Data Structures and Algorithms (CS210A)

Lecture 31

Magical applications of Binary trees -II

RECAP OF LAST LECTURE

Intervals

S = {[*i*, *j*], $0 \le i \le j < n$ }

Question: Can we have a <u>small set</u> **XCS** of intervals s.t.

every interval in **S** can be expressed as a <u>union</u> of <u>a few</u> **intervals** from **X** ?

Answer: yes 🙂

Hierarchy of intervals

[0,3] [4,7] [8,11] [12,15]	
[0,1] [2,3] [4,5] [6,7] [8,9] [10,11] [12,13] [[14,15]

Hierarchy of intervals

[0,15]				[8,15]			
[0,3]		[4,7]		[8,11]		[12,15]	
[0,1]	[2,3]	[4,5]	[6,7]	[8,9]	[10,11]	[12,13]	[14,15]
[0,0] [1,	1] [2,2] [3,3	3] [4,4] [5,	5] [6,6] [7,7	7] [8,8] [9,9	<u>)]</u> <u></u> .		[15,15]

Observation: There are 2n intervals such that

any interval [i, j] can be expressed as **union** of $O(\log n)$ basic intervals \bigcirc

Hierarchy of intervals

[0,15]				[8,15]						
[0,3]		[4,7]		[8,11]		[12,15]				
[0,1]	[2,3]	[4,5]	[6,7]	[8,9]	[10,11]	[12,13]	[14,15]			
[0,0] [1,1]	[2,2] [3,3]	[4,4] [5,5]	[6,6] [7,7]	[8,8] [9,9]	<u> </u>		[15,15]			
ervation: Th interval [<i>i</i> , j					ı) basic ir	ک م	elation to a sequence ?			

Which data structure emerges ?

[0,15]								[8,15]							
[0,3]				[4,7]				[8,11]				[12,15]			
[0,1]		[2,3]		[4,5]		[6,7]		[8,9]		[10,1	1]	[12,1	3]	[14,15]	
[0,0] [1	L,1] [[2,2]	[3,3]	[4,4]	[5,5]	[6,6]	[7,7]	[8,8]	[9,9]	<u> </u>				[15,1	
x_0	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> 9	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	$x_{14} x_{15}$	

A Binary tree

How to perform **Operation** on an interval ?

Problem 2

Dynamic Range-minima

Dynamic Range Minima Problem

Given an initial sequence $S = \langle x_0, ..., x_{n-1} \rangle$ of numbers, maintain a compact data structure to perform the following operations efficiently for any $0 \le i < j < n$.

• ReportMin(*i*, *j*):

Report the minimum element from $\{x_k \mid \text{ for each } i \leq k \leq j\}$

• Update(*i*, a):

a becomes the new value of x_i .

Example:

Let the initial sequence be $S = \langle 14, 12, 3, 49, 4, 21, 322, -40 \rangle$ **ReportMin(1, 5)** returns **3 ReportMin(0, 3)** returns **3 Update(2, 19)** update **S** to $\langle 14, 12, 19, 49, 4, 21, 322, -40 \rangle$

ReportMin(1, 5) returns 4
ReportMin(0, 3) returns 12

Dynamic Range Minima Problem

Given an initial sequence $S = \langle x_0, ..., x_{n-1} \rangle$ of numbers, maintain a compact data structure to perform the following operations efficiently for any $0 \le i < j < n$.

• **ReportMin**(*i*, *j*):

Report the minimum element from $\{x_k \mid \text{ for each } i \leq k \leq j\}$

• **Update**(*i*, a):

a becomes the new value of x_i .

AIM:

- **O**(*n*) size data structure.
- **ReportMin**(*i*, *j*) in **O**(log *n*) time.
- **Update**(*i*, **a**) in **O**(log *n*) time.

Question: What should be stored in an internal node v ? Answer:

minimum value :

How to do Report-Min(2,10)?

How to do Report-Min(2,10)?

Data structure: An array A of size 2n-1.

Copy the sequence $S = \langle x_0, ..., x_{n-1} \rangle$ into A[n-1]...A[2n-2]

Leaf node corresponding to $x_i = A[(n-1) + i]$

How to check if a node is left child or right child of its parent?

(if index of the node is odd, then the node is left child, else the node is right child)

Update(*i*, *a*)

Report-Min(*i*,*j*)

```
Report-Min(i,j)
     i \leftarrow (n-1) + i;
    j \leftarrow (n-1) + j;
    min \leftarrow A(i);
    If (j > i)
             If (A(j) < \min) min \leftarrow A(j);
    {
             While \left[ \frac{(i-1)}{2} \right] <> \left[ \frac{(j-1)}{2} \right]
             {
                    lf(
                                                                   \min \leftarrow
                           i\%2=1 and A(i+1) < min )
                                                                                          ;
                           j\%2=0 and A(j-1) < min ) min \leftarrow
                    lf(
                    i ←
                                            ;
                    i ←
                                            ;
             }
     }
     return min;
```

Proof of correctness

This **ghost** will keep haunting you in this course and next course as well. So it is better that you face it bravely instead of running from it ⁽²⁾

Let **T** be the tree data structure for **Dynamic Range-minima** problem. Let **u** be any node in **T**.

Question:

What can we say about value(u) after a series of operations ?

After every operation:

value(u) is minimum among all values stored in the leaf nodes of subtree(u).

To prove the correctness of our datastructure/algorithm,

you need to prove that the above mentioned assertion holds after each **Update()** operation. (Do it as a small exercise (4-5 sentences only)).

Another interesting problem on sequences

Practice Problem

Given an initial sequence **S** = $\langle x_0, ..., x_{n-1} \rangle$ of *n* numbers,

maintain a compact data structure to perform the following operations efficiently :

• Report_min(*i*, *j*):

```
Report the minimum element from \{x_i, \dots, x_j\}.
```

Multi-Increment(*i*, *j*, Δ):

Add Δ to each x_k for each $i \leq k \leq j$

Example:

```
Let the initial sequence be S = < 14, 12, 3, 12, 111, 51, 321, -40 > Report_min(1, 4):
returns 3
Multi-Increment(2,6,10):
S becomes < 14, 12, 13, 22, 121, 61, 331, -40 > Report_min(1, 4):
returns 12
```

An challenging problem on sequences

For summer vacation (not for the exam)

* Problem

Given an initial sequence **S** = $\langle x_0, ..., x_{n-1} \rangle$ of *n* numbers,

maintain a compact data structure to perform the following operations efficiently :

• Report_min(*i*, *j*):

```
Report the minimum element from \{x_i, \dots, x_j\}.
```

Multi-Increment(*i*, *j*, Δ):

```
Add \Delta to each x_k for each i \leq k \leq j
```

• Rotate(*i*, *j*):

 $x_i \leftrightarrow x_j$, $x_{i+1} \leftrightarrow x_{j-1}$,

Example:

Let the initial sequence be $S = \langle 14, 12, 23, 19, 111, 51, 321, -40 \rangle$ After Rotate(1,6), S becomes

Problem 4

A data structure for sets

Sets under operations

Given: a collection of n singleton sets $\{0\}$, $\{1\}$, $\{2\}$, ... $\{n - 1\}$

Aim: a compact data structure to perform

• Union(*i*, *j*):

Unite the two sets containing *i* and *j*.

• Same_sets(*i*, *j*):

Determine if *i* and *j* belong to the same set.

Trivial Solution 1

Keep an array Label[] such that

```
Label[i]=Label[j] if and only if i and j belong to the same set.
```

→ Same_sets(*i*, *j*):

check if Label[*i*]=Label[*j*] ?

→ Union(*i*, *j*):

For each $0 \le k < n$

if (Label[k] = Label[i]) Label[k] \leftarrow Label[j])

O(1) time

O(n) time

Sets under operations

Given: a collection of n singleton sets $\{0\}$, $\{1\}$, $\{2\}$, ... $\{n - 1\}$

Aim: a compact data structure to perform

• Union(*i*, *j*):

Unite the two sets containing *i* and *j*.

• Same_sets(*i*, *j*):

Determine if *i* and *j* belong to the same set.

Trivial Solution 2

Treat the problem as a graph problem: ??

Connected component

- V = {0,..., n − 1}, E = empty set initially.
- A set 🗇
- Keep array Label[] such that Label[i]=Label[j] iff i and j belong to the same component.

Union(*i*, *j*):

 \rightarrow

```
add an edge (i, j) and
```

recompute connected components using BFS/DFS.

O(n) time

Sets under operations

Given: a collection of n singleton sets $\{0\}$, $\{1\}$, $\{2\}$, ... $\{n - 1\}$

Aim: a compact data structure to perform

• Union(*i, j*):

Unite the two sets containing *i* and *j*.

• Same_sets(*i*, *j*):

Determine if *i* and *j* belong to the same set.

Efficient solution:

- A data structure which supports each operation in O(log n) time.
- An additional heuristic

→ time complexity of an operation :

Homework

For **Dynamic Range-minima** problem

Update(*i*, *a*)

```
Update(i, a)
     i \leftarrow (n-1) + i;
    A[i] \leftarrow a;
     i \in \lfloor (i-1)/2 \rfloor;
     While(
                             i ≥ 0
     {
            If (a < A[i]) A[i] \leftarrow a;
            i \in \lfloor (i-1)/2 \rfloor;
    }
                                        There is an error in the above
                                         pseudocode. Try spotting it.
```

Update(*i*, *a*)

```
Update(i, a)
     i \leftarrow (n-1) + i;
    A[i] \leftarrow a;
     i \in \lfloor (i-1)/2 \rfloor;
     While(
                             i ≥ 0
     {
            If (A[2i + 1] < A[2i + 2])
                     A[i] \leftarrow A[2i + 1]
           else
                    A[i] \leftarrow A[2i + 2];
            i \in \lfloor (i-1)/2 \rfloor;
    }
                                      Here is the correct pseudocode.
```