
Data Structures and Algorithms 
(CS210A) 

 

Lecture 34 
• A new algorithm design paradigm: 

                                                          part I                 
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Greedy strategy 



Path to the solution of a problem 

Examples 

 

 

intuition/insight 

 

 

Strategy  
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Failure  Better Insight  

Success  

No formula 

Have perseverance 

But there is a systematic approach which usually works  



Today’s lecture will demonstrate this approach  
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Problem : JOB Scheduling 

Largest subset of non-overlapping job 



A motivating example 

 

Antaragni 2016 
 

• There are 𝒏 large-scale activities to be performed in Auditorium. 

• Each large scale activity has a start time and finish time. 

• There is overlap among various activities. 

 

Aim: What is the largest subset of activities that can be performed ? 
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Can you formulate the problem 
theoretically through this 

example ? 



 
 

A job scheduling problem 
  INPUT:  

• A set 𝑱 of 𝒏 jobs {𝒋𝟏, 𝒋𝟐,…,  𝒋𝒏}  

• job 𝒋𝒊 is specified by two real numbers 

 s(𝒊): start time of job 𝒋𝒊 

 f(𝒊): finish time of job 𝒋𝒊 

• A single server  

 

Constraints:   

• Server can execute at most one job at any moment of time. 

• Job 𝒋𝒊, if scheduled, has to be scheduled during  [s(𝒊), f(𝒊)] only. 

 

Aim:  

To select the largest subset of non-overlapping jobs which can be executed by the server. 
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Formal Description 



 

INPUT:  (𝟏, 𝟐), (𝟏. 𝟐, 𝟐. 𝟖), (𝟏. 𝟖, 𝟒. 𝟔), (𝟐. 𝟏, 𝟑), (𝟑, 𝟓), (𝟑. 𝟑, 𝟒. 𝟐), (𝟑. 𝟗, 𝟒. 𝟒), (𝟒. 𝟑, 𝟓. 𝟒) 

  

 

 

 

 

 

 

 

job 𝒊 is said to be non-overlapping with job 𝒌 if  [s(𝒊), f(𝒊)] ∩[s(𝒌), f(𝒌)] = ∅ 
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Example 

It makes sense to work with pictures than these numbers 

Try to find solution for the above 
example. 



 
  

 

INPUT:  (𝟏, 𝟐), (𝟏. 𝟐, 𝟐. 𝟖), (𝟏. 𝟖, 𝟒. 𝟔), (𝟐. 𝟏, 𝟑), (𝟑, 𝟓), (𝟑. 𝟑, 𝟒. 𝟐), (𝟑. 𝟗, 𝟒. 𝟒), (𝟒. 𝟑, 𝟓. 𝟒) 

 

 

 

 

 

 

 

 

job 𝒊 is said to be non-overlapping with job 𝒌 if  [s(𝒊), f(𝒊)] ∩[s(𝒌), f(𝒌)] = ∅ 
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What strategy come 
to your mind? 

Example 



Designing algorithm for any problem 
 

1. Choose a strategy based on some intuition 

2. Transform the strategy into an algorithm. 
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Try to prove  
correctness  

of the  
algorithm 

c 
Try to design a  
conterexample 

c 

Stop as soon as either of 
these goals is reached 



Designing algorithm for the problem 
 

 

 

 

 

 

 

 

 

 

 

Intuition:  

It might be better to assign jobs as early as possible so as to make optimum use of server. 
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Strategy 1: Select the earliest start time job 

When one fails to prove the correctness of this strategy, 
one should search for a counterexample. Can you 

transform the above example into a counterexample ? 



Designing algorithm for the problem 
 

 

 

 

 

 

 

 

 

 

 

Intuition:  

It might be better to assign jobs as early as possible so as to make optimum use of server. 
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Strategy 1: Select the earliest start time job 



Designing algorithm for the problem 
 

 

 

 

 

 

 

 

 

 

 

Intuition:  

It might be better to assign jobs as early as possible so as to make optimum use of server. 

11 

0            1                  2               3               4                5              6             7 

counterexample. 
 

Strategy 1: Select the earliest start time job 

Instead of getting disappointed, try to realize 
that this counterexample points towards 
some other strategy which might work. 



Designing algorithm for the problem 
 

 

 

 

 

 

 

 

 

 

Intuition:  

Such a job will make least use of the server 

 this might lead to larger number of jobs to be executed  
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Strategy 2: Select the job with smallest duration 

When one fails to prove the correctness of this strategy, one 
should search for a counterexample. Can you transform the 

above example into a counterexample ? 



Designing algorithm for the problem 
 

 

 

 

 

 

 

 

 

 

Intuition:  

Such a job will make least use of the server 

 this might lead to larger number of jobs to be executed  
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Strategy 2: Select the job with smallest duration 

counterexample. 
 

Instead of getting disappointed, try to realize 
that this counterexample points towards 
some other strategy which might work. 



Designing algorithm for the problem 
 

 

 

 

 

 

 

 

 

 

 

Intuition:  

Selecting such a job will result in least number of other jobs to be discarded. 
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Strategy 3: Select the job with smallest no. of overlaps 

When one fails to prove the correctness of this strategy, 
one should search for a counterexample. Can you 

transform the above example into a counterexample ? 



Designing algorithm for the problem 
 

 

 

 

 

 

 

 

 

 

 

Intuition:  

Selecting such a job will result in least number of other jobs to be discarded. 
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Strategy 3: Select the job with smallest no. of overlaps 

counterexample. 
 

Have perseverance. 
Think fresh. 



Designing algorithm for the problem 
 

 

 

 

 

 

 

 

 

 

Intuition:  

Selecting such a job will free the server earliest  

 hence more no. of jobs might get scheduled. 
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Strategy 4: Select the job with earliest finish time 



Designing algorithm for the problem 
 

 

 

 

 

 

 

 

 

 

Intuition:  

Selecting such a job will free the server earliest  

 hence more no. of jobs might get scheduled. 
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Strategy 4: Select the job with earliest finish time 



Designing algorithm for the problem 
 

 

 

 

 

 

 

 

 

 

Intuition:  

Selecting such a job will free the server earliest  

 hence more no. of jobs might get scheduled. 
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Strategy 4: Select the job with earliest finish time 



Designing algorithm for the problem 
 

 

 

 

 

 

 

 

 

 

Intuition:  

Selecting such a job will free the server earliest  

 hence more no. of jobs might get scheduled. 
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It is indeed a correct solution for this example. We should try 
to prove the correctness of the algorithm.But first we give a 

full description of the algorithm based on this strategy. 

Strategy 4: Select the job with earliest finish time 



Algorithm “earliest finish time” 

Description 

 

Algorithm (Input : set 𝑱 of 𝒏 jobs.) 

1. Define 𝑨 ∅; 

2. While 𝑱 <>∅ do  

         {       Let 𝒙 be the job from 𝑱 with earliest finish time; 

                  𝑨 𝑨 U {𝒙}; 

                   Remove 𝒙 and all jobs that overlap with 𝒙 from set 𝑱; 

         } 

3. Return 𝑨; 

 

Running time for a trivial implementation of the above algorithm: O(𝒏𝟐) 
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Algorithm “earliest finish time” 

Correctness 
Let 𝒙 be the job with earliest finish time. 

Lemma1: 𝒙 is present in the optimal solution for 𝑱.  

 

 

 

 

 

 

 

 

 

Too strong a claim ! 
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Wrong 



Algorithm “earliest finish time” 

Correctness 
Let 𝒙 be the job with earliest finish time. 

Lemma1:  There exists an optimal solution for 𝑱 in which 𝒙 is present.  

Proof: Consider any optimal solution 𝑶 for 𝑱. Let us suppose 𝒙∉ 𝑶.  

Let 𝒚 be the job from 𝑶 with earliest finish time. 

Let 𝑶′  𝑶\{𝒚}  

𝑶′ ∪ {𝒙} is also an optimal solution.  

Reason: 𝑶′ ∪ {𝒙} has no overlapping intervals. Give arguments. 
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𝒙 

𝒚 

f(𝒚) < s(𝒛) ∀ 𝒛 ∈ 𝑶′  

f(𝒙) ≤ f(𝒚)  

f(𝒙) < s(𝒛) ∀ 𝒛 ∈ 𝑶′  

Hence 𝒙 does not overlap  
With any interval of 𝑶′. 
We are done   



Homework 

 

 

Spend 30 minutes today on the following problems. 

 

1. Use Lemma1 to complete the proof of correctness of the algorithm. 

 

2. Design an O(𝒏log 𝒏) implementation of the algorithm. 
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