Data Structures and Algorithms (CS210A)

Lecture 32

• Magical application of binary trees – III

Data structure for sets

Rooted tree

Revisiting and extending

A typical rooted tree we studied

Definition we gave:

Every vertex, except **root**, has <u>exactly one **incoming** edge</u> and has a path **from** the root. **Examples:**

Binary search trees,

DFS tree,

BFS tree.

A typical rooted tree we studied

Question: what data structure can be used for representing a rooted tree ?

Answer:

Data structure 1:

- Each node stores a list of its children.
- To access the tree, we keep a pointer to the root node.
 (there is no way to access any node (other than root) directly in this data structure)

Data structure 2: (If nodes are labeled in a <u>contiguous</u> range [0..n-1])

rooted tree becomes an instance of a **directed graph**.

So we may use **adjacency list** representation.

Advantage: We can access each node directly.

Extending the definition of rooted tree

Extended Definition:

Type 1: Every vertex, except root, has exactly one incoming edge and has a path from the root.

Extending the definition of rooted tree

Extended Definition:

Type 1: Every vertex, except root, has exactly one incoming edge and has a path from the root.

OR

Type 2: Every vertex, except root, has exactly one outgoing edge and has a path to the root.

Data structure for rooted tree of type 2

If nodes are labeled in a <u>contiguous</u> range [0..n - 1],

there is even simpler and more compact data structure

Guess ??

7

Parent	8	23	9	8	18	13	23	7	13	11	14	7	6	11	1	23	14	12	6	12	12	9	8	7	
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	

Application of rooted tree of type 2

Maintaining sets

Sets under two operations

Given: a collection of n singleton sets $\{0\}$, $\{1\}$, $\{2\}$, ... $\{n - 1\}$

Aim: a compact data structure to perform

• Union(*i*, *j*):

Unite the two sets containing *i* and *j*.

• Same_sets(*i*, *j*):

Determine if *i* and *j* belong to the same set.

Trivial Solution

Treat the problem as a graph problem: Connected component

- $V = \{0, ..., n 1\}, E = empty set initially.$
- A set 🗇
- Keep array Label[]

```
→
```

```
Union(i, j) :
if (Same_sets(i, j)) = false)
add an edge (i, j)
```


Sets under two operations

Given: a collection of n singleton sets $\{0\}$, $\{1\}$, $\{2\}$, ... $\{n - 1\}$

Aim: a compact data structure to perform

• Union(*i*, *j*):

Unite the two sets containing *i* and *j*.

• Same_sets(*i*, *j*):

Determine if *i* and *j* belong to the same set.

Efficient solution:

- A data structure which supports each operation in **O(log** *n*) time.
- An additional heuristic

 \rightarrow time complexity of an operation : practically O(1).

Data structure for sets

Maintain each set as a rooted tree

Data structure for sets

Maintain each set as a rooted tree

Question: How to perform Union(*i*, *j*) ? Answer:

- find root of *j*; let it be *q*.
- Parent(q) $\leftarrow i$.

Pseudocode for Union and SameSet()

Find(i) // subroutine for finding the root of the tree containing i
If (Parent(i) = i) return i;
else return Find(Parent(i));

SameSet(*i*, *j*) $k \leftarrow Find(i);$ $l \leftarrow Find(j);$ If (k = l) return true else return false

Union(i, j) $k \leftarrow Find(j);$ Parent(k) $\leftarrow i$;

Observation: Time complexity of Union(*i*, *j*) as well as Same_sets(*i*, *j*) is governed by the time complexity of Find(*i*) and Find(*j*). Question: What is time complexity of Find(*i*) ? Answer: depth of the node *i* in the tree containing *i*.

Time complexity of Find(*i*)

Improving the time complexity of Find(*i*)

Heuristic 1: Union by size

Improving the Time complexity

Key idea: Change the union(*i*,*j*).

While doing **union**(*i*, *j*), hook the **smaller size** tree to the **root of the bigger size tree**.

For this purpose, keep an array size[0,..,n-1]

size[i] = number of nodes in the tree containing i

(if *i* is a **root** and zero otherwise)

Efficient data structure for sets

Efficient data structure for sets

Efficient data structure for sets

Pseudocode for modified Union

```
Union(i, j)
         k \leftarrow Find(i);
         l \leftarrow Find(j);
         If(size(k) < size(l))
                 l \leftarrow \text{Parent}(k);
                size(l) \leftarrow size(k) + size(l);
                size(k) \leftarrow 0;
         Else
                 k \leftarrow \text{Parent}(l);
                 size(k) \leftarrow size(k) + size(l);
                 size(l) \leftarrow 0;
```

Question: How to show that Find(*i*) for any *i* will now take O(log n) time only ? Answer: It suffices if we can show that Depth(*i*) is O(log n).

Can we infer <u>history</u> of a tree?

Answer: Can not be inferred with any certainty \mathfrak{S} .

Can we infer <u>history</u> of a tree?

→ $(0 \rightarrow 9)$ was added **before** $(9 \rightarrow 6)$.

Theorem: The edges on a **path** from node v to root were inserted in <u>the order</u> they appear on the **path**.

Let $e_1, e_2, ..., e_t$ be the edges on the path from i to the **root**.

Edges $e_1, e_2, ..., e_t$ would have been added in the order:

*e*₁ *e*₂ ... *e*_t

Let e_1 , e_2 , ..., e_t be the edges on the path from *i* to the **root**.

Consider the moment just before edge e_1 is inserted.

Let no. of elements in subtree T(i) at that moment be n_i .

We added edge $i \rightarrow t$ (and **not** $t \rightarrow i$).

- → no. of elements in $T(t) \ge n_i$.
- → After the edge $i \rightarrow t$ is inserted,

no. of element in $T(t) \ge 2n_i$

Let e_1 , e_2 , ..., e_t be the edges on the path from *i* to the **root.**

Consider the moment just before edge e_2 is inserted.

no. of element in $T(t) \ge 2n_i$

We added edge $t \rightarrow k$ (and **not** $k \rightarrow t$).

- → # elements in $T(k) \ge 2n_i$.
- \rightarrow After the edge $t \rightarrow k$ is inserted,

no. of element in $T(k) \ge 4n_i$

➔

Let $e_1, e_2, ..., e_t$ be the edges on the path from *i* to the **root**.

Arguing in a similar manner for edge $e_3, ..., e_t \rightarrow$

elements in T(r) after insertion of $e_t \ge 2^t n_i$ Obviously $2^t n_i \le n$

Theorem: $t \leq \log_2 n$

Theorem: Given a collection of **n** singleton sets followed by a sequence of **union** and **find** operations, there is a data structure based that achieves **O**(log **n**) time per operation.

Question: Can we achieve even better bounds ? Answer: Yes.

A new heuristic for better time complexity

Heuristic 2: Path compression

This is how this heuristic got invented

- The time complexity of a Find(*i*) operation is proportional to the depth of the node
 i in its rooted tree.
- If the elements are stored closer to the root, faster will the **Find()** be and hence faster will be the overall algorithm.

The algorithm for Union and Find was used in some application of data-bases.

A clever programmer did the following modification to the code of Find(*i*).

While executing Find(*i*), we traverse the path from node *i* to the root. Let $v_1, v_2, ..., v_t$, be the nodes traversed with v_t being the root node. At the end of Find(*i*), if we update parent of each v_k , $1 \le k < t$, to v_t , we achieve a reduction in depth of many nodes. This modification increases the time complexity of Find(*i*) by at most a constant factor. But this little modification increased the overall speed of the application very significantly.

The heuristic is called **path compression**. It is shown pictorially on the following slide. It remained a <u>mystery for many years</u> to provide a theoretical explanation for its practical success.

Path compression during Find(i)

S

Pseudocode for the modified Find

```
Find(i)

If (Parent(i) = i) return i;

else

j \leftarrow Find(Parent(i));

Parent(i) \leftarrow j;

return j
```

Concluding slide

Theorem: Given a collection of *n* singleton sets followed by a sequence of *m* union and find operations, there exists a data structure that achieves $O(m + n \log^* n)$ time complexity.

Here **log*** *n* : the number of times we need to take **log** of a number till we get 1. To see how "**extremely slow growing**" is the **log*** *n* function, see the following example.

If $n = 2^{2^{2^{2^{2^{2}}}}}$ (> 2⁶⁴⁰⁰⁰),

Then $\log^* n$ is just 5.

Although $\log^* n$ is effectively a small constant for every value of n in real life, the crazy theoreticians still **do not** consider it a constant \otimes since it is an increasing function of **n**.

The proof will be discussed in one full lecture of CS345.

Keep pondering over it for next one year.

Lesson for all: There are simple algorithm which may have very difficult analysis. ³⁹