
Data Structures and Algorithms
(CS210A)

Lecture 34
• A new algorithm design paradigm:

 part I

1

Greedy strategy

Path to the solution of a problem

Examples

intuition/insight

Strategy

2

Failure  Better Insight 

Success 

No formula

Have perseverance

But there is a systematic approach which usually works 

Today’s lecture will demonstrate this approach 

3

Problem : JOB Scheduling

Largest subset of non-overlapping job

A motivating example

Antaragni 2016

• There are 𝒏 large-scale activities to be performed in Auditorium.

• Each large scale activity has a start time and finish time.

• There is overlap among various activities.

Aim: What is the largest subset of activities that can be performed ?

4

Can you formulate the problem
theoretically through this

example ?

A job scheduling problem
 INPUT:

• A set 𝑱 of 𝒏 jobs {𝒋𝟏, 𝒋𝟐,…, 𝒋𝒏}

• job 𝒋𝒊 is specified by two real numbers

 s(𝒊): start time of job 𝒋𝒊

 f(𝒊): finish time of job 𝒋𝒊

• A single server

Constraints:

• Server can execute at most one job at any moment of time.

• Job 𝒋𝒊, if scheduled, has to be scheduled during [s(𝒊), f(𝒊)] only.

Aim:

To select the largest subset of non-overlapping jobs which can be executed by the server.

5

Formal Description

INPUT: (𝟏, 𝟐), (𝟏. 𝟐, 𝟐. 𝟖), (𝟏. 𝟖, 𝟒. 𝟔), (𝟐. 𝟏, 𝟑), (𝟑, 𝟓), (𝟑. 𝟑, 𝟒. 𝟐), (𝟑. 𝟗, 𝟒. 𝟒), (𝟒. 𝟑, 𝟓. 𝟒)

job 𝒊 is said to be non-overlapping with job 𝒌 if [s(𝒊), f(𝒊)] ∩[s(𝒌), f(𝒌)] = ∅

6

0 1 2 3 4 5 6 7

Example

It makes sense to work with pictures than these numbers

Try to find solution for the above
example.

INPUT: (𝟏, 𝟐), (𝟏. 𝟐, 𝟐. 𝟖), (𝟏. 𝟖, 𝟒. 𝟔), (𝟐. 𝟏, 𝟑), (𝟑, 𝟓), (𝟑. 𝟑, 𝟒. 𝟐), (𝟑. 𝟗, 𝟒. 𝟒), (𝟒. 𝟑, 𝟓. 𝟒)

job 𝒊 is said to be non-overlapping with job 𝒌 if [s(𝒊), f(𝒊)] ∩[s(𝒌), f(𝒌)] = ∅

7

0 1 2 3 4 5 6 7

What strategy come
to your mind?

Example

Designing algorithm for any problem

1. Choose a strategy based on some intuition

2. Transform the strategy into an algorithm.

8

Try to prove
correctness

of the
algorithm

c
Try to design a
conterexample

c

Stop as soon as either of
these goals is reached

Designing algorithm for the problem

Intuition:

It might be better to assign jobs as early as possible so as to make optimum use of server.

9

0 1 2 3 4 5 6 7

Strategy 1: Select the earliest start time job

When one fails to prove the correctness of this strategy,
one should search for a counterexample. Can you

transform the above example into a counterexample ?

Designing algorithm for the problem

Intuition:

It might be better to assign jobs as early as possible so as to make optimum use of server.

10

0 1 2 3 4 5 6 7

Strategy 1: Select the earliest start time job

Designing algorithm for the problem

Intuition:

It might be better to assign jobs as early as possible so as to make optimum use of server.

11

0 1 2 3 4 5 6 7

counterexample.


Strategy 1: Select the earliest start time job

Instead of getting disappointed, try to realize
that this counterexample points towards
some other strategy which might work.

Designing algorithm for the problem

Intuition:

Such a job will make least use of the server

 this might lead to larger number of jobs to be executed

12

0 1 2 3 4 5 6 7

Strategy 2: Select the job with smallest duration

When one fails to prove the correctness of this strategy, one
should search for a counterexample. Can you transform the

above example into a counterexample ?

Designing algorithm for the problem

Intuition:

Such a job will make least use of the server

 this might lead to larger number of jobs to be executed

13

0 1 2 3 4 5 6 7

Strategy 2: Select the job with smallest duration

counterexample.


Instead of getting disappointed, try to realize
that this counterexample points towards
some other strategy which might work.

Designing algorithm for the problem

Intuition:

Selecting such a job will result in least number of other jobs to be discarded.

14

0 1 2 3 4 5 6 7

Strategy 3: Select the job with smallest no. of overlaps

When one fails to prove the correctness of this strategy,
one should search for a counterexample. Can you

transform the above example into a counterexample ?

Designing algorithm for the problem

Intuition:

Selecting such a job will result in least number of other jobs to be discarded.

15

0 1 2 3 4 5 6 7

Strategy 3: Select the job with smallest no. of overlaps

counterexample.


Have perseverance.
Think fresh.

Designing algorithm for the problem

Intuition:

Selecting such a job will free the server earliest

 hence more no. of jobs might get scheduled.

16

0 1 2 3 4 5 6 7

Strategy 4: Select the job with earliest finish time

Designing algorithm for the problem

Intuition:

Selecting such a job will free the server earliest

 hence more no. of jobs might get scheduled.

17

0 1 2 3 4 5 6 7

Strategy 4: Select the job with earliest finish time

Designing algorithm for the problem

Intuition:

Selecting such a job will free the server earliest

 hence more no. of jobs might get scheduled.

18

0 1 2 3 4 5 6 7

Strategy 4: Select the job with earliest finish time

Designing algorithm for the problem

Intuition:

Selecting such a job will free the server earliest

 hence more no. of jobs might get scheduled.

19

0 1 2 3 4 5 6 7

It is indeed a correct solution for this example. We should try
to prove the correctness of the algorithm.But first we give a

full description of the algorithm based on this strategy.

Strategy 4: Select the job with earliest finish time

Algorithm “earliest finish time”

Description

Algorithm (Input : set 𝑱 of 𝒏 jobs.)

1. Define 𝑨 ∅;

2. While 𝑱 <>∅ do

 { Let 𝒙 be the job from 𝑱 with earliest finish time;

 𝑨 𝑨 U {𝒙};

 Remove 𝒙 and all jobs that overlap with 𝒙 from set 𝑱;

 }

3. Return 𝑨;

Running time for a trivial implementation of the above algorithm: O(𝒏𝟐)

20

Algorithm “earliest finish time”

Correctness
Let 𝒙 be the job with earliest finish time.

Lemma1: 𝒙 is present in the optimal solution for 𝑱.

Too strong a claim !

21

0 1 2 3 4 5 6 7

Wrong

Algorithm “earliest finish time”

Correctness
Let 𝒙 be the job with earliest finish time.

Lemma1: There exists an optimal solution for 𝑱 in which 𝒙 is present.

Proof: Consider any optimal solution 𝑶 for 𝑱. Let us suppose 𝒙∉ 𝑶.

Let 𝒚 be the job from 𝑶 with earliest finish time.

Let 𝑶′  𝑶\{𝒚}

𝑶′ ∪ {𝒙} is also an optimal solution.

Reason: 𝑶′ ∪ {𝒙} has no overlapping intervals. Give arguments.

22

0 1 2 3 4 5 6 7

𝒙

𝒚

f(𝒚) < s(𝒛) ∀ 𝒛 ∈ 𝑶′

f(𝒙) ≤ f(𝒚)

f(𝒙) < s(𝒛) ∀ 𝒛 ∈ 𝑶′

Hence 𝒙 does not overlap
With any interval of 𝑶′.
We are done 

Homework

Spend 30 minutes today on the following problems.

1. Use Lemma1 to complete the proof of correctness of the algorithm.

2. Design an O(𝒏log 𝒏) implementation of the algorithm.

23

