
Data Structures and Algorithms
(CS210A)

Lecture 37
• A new algorithm design paradigm:

 part IV

1

Greedy strategy

Problems solved till now

1. Job Scheduling Problem

2. Mobile Tower Problem

3. MST

Did you notice
anything commons in

their solutions ?

Ponder over this question before moving ahead

Problem 1
Job scheduling Problem

INPUT:

• A set 𝑱 of 𝒏 jobs {𝒋𝟏, 𝒋𝟐,…, 𝒋𝒏}

• job 𝒋𝒊 is specified by two real numbers

 s(𝒊): start time of job 𝒋𝒊

 f(𝒊): finish time of job 𝒋𝒊

• A single server

Constraints:

• Server can execute at most one job at any moment of time and a job.

• Job 𝒋𝒊, if scheduled, has to be scheduled during[s(𝒊), f(𝒊)] only.

Aim:

To select the largest subset of non-overlapping jobs which can be executed by the server.

3

We could not say anything
about the complete solution

of this problem.

Problem 1
Job scheduling Problem

INPUT:

• A set 𝑱 of 𝒏 jobs {𝒋𝟏, 𝒋𝟐,…, 𝒋𝒏}

• job 𝒋𝒊 is specified by two real numbers

 s(𝒊): start time of job 𝒋𝒊

 f(𝒊): finish time of job 𝒋𝒊

• A single server

Constraints:

• Server can execute at most one job at any moment of time and a job.

• Job 𝒋𝒊, if scheduled, has to be scheduled during[s(𝒊), f(𝒊)] only.

Aim:

To select the largest subset of non-overlapping jobs which can be executed by the server.

4

All that we could do was to make

a local observation

Let 𝒙 ∈ 𝑱 be the job with earliest finish time.

Lemma1 : There exists an optimal solution for 𝑱 in which 𝒙 is present.

Let 𝑱′ = 𝑱\Overlap(𝒙)

Equation (i) hints at recursive solution of the problem 

5

𝑱(original instance)

𝑱′ (smaller instance)

Greedy
step

Opt(𝑱)

Opt(𝑱′)

Lemma1 Opt(𝑱)= Opt(𝑱′) + 1 -- (i)

Lemma 1 gives very small information
about the optimal solution 

How to use it to compute this solution ?

Theorem: Opt(𝑱) = Opt(𝑱′) + 1.

• Proof has two parts

 Opt(𝑱) ≥ Opt(𝑱′) + 1

 Opt(𝑱′) ≥ Opt(𝑱) – 1

• Proof for each part is a proof by construction

6

Problem 2
Mobile Tower Problem

Problem statement:

There is a set 𝑯 of 𝒏 houses located along a road.

We want to place mobile towers such that

• Each house is covered by at least one mobile tower.

• The number of mobile towers used is least possible.

7

𝒅 𝒅

We could not say anything
about the complete solution

of this problem.

All that we could do was to make

a local observation

Lemma 2: There is an optimal solution for the problem in which

the leftmost tower is placed at distance 𝒅 to the right of the first house.

Let 𝒙 be the tower located at 𝒅 to the right of the first house.

Let 𝑯′ = 𝑯\ {all houses within distance 𝒅 from 𝒙}

Equation (i) hints at recursive solution of the problem 

𝑯(original instance)

𝑯′(smaller instance)

Greedy
step

Opt(𝑯)

Opt(𝑯′)

Lemma 2

Opt(𝑯)= Opt(𝑯′) + 1

Lemma 1 gives very small information
about the optimal solution 

How to use it to compute this solution ?

What is a greedy strategy ?

A strategy that is

• Based on some local approach

• With the objective to optimize some function.

Note:

Recall that the divide and conquer strategy takes a global approach.

Design of a greedy algorithm

Let A be an instance of an optimization problem.

1. Make a local observation about the solution.

2. Use this observation to express optimal solution of A

 in terms of
– Optimal solution of a smaller instance A’

– Local step

3. This gives a recursive solution.

4. Transform it into iterative one.

𝑱(original solution)

𝑱′(smaller
instance)

Greedy
step

MST

Input: an undirected graph 𝑮=(𝑽,𝑬) with w: 𝑬  ℝ,

Aim: compute a spanning tree (𝑽, 𝑬′), 𝑬′ ⊆ 𝑬 such that w(𝒆)𝒆∈𝑬′ is minimum.

Lemma 3 (proved in the class):

If 𝒆𝟎 ∈ 𝑬is the edge of least weight in 𝑮, then there is a MST 𝑻 containing 𝒆𝟎.

11

How to use this Lemma to
design an algorithm for MST ?

If you have understood a generic way to design a greedy
algorithm, then try to solve the MST problem.

How to compute a MST ?

12

170

33

35
31

41 81

52

42

50

102

50 30
60

70

54

57

49

49

80

78

63
54

53

44

29

64

42

43

How to compute a MST ?

13

170

33

35
31

41 81

52

42

50

102

50 30
60

70

54

57

49

49

80

78

63
54

53

44

29

64

42

43

u
v

How to compute a MST ?

14

170

33

35
31

41 81

52

42

50

102

50 30
60

70

54

57

49

49

80

78

63
54

53
64

42

44

w

43

This is graph 𝑮′

How to compute a MST ?

Let (u,v) be the least weight edge in 𝑮=(𝑽, 𝑬). Transform 𝑮 into 𝑮′ as follows.

• Remove vertices u and v and add a new vertex w

• For each edge (u,x)ϵ 𝑬, add edge (w,x) in 𝑮′.

• For each edge (v,x)ϵ 𝑬, add edge (w,x) in 𝑮′.

• In case of multiple edges between w and x, keep only the lighter weight edge.

Theorem1: W_MST(𝑮) = W_MST(𝑮′) + w(u,v)

Proof: (by construction)

1. W_MST(𝑮) ≤ W_MST(𝑮′) + w(u,v)

2. W_MST(𝑮′) ≤ W_MST(𝑮) - w(u,v)

(Give all details of the proof as a homework)

15

Use Lemma 3

straightforward

Problem 4
Overlapping Intervals

The aim of this problem is to make you realize that

 it is sometime very nontrivial to design a greedy algorithm. In
particular, it is quite challenging to design the smaller instance.

In the end semester exam of the course, no problem of this
level of difficulty will be asked 

Problem 4
Overlapping Intervals

Overlapping Intervals

Problem statement:

Given a set A of 𝒏 intervals, compute smallest set B of intervals so that

for every interval I in A\B, there is some interval in B which overlaps/intersects with I.

A

Overlapping Intervals

Problem statement:

Given a set A of 𝒏 intervals, compute smallest set B of intervals so that

for every interval I in A\B, there is some interval in B which overlaps/intersects with I.

A

Not an optimal solution 
an optimal solution  another optimal solution 

Overlapping Intervals

Strategy 1

Interval with maximum length should be there in optimal solution

Intuition:

Selecting such an interval will cover maximum no. of other intervals

There is a counter example 

Overlapping Intervals

Strategy 1

Interval with maximum length should be there in optimal solution

Intuition:

Selecting such an interval will cover maximum no. of other intervals

There is a counter example 

Overlapping Intervals

Strategy 2

Interval that overlaps maximum no. of intervals should be there in optimal solution

Intuition:

Selecting such an interval will cover maximum no. of other intervals

There is a counter example 

Overlapping Intervals

Strategy 2

Interval that overlaps maximum no. of intervals should be there in optimal solution

Overlapping Intervals

Strategy 2

Interval that overlaps maximum no. of intervals should be there in optimal solution

Not an optimal solution 

Overlapping Intervals

Strategy 2

Interval that overlaps maximum no. of intervals should be there in optimal solution

An optimal solution has size 2.

Think for a while :
After failure of two strategies, how to proceed to design the algorithm.

Overlapping Intervals

Let I* be the interval with earliest finish time.

Let I’ be the interval with maximum finish time overlapping I*.

Lemma1: There is an optimal solution for set A that contains I’.

Proof:(sketch) :

If I* is overlapped by any other interval in the optimal solution, say I^,

I’ will surely overlap all intervals that are overlapped by I^.

 Swapping I^ by I’ will still give an optimal solution.

A I*
I’

Exploit the fact that
I* has earliest finish
time for this claim.

Overlapping Intervals

Question: How to obtain smaller instance A’ using Lemma 1 ?

I’
I* A

Overlapping Intervals

Question: How to obtain smaller instance A’ using Lemma 1 ?

Naive approach : remove from A all intervals which overlap with I’. This is A’.

The problem is that some deleted interval (in this case I’’) could have been used for
intersecting many intervals if it were not deleted. But deleting it from the instance
disallows it to be selected in the solution.

I’
I*

I’’

A

There is a counter example 
A’

Homework
for the summer break

• How will you form the smaller instance ?

• Design an algorithm for the problem.

• Give a neat, concise, and formal proof of correctness of the algorithm.

If you try sincerely and don’t give up quickly,

you will surely be able to solve this problem.

We can discuss it during next semester in some doubt clearing session.

You have to bear with me for one more semester in CS345 .

