does hashing work so well in Practice ? 

𝒉 𝑖 = 𝑖 𝐦𝐨𝐝 𝑛 

 
 

Because the set 𝑺 is usually a uniformly random subset of 𝑼. 

 

 

Let us do a theoretical analysis 
to prove  this fact. 



Why does hashing work so well in Practice ? 

Let 𝑦1, 𝑦2, … , 𝑦𝑛 denote 𝑛 elements  

selected randomly uniformly from 𝑼  

to form 𝑺. 

Question:  

What is expected number of elements of 𝑺  

colliding with 𝑦1? 

Answer: Let 𝑦1 takes value 𝑖. 

P(𝑦𝑗 collides with 𝑦1) = ?? 
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⋮ 

How many possible 
values can 𝑦𝑗 take ? 𝑚 − 1 

How many possible values 
can collide with 𝑖 ? 

𝒉 𝑥 = 𝒙 𝐦𝐨𝐝 𝑛 



Why does hashing work so well in Practice ? 

Let 𝑦1, 𝑦2, … , 𝑦𝑛 denote 𝑛 elements  

selected randomly uniformly from 𝑼  

to form 𝑺. 

Question:  

What is expected number of elements of 𝑺  

colliding with 𝑦1? 

Answer: Let 𝑦1 takes value 𝑖. 

P(𝑦𝑗 collides with 𝑦1) =  
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Expected number of elements of 𝑺  

colliding with 𝑦1 =  

=
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Why does hashing work so well in Practice ? 

Conclusion 

1.  𝒉 𝑖 = 𝑖 𝐦𝐨𝐝 𝑛 works so well because 

         for a uniformly random subset of 𝑼,  

         the expected number of collision at an index of 𝑻 is O(1). 

    

    It is easy to fool this hash function such that it achieves O(s) search time.  

(do it as a simple exercise). 

 

This makes us think: 

 

“How can we achieve worst case O(1) search time for a given set 𝑺.” 

 

 



Hashing: theory 

𝑼 : {0,1, … , 𝒎 − 𝟏}  

𝑺 ⊆ 𝑼, 

 𝒏 = 𝑺 ,  

 

Theorem [FKS, 1984]:  
A hash table and hash function can be computed in average O(𝒏) time for a given 𝑺 s.t. 

Space :   ? 

Query time:   ?  

   

 

Ingredients : 

• elementary knowledge of prime numbers. 

• The algorithms use simple randomization. 

(We shall discuss such an algorithm in CS345.) 

How 
complicated 
would it be ? 

O(𝒏) 

worst case O(𝟏) 

1953  

1984  

  



Quick Sort 

Facts 
(invented by Tony Hoare in 1960) 

 



Quick sort versus Merge Sort 
Assignment and Lecture 21 

 

 

 

 

 
Realization from Programming assignment 4 (part 1):   

 

 

 

 

Reasons :  

•          Overhead of Copying in merging ? 

•          Technical  (cache)  
19 

Merge Sort Quick Sort 

Average case comparisons 

Worst case comparisons 
 

𝒏 𝐥𝐨𝐠𝟐 𝒏 

𝒏 𝐥𝐨𝐠𝟐 𝒏 𝒏(𝒏 − 𝟏) 

1.39 𝒏 𝐥𝐨𝐠𝟐 𝒏  

No. of times Merge sort 
outperformed Quick sort 

𝒏 = 𝟏𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 ≥ 𝟏𝟎𝟎𝟎𝟎 

𝟎. 𝟏% 𝟎. 𝟎𝟐% 𝟎% 

Very few students tried to find out  



What makes Quick sort popular ? 

 

 

 

 

 

 

 

 

Inference:  

The chances of deviation from average case decreases as 𝒏 increases. 

 The reliability of quick sort increases as 𝒏 increases. 

 

 

 

No. of times run time exceeds  average by  100 1000 𝟏𝟎𝟒 𝟏𝟎𝟓 𝟏𝟎𝟔 

𝟏𝟎% 190 49 22 10 3 

𝟐𝟎% 28 17 12 3 0 

𝟓𝟎% 2 1 1 0 0 

𝟏𝟎𝟎% 0 0 0 0 0 

No. of repetitions = 𝟏𝟎𝟎𝟎 

Can this behavior of Quick sort 
be explained theoretically ? 



What makes Quick sort popular ? 

Theorem [Colin McDiarmid, 1991]:  

Prob. the run time exceeds average by 𝒙% =  

 

Prob. run time is double the average for 𝒏 = 𝟏𝟎𝟔 is       ?   

 

Prob. any (INTEL/AMD/ …) CPU failure in 720 hours  is       ?  

 

 

Refer to the following paper (at least read the abstract): 

Title:  Cycles, Cells and Platters: An Empirical Analysis of Hardware Failures on a Million Consumer PCs 

Authors: Edmund B. Nightingale, John R. Douceur, Vince Orgovan 

Available at : research.microsoft.com/pubs/144888/eurosys84-nightingale.pdf 

or just google the title 

 

𝒏− 
𝒙

𝟏𝟎𝟎 𝐥𝐧 𝐥𝐧 𝒏 

𝟏𝟎−𝟏𝟓 

𝟎. 𝟎𝟓 

Isn’t it amazing 
that some of you 

still don’t rely 
upon Quick sort! 



But a serious problem with Quick sort. 

• Distribution sensitive  

• Can be fooled easily 
– sort in increasing order 

– Sort in decreasing order 

 

Solution:  

                  Select pivot element randomly uniformly in each call 

 

This is randomized quick sort. 


