Data Structures and Algorithms (CS210A)

Lecture 35

• A new algorithm design paradigm: Greedy strategy

part II

Continuing Problem from last class

JOB Scheduling

Largest subset of non-overlapping job

A job scheduling problem Formal Description

INPUT:

- A set **J** of **n** jobs $\{j_1, j_2, ..., j_n\}$
- job j_i is specified by two real numbers
 - s(i): start time of job j_i
 - f(i): finish time of job j_i
- A single server

Constraints:

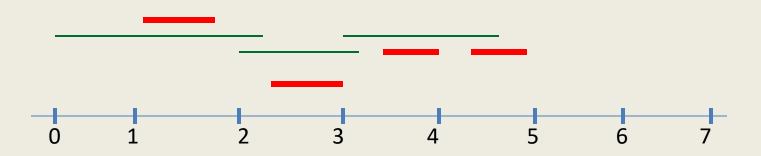
- Server can execute <u>at most one job</u> at any moment of time and a job.
- **Job** j_i , if scheduled, has to be scheduled <u>during[s(i), f(i)] only</u>.

Aim:

To select the **largest** subset

Designing algorithm for the problem

Strategy 4: Select the job with earliest finish time



Intuition:

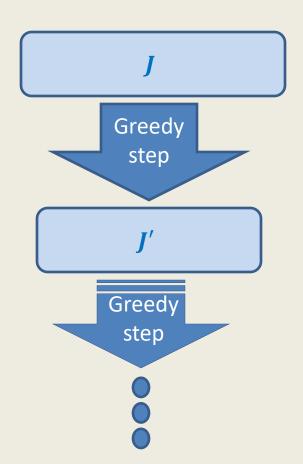
Selecting such a job will **free** the server **earliest**

→ hence more no. of jobs might get scheduled.

Algorithm "earliest finish time"

Proof of correctness ?

Let $x \in J$ be the job with earliest finish time. Let $J' = J \setminus Overlap(x)$



5

Algorithm (Input : set J of n jobs.)

- 1. Define $A \leftarrow \emptyset$;
- 2. While **J** <> Ø do
 - Let $x \in J$ has earliest finish time;

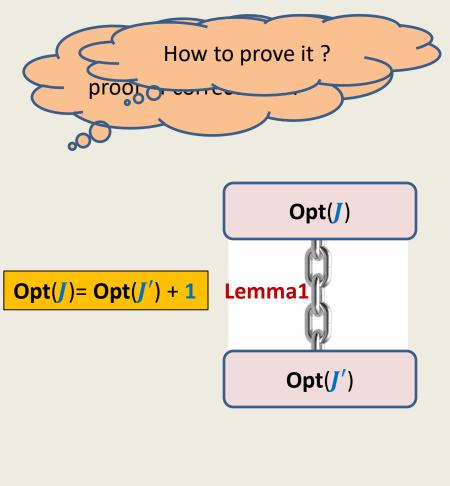
```
A \leftarrow A \cup \{x\};
J \leftarrow J \setminus Overlap(x);
```

- }
- 3. Return **A**;

Lemma1 (last class):

There exists <u>an</u> optimal solution for **J** containing the **earliest finish time** job.

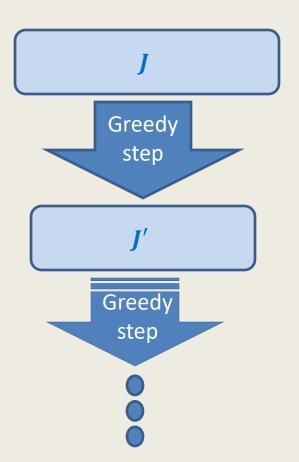
Algorithm "earliest finish time"



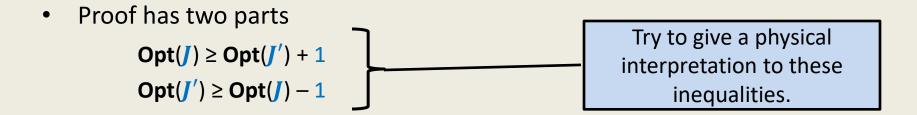
Notation:

Opt(/):

Proof of correctness ? Let $x \in J$ be the job with earliest finish time. Let $J' = J \setminus Overlap(x)$



Theorem: Opt(J) = Opt(J') + 1.



• Proof for each part is a proof by **construction**

Algorithm "earliest finish time" Proving $Opt(\mathbf{J}) \ge Opt(\mathbf{J}') + 1$

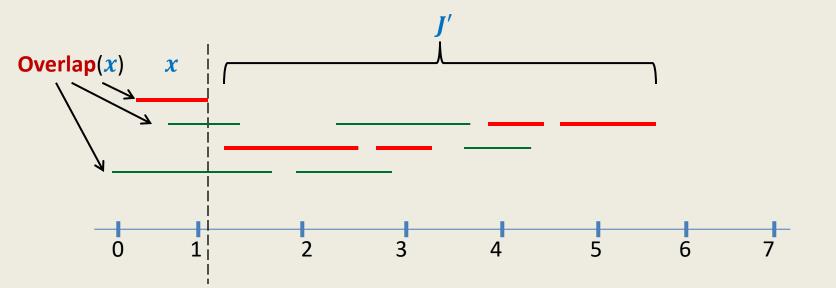
Observation: start time of every job in J' is greater than finish time of x.

Let O' be any optimal solution for J'.

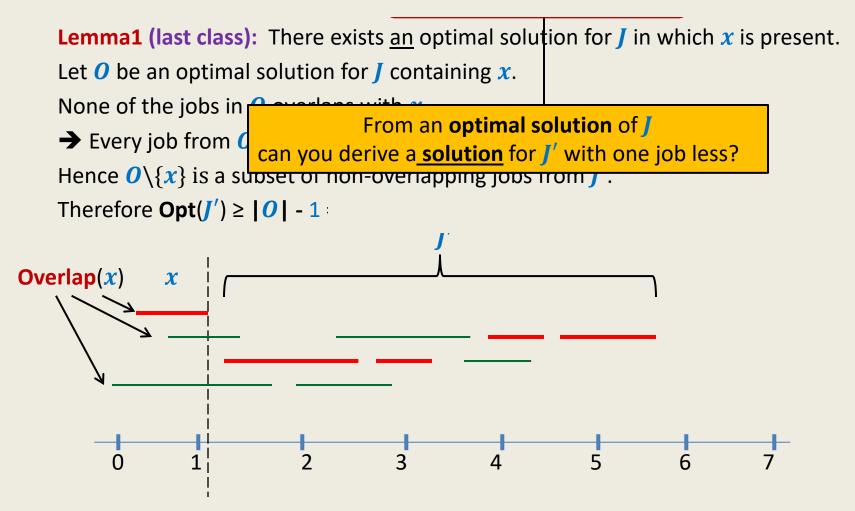
None of the jobs in

From an **optimal solution** of **J**'

Hence $O' \cup \{x\}$ is a Therefore $Opt(J) \ge |O'| + 1$



Algorithm "earliest finish time"

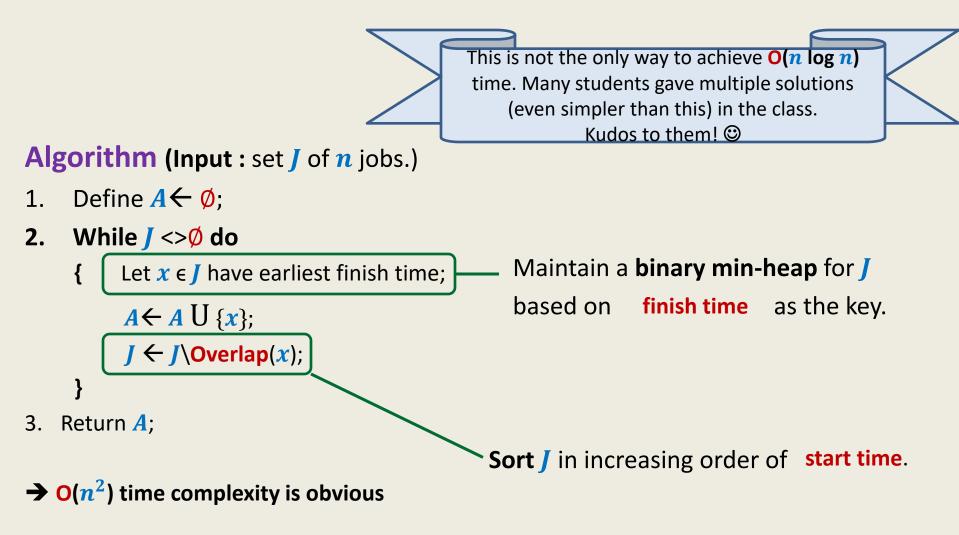


Theorem:

Given any set **J** of **n** jobs,

the algorithm based on "earliest finish time" approach computes the largest subset of non-overlapping job.

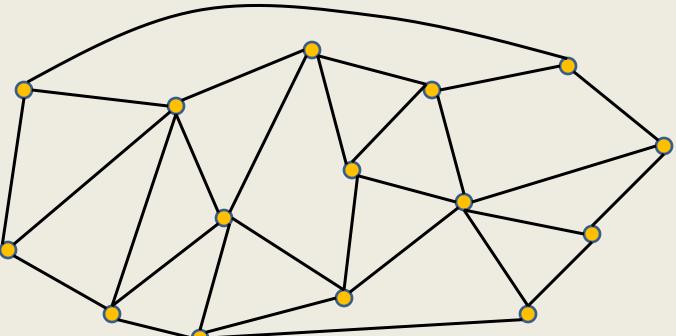
O(*n* log *n*) implementation of the Algorithm



Problem 2

First we shall give motivation.

Motivation: A road or telecommunication network



Suppose there is a collection of possible links/roads that can be laid.

But laying down each possible link/road is costly.

Aim: To lay down **least number** of links/roads to ensure **connectivity** between each pair of nodes/cities.

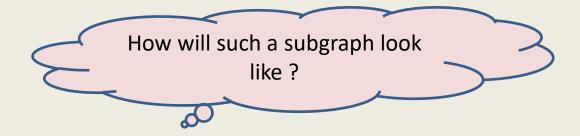
Motivation

Formal description of the problem

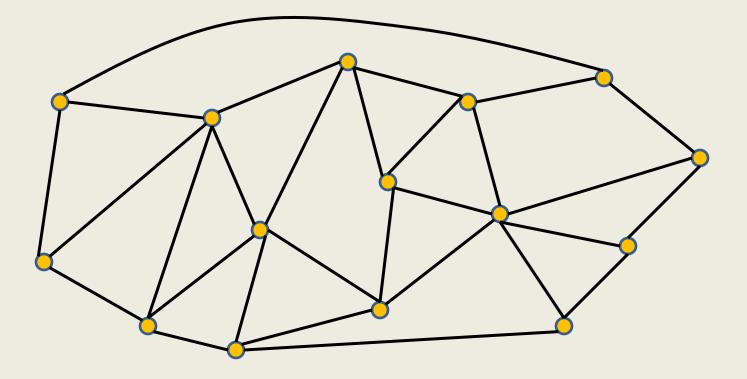
Input: an undirected graph **G**=(**V**,**E**).

Aim: compute a **subgraph** (V, E'), $E' \subseteq E$ such that

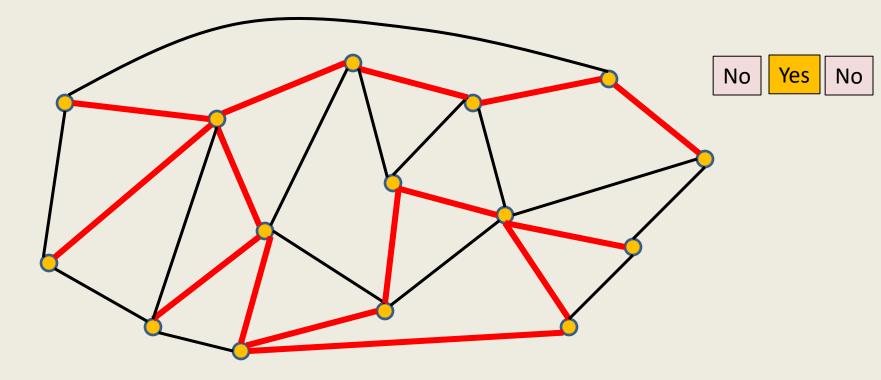
- **Connectivity** among all **V** is guaranteed in the **subgraph**.
- **[E']** is minimum.



A road or telecommunication network



A road or telecommunication network



Is this subgraph meeting our requirement?

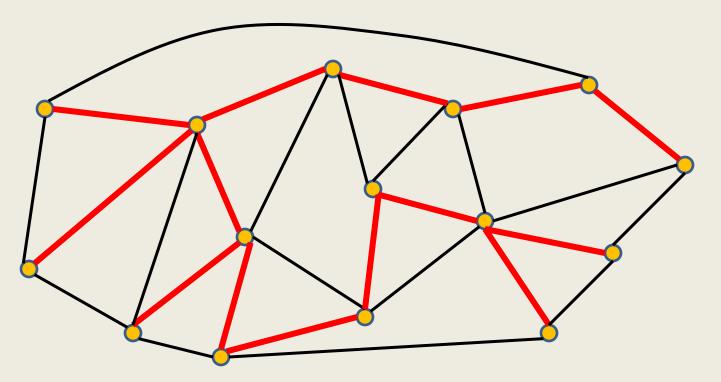
A tree

- The following definitions are **equivalent**.
- An undirected graph which is **connected**
- An undirected graph where each pair of vertices has
- An undirected **connected** graph on *n* vertices and :
- An undirected graph on n vertices and n-1 edges and \cdot

A Spanning tree

Definition: For an undirected graph (V,E),

A spanning tree is a **subgraph** (V, E'), $E' \subseteq E$ which is a tree.

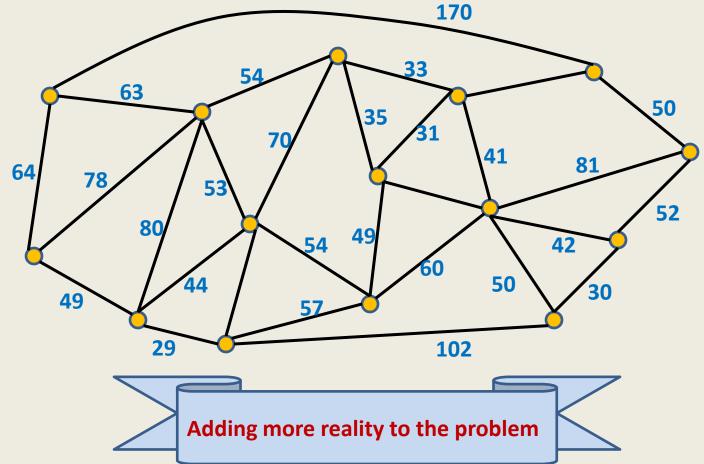


Observation: Given a spanning tree *T* of a graph *G*, adding a nontree edge *e* to *T* creates a unique cycle.

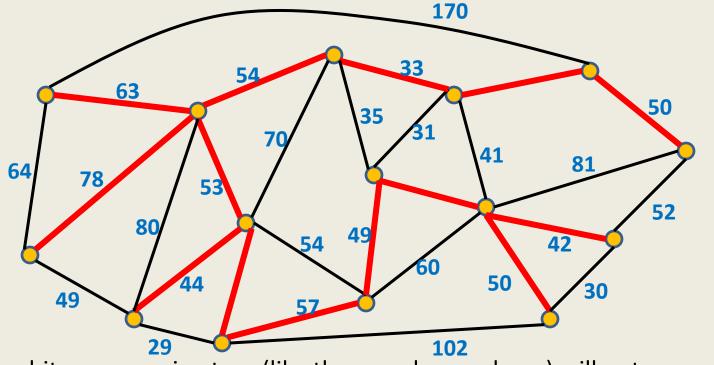
There will be total m - n + 1 such cycles. These are called **fundamental cycles** in *G* induced by the spanning tree *T*.

A road or telecommunication network

Assign each edge a weight/cost.



A road or telecommunication network



Any arbitrary spanning tree (like the one shown above) will not serve our goal⊗.

We need to select the spanning tree with **least weight/cost**.

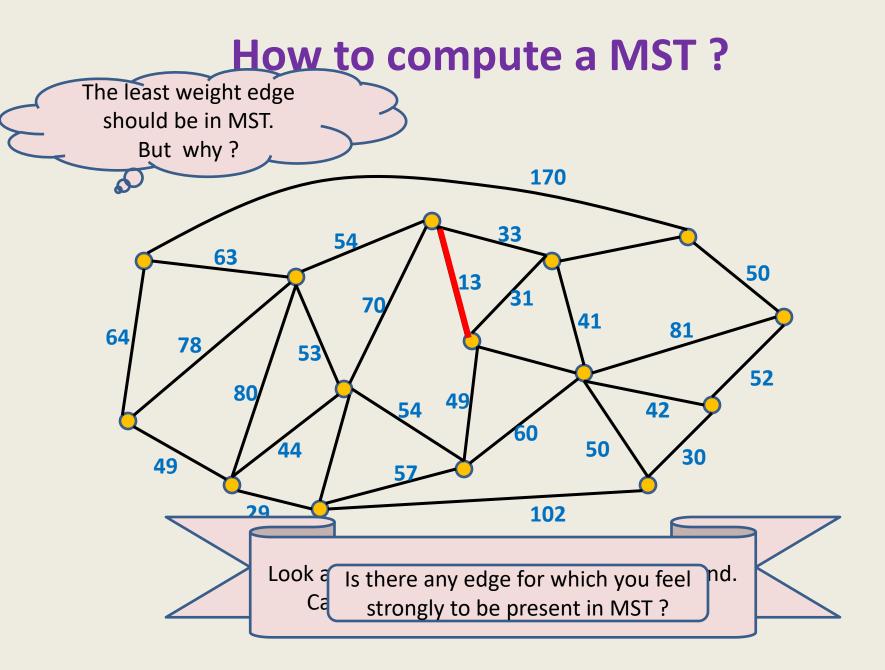
Problem 2

Minimum spanning tree

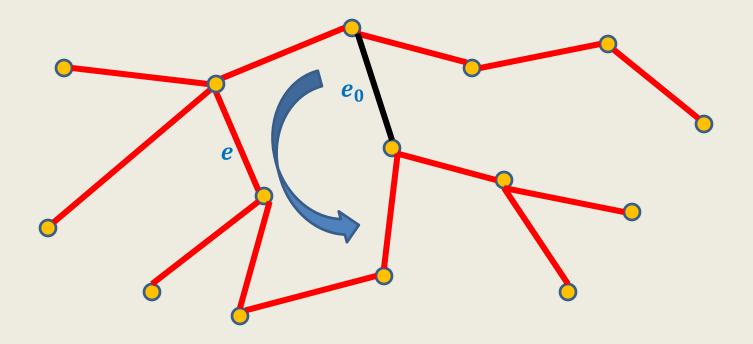
Problem Description

Input: an undirected graph G=(V,E) with $w: E \rightarrow \mathbb{R}$,

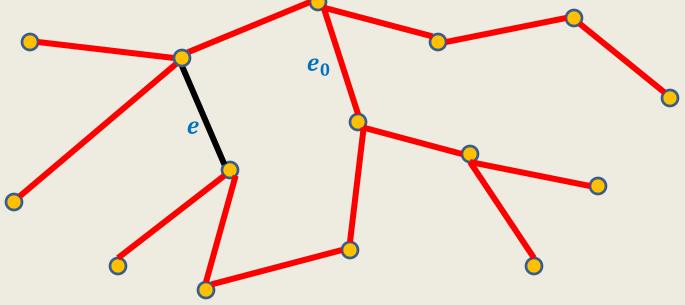
Aim: compute a spanning tree (V,E'), E' \subseteq E such that $\sum_{e \in E'} \mathbf{w}(e)$ is minimum.



Let $e_0 \in E$ be the edge of least weight in the given graph. Lemma2: There is a MST T containing e_0 . Proof: Consider any MST T. Let $e_0 \notin T$. Consider the fundamental cycle C defined by e_0 in T. Swap e_0 with any edge $e \in T$ present in C.



Let $e_0 \in E$ be the edge of least weight in the given graph. Lemma2: There is a MST T containing e_0 . Proof: Consider any MST T. Let $e_0 \notin T$. Consider the fundamental cycle C defined by e_0 in T. Swap e_0 with any edge $e \in T$ present in C. We get a spanning tree of weight $\leq w(T)$.



Try to translate Lemma2 to an algorithm for MST?

with inspiration from the job scheduling problem ©

Next lecture class: Sunday (3rd April) at 11 AM...