
Data Structures and Algorithms
(CS210A)

Lecture 40
• Search data structure for integers :

• Quick sort : some facts

1

Hashing

Data structures for searching

in O(1) time

Motivating Example

Input: a given set 𝑺 of 1009 positive integers

Aim: Data structure for searching

Example

{

123, 579236, 1072664, 770832456778, 61784523, 100004503210023, 19 ,

762354723763099, 579, 72664, 977083245677001238, 84, 100004503210023,

 …

}

Data structure : ?

Searching : ?

Array storing 𝑺 in sorted order

Binary search

O(log |𝑺|) time
Can we perform

search in O(𝟏) time ?

Problem Description

𝑼 : {0,1, … , 𝒎 − 𝟏} called universe

𝑺 ⊆ 𝑼,

 𝒏 = 𝑺 ,

A search query: Given any 𝒋 ∈ 𝑼, is 𝒋 present in 𝑺 ?

Aim: A data structure for a given set 𝑺

 that can facilitate search in O(𝟏) time in word RAM model.

𝒏 ≪ 𝒎

A trivial data structure for O(1) search time

Build a 0-1 array A of size 𝒎 such that

A[𝒊] = 1 if 𝒊 ∈ 𝑺.

A[𝒊] = 0 if 𝒊 ∉ 𝑺.

Time complexity for searching an element in set 𝑺 : O(1).

 This is a totally Impractical data structure because 𝒏 ≪ 𝒎 !

 Example: 𝒏 = few thousands, 𝒎 = few trillions.

Question:

Can we have a data structure of O(𝒏) size that can answer a search query in O(1) time ?

Answer: Hashing

0 0 1 0 0 … 0 1 0 … 0 0 1

0 1 2 3 4 … … 𝒎-1

A

Hash function, hash value, hash table

 Hash function:

𝒉 is a mapping from 𝑼 to {0,1, … , 𝒏 − 𝟏}

with the following characteristics.

• Space required for 𝒉 : a few words.

• 𝒉(𝒊) computable in O(1) time in word RAM.

Example: 𝒉(𝒊) = 𝒊 mod 𝒏

Hash value:

For a given hash function 𝒉, and 𝒊 ∈ 𝑼.

𝒉(𝒊) is called hash value of 𝒊

0
1
2
.
.
.
.
.
.
.
.
.
.
.

𝒎 − 𝟏

0
1
.
.

𝒏 − 𝟏

𝒉

Hash function, hash value, hash table

 Hash function:

𝒉 is a mapping from 𝑼 to {0,1, … , 𝒏 − 𝟏}

with the following characteristics.

• Space required for 𝒉 : a few words.

• 𝒉(𝒊) computable in O(1) time in word RAM.

Example: 𝒉(𝒊) = 𝒊 mod 𝒏

Hash value:

For a given hash function 𝒉, and 𝒊 ∈ 𝑼.

𝒉(𝒊) is called hash value of 𝒊

Hash Table:

An array 𝑻[0 … 𝒏 − 𝟏]

0
1
2
.
.
.
.
.
.
.
.
.
.
.

𝒎 − 𝟏

0
1
.
.
.
.
.

𝒏 − 𝟏

𝒉

𝑻

Hash function, hash value, hash table

 Hash function:

𝒉 is a mapping from 𝑼 to {0,1, … , 𝒏 − 𝟏}

with the following characteristics.

• Space required for 𝒉 : a few words.

• 𝒉(𝒊) computable in O(1) time in word RAM.

Example: 𝒉(𝒊) = 𝒊 mod 𝒏

Hash value:

For a given hash function 𝒉, and 𝒊 ∈ 𝑼.

𝒉(𝒊) is called hash value of 𝒊

Hash Table:

An array 𝑻[0 … 𝒏 − 𝟏]

0
1
2
.
.
.
.
.
.
.
.
.
.
.

𝒎 − 𝟏

0
1
.
.
.
.
.

𝒏 − 𝟏

𝒉

𝑻

Hash function, hash value, hash table

 Hash function:

𝒉 is a mapping from 𝑼 to {0,1, … , 𝒏 − 𝟏}

with the following characteristics.

• Space required for 𝒉 : a few words.

• 𝒉(𝒊) computable in O(1) time in word RAM.

Example: 𝒉(𝒊) = 𝒊 mod 𝒏

Hash value:

For a given hash function 𝒉, and 𝒊 ∈ 𝑼.

𝒉(𝒊) is called hash value of 𝒊

Hash Table:

An array 𝑻[0 … 𝒏 − 𝟏]

0
1
2
.
.
.
.
.
.
.
.
.
.
.

𝒎 − 𝟏

0
1
.
.
.
.
.

𝒏 − 𝟏

𝒉

𝑻

𝑺

of pointers storing 𝑺.

Hash function, hash value, hash table

Question:

How to use (𝒉,𝑻) for searching an element 𝒊 ∈ 𝑼?

Answer:

𝒌  𝒉(𝒊);

Search element 𝒊 in the list 𝑻[𝒌].

Time complexity for searching:

O(length of the longest list in 𝑻).

0
1
2
.
.
.
.
.
.
.
.
.
.
.

𝒎 − 𝟏

0
1
.
.
.
.
.

𝒏 − 𝟏

𝒉

𝑻

𝑺

Efficiency of Hashing depends upon hash function

A hash function 𝒉 is good if it can evenly distributes 𝑺.

Aim: To search for a good hash function for a given set 𝑺.

 There can not be any hash function 𝒉 which is good for every 𝑺.

Bad news

Hash function, hash value, hash table

For every 𝒉, there exists a subset of
𝒎

𝒏
 elements from 𝑼 which are hashed to same value under 𝒉.

So we can always construct a subset 𝑺 for which all elements have same hash value

 All elements of this set 𝑺 are present in a single list of the hah table 𝑻 associated with 𝒉.

 O(𝒏) worst case search time.

0
1
2
.
.
.
.
.
.
.
.
.
.
.

𝒎 − 𝟏

0
1
.
.

𝒏 − 𝟏

𝒉

Why does hashing work so well in Practice ?

𝒉 𝑖 = 𝑖 𝐦𝐨𝐝 𝑛

Because the set 𝑺 is usually a uniformly random subset of 𝑼.

Let us do a theoretical analysis
to prove this fact.

Why does hashing work so well in Practice ?

Let 𝑦1, 𝑦2, … , 𝑦𝑛 denote 𝑛 elements

selected randomly uniformly from 𝑼

to form 𝑺.

Question:

What is expected number of elements of 𝑺

colliding with 𝑦1?

Answer: Let 𝑦1 takes value 𝑖.

P(𝑦𝑗 collides with 𝑦1) = ??

1
2

m

𝑖

𝑖 − 𝑛

𝑖 + 𝑛

𝑖 + 2𝑛

𝑖 + 3𝑛
⋮

⋮

How many possible
values can 𝑦𝑗 take ? 𝑚 − 1

How many possible values
can collide with 𝑖 ?

𝒉 𝑥 = 𝒙 𝐦𝐨𝐝 𝑛

Why does hashing work so well in Practice ?

Let 𝑦1, 𝑦2, … , 𝑦𝑛 denote 𝑛 elements

selected randomly uniformly from 𝑼

to form 𝑺.

Question:

What is expected number of elements of 𝑺

colliding with 𝑦1?

Answer: Let 𝑦1 takes value 𝑖.

P(𝑦𝑗 collides with 𝑦1) =

𝑚

𝑛
−1

𝑚−1

Expected number of elements of 𝑺

colliding with 𝑦1 =

=
𝑚

𝑛
−1

𝑚−1
 (𝑛 − 1)

= 𝑂 1

1
2

m

𝑖

𝑖 − 𝑛

𝑖 + 𝑛

𝑖 + 2𝑛

𝑖 + 3𝑛
⋮

⋮

𝒉 𝑥 = 𝒙 𝐦𝐨𝐝 𝑛

𝑚

𝑛
− 1

Why does hashing work so well in Practice ?

Conclusion

1. 𝒉 𝑖 = 𝑖 𝐦𝐨𝐝 𝑛 works so well because

 for a uniformly random subset of 𝑼,

 the expected number of collision at an index of 𝑻 is O(1).

 It is easy to fool this hash function such that it achieves O(s) search time.

(do it as a simple exercise).

This makes us think:

“How can we achieve worst case O(1) search time for a given set 𝑺.”

Hashing: theory

𝑼 : {0,1, … , 𝒎 − 𝟏}

𝑺 ⊆ 𝑼,

 𝒏 = 𝑺 ,

Theorem [FKS, 1984]:
A hash table and hash function can be computed in average O(𝒏) time for a given 𝑺 s.t.

Space : ?

Query time: ?

Ingredients :

• elementary knowledge of prime numbers.

• The algorithms use simple randomization.

(We shall discuss such an algorithm in CS345.)

How
complicated
would it be ?

O(𝒏)

worst case O(𝟏)

1953

1984

Quick Sort

Facts
(invented by Tony Hoare in 1960)

Quick sort versus Merge Sort
Assignment and Lecture 21

Realization from Programming assignment 4 (part 1):

Reasons :

• Overhead of Copying in merging ?

• Technical (cache)
19

Merge Sort Quick Sort

Average case comparisons

Worst case comparisons

𝒏 𝐥𝐨𝐠𝟐 𝒏

𝒏 𝐥𝐨𝐠𝟐 𝒏 𝒏(𝒏 − 𝟏)

1.39 𝒏 𝐥𝐨𝐠𝟐 𝒏

No. of times Merge sort
outperformed Quick sort

𝒏 = 𝟏𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 ≥ 𝟏𝟎𝟎𝟎𝟎

𝟎. 𝟏% 𝟎. 𝟎𝟐% 𝟎%

Very few students tried to find out 

What makes Quick sort popular ?

Inference:

The chances of deviation from average case decreases as 𝒏 increases.

 The reliability of quick sort increases as 𝒏 increases.

No. of times run time exceeds average by 100 1000 𝟏𝟎𝟒 𝟏𝟎𝟓 𝟏𝟎𝟔

𝟏𝟎% 190 49 22 10 3

𝟐𝟎% 28 17 12 3 0

𝟓𝟎% 2 1 1 0 0

𝟏𝟎𝟎% 0 0 0 0 0

No. of repetitions = 𝟏𝟎𝟎𝟎

Can this behavior of Quick sort
be explained theoretically ?

What makes Quick sort popular ?

Theorem [Colin McDiarmid, 1991]:

Prob. the run time exceeds average by 𝒙% =



Prob. run time is double the average for 𝒏 = 𝟏𝟎𝟔 is ?

Prob. any (INTEL/AMD/ …) CPU failure in 720 hours is ?

Refer to the following paper (at least read the abstract):

Title: Cycles, Cells and Platters: An Empirical Analysis of Hardware Failures on a Million Consumer PCs

Authors: Edmund B. Nightingale, John R. Douceur, Vince Orgovan

Available at : research.microsoft.com/pubs/144888/eurosys84-nightingale.pdf

or just google the title

𝒏−
𝒙

𝟏𝟎𝟎 𝐥𝐧 𝐥𝐧 𝒏

𝟏𝟎−𝟏𝟓

𝟎. 𝟎𝟓

Isn’t it amazing
that some of you

still don’t rely
upon Quick sort!

But a serious problem with Quick sort.

• Distribution sensitive 

• Can be fooled easily
– sort in increasing order

– Sort in decreasing order

Solution:

 Select pivot element randomly uniformly in each call

This is randomized quick sort.

