Data Structures and Algorithms
(CS210A)

Lecture 35

* A new algorithm design paradigm: Greedy strategy

part |l

Continuing Problem from last class

JOB Scheduling
Largest subset of non-overlapping job

A job scheduling problem

Formal Description

INPUT:

 Aset]Jofnjobs{ji,j2,..., jn}

* job j; is specified by two real numbers
s(i): start time of job j;
f(i): finish time of job j;

* Asingle server

Constraints:
* Server can execute at most one job at any moment of time and a job.

* Jobj;, if scheduled, has to be scheduled during[s(i), f(i)] only.

Aim:
To select the largest subset

Designing algorithm for the problem

Strategy 4: select the job with earliest finish time

Intuition:

Selecting such a job will free the server earliest

=>» hence more no. of jobs might get scheduled.

Algorithm “earliest finish time”

Proof of correctness ?
Let x € J be the job with earliest finish time.

i Let J' = J\Overlap(x)
Algorithm (Input : set J of nn jobs.)

1. Define A< ©;

2. While] <>0 do
{ Letx €] has earliest finish time;

A< AU ;
J < J\Overlap(x);
}
3. Return A4;

Lemmal (last class):
There exists an optimal solution for J
containing the earliest finish time job.

Algorithm “earliest finish time”

—

Proof of correctness ?
Let x € J be the job with earliest finish time.
Let J' = J\Overlap(x)

How to prove it ?

Opt(/)=Opt(J') + 1

Notation:
Opt(/):

Theorem: Opt(J) = Opt(J’) + 1.

Proof has two parts

Opt(/) = Opt(J') + 1
Opt(/') 2 Opt(J) - 1

Proof for each part is a proof by construction

Try to give a physical
interpretation to these
inequalities.

Algorithm “earliest finish time”

Proving[Opt(]) > Opt(/') + 1]

Observation: start time of every job in J' is greate
Let O’ be any optimal solution for J'.

r than finish time of x.

None of the jobs in| From an optimal solution of J'

Hence O’ U{x}is a
Therefore Opt(/) > |O'| + 1

Overlap(x) X i {

X1 _

o
— =

Algoritljm “earliest finish time”

Lemmal (last class): There exists an optimal solution for J in which x is present.
Let O be an optimal solution for J containing x.

ya) 1 crhle oo

From an optimal solution of

_ can you derive a solution for /" with one job less?
Hence 0\{x} 1S @ SUDSETOT TMOMT-OVETTdPPTITEg JOOS TTOTIT J .

Therefore Opt(J') > |O] - 1:

None of the jobs in
=>» Every job from (

S—

Overlap(x) X i { \

OX— _

o
H-

Theorem:

Given any set | of n jobs,

the algorithm based on “earliest finish time” approach
computes the largest subset of non-overlapping job.

O(n log n) implementation of the Algorithm

— e
This is not the only way to achieve O(n log n)

time. Many students gave multiple solutions
(even simpler than this) in the class.
- Kudos to them! © .

Algorithm (Input : set J of nn jobs.)
1. Define A< ©;
2. While] <>0 do

{ | Letx €] have earliest finish time; — Maintain a binary min-heap for J
A€ AU {x); based on finish time as the key.
J < J\Overlap(x);
}
3. Return A4;

Sort J in increasing order of start time.
= 0(n?) time complexity is obvious

Problem 2

First we shall give motivation.

12

Motivation:
A road or telecommunication network

Suppose there is a collection of possible links/roads that can be laid.
But laying down each possible link/road is costly.

Aim: To lay down least number of links/roads to ensure connectivity
between each pair of nodes/cities.

Motivation

Formal description of the problem
Input: an undirected graph G=(V,E).

Aim: compute a subgraph (V,E’), E’ € E such that

* Connectivity among all V is guaranteed in the subgraph.

 |E’| is minimum.

How will such a subgraph look
like ?

14

A road or telecommunication network

15

A road or telecommunication network

Is this subgraph meeting our requirement ?

No

Yes

No

16

A tree

The following definitions are equivalent.

An undirected graph which is connected

An undirected graph where each pair of vertices has

An undirected connected graph on n vertices and

An undirected graph on n vertices and n — 1 edges and -

A Spanning tree

Definition: For an undirected graph (V,E),
A spanning tree is a subgraph (V,E’), E’ € E which is a tree.

Observation: Given a spanning tree T of a graph G, adding a nontree edge e to T creates
a unique cycle.

There will be total m — n + 1 such cycles. These are called fundamental cycles in
G induced by the spanning tree T'. 18

A road or telecommunication network

Assign each edge a weight/cost.

Adding more reality to the problem

19

A road or telecommunication network

Any arbitrary spanning tree (like the one shown above) will not serve our
goal®.

We need to select the spanning tree with least weight/cost.

20

Problem 2

Minimum spanning tree

21

Problem Description

Input: an undirected graph G=(V,E) with w: E 2 R,

Aim: compute a spanning tree (V,E’), E’ € E such that
g W(e) is minimum.

22

The least weight edge
should be in MST.

But why ?

to compute a MST ?

Look
C

1 Is there any edge for which you feel

strongly to be present in MST ?

e

—

23

Let eye E be the edge of least weight in the given graph.

Lemmaz2: There is a MST T containing e.

Proof: Consider any MST T'. Let eo& T.

Consider the fundamental cycle C defined by e in T.
Swap ey with any edge ee T present in C.

24

Let eye E be the edge of least weight in the given graph.

Lemmaz2: There is a MST T containing e.

Proof: Consider any MST T'. Let e T.

Consider the fundamental cycle C defined by e in T.
Swap ey with any edge ee T present in C.

We get a spanning tree of weight < w(T).

25

Try to translate Lemma2 to an algorithm for MST ?

with inspiration from the job scheduling problem ©

Next lecture class: Sunday (3" April) at 11 AM...

26

