Data Structures and Algorithms

(CS210A)

Semester I – **2014-15**

Lecture 30

Binary Trees

Magical applications

Two interesting problems on sequences

Problem 1

Multi-increment

Problem 1

Given an initial sequence $S = \langle x_0, ..., x_{n-1} \rangle$ of n numbers, maintain a compact data structure to perform the following operations efficiently:

• Report(*i*):

Report the current value of x_i .

• Multi-Increment(i, j, Δ):

Add \triangle to x_k

Example:

```
Let the initial sequence be S = < 14, 12, 23, 12, 111, 51, 321, -40 > After Multi-Increment(2,6,10), S becomes < 14, 12, 33, 22, 121, 61, 331, -40 >
```

Trivial solution discussed in the last class:

- O(n) time per Multi-Increment (i, j, Δ)
- O(1) time per Report(i)

Towards efficient solution of Problem 1

Explore ways to maintain sequence **S** [implicitly] such that

- Multi-Increment(*i*, *j*, △) is efficient.
- Report(i) is efficient too.

Main hurdle: To perform **Multi-Increment**(i, j, Δ) efficiently

Assumption: without loss of generality assume n is power of 2.

A SYSTEMATIC JOURNEY TO THE SOLUTION

A motivating problem

$$S = \{1,2,3,...,2^n\}$$

Question:

Can we have a small set $X \subseteq S$ of numbers s.t.

Every number from S can be expressed as a <u>sum</u> of <u>a few</u> numbers from X?

Answer: $X = \{1, 2, 4, 8, ..., 2^n\}$

$$|X| = n$$

10000000000 100000 10000

If it is too trivial, try to answer the problem of next slide.☺

1001011001

$$S = \{[i, j], 0 \le i \le j < n\}$$

Question:

Can we have a <u>small set</u> **X** of **intervals** s.t. every interval in **S** can be expressed as a <u>union</u> of <u>a few intervals</u> from **X**?

How to express [0, 12] ?

How to express [0, 12] ?

How to express [0, 12]?

How to express [3, 11] ?

There are 2n intervals such that any interval [i, j] can be expressed as **union** of $O(\log n)$ basic intervals \odot

[0,15]										
[0,7]				[8,15]						
[0,3]		[4,7]		[8,11]		[12,15]				
[0,1]	[2,3]	[4,5]	[6,7]	[8,9]	[10,11]	[12,13]	[14,15]			
[0,0] [1,1]	[2,2] [3,3]	[4,4] [5,5]	[6,6] [7,7]	[8,8] [9,9]	<u></u>		[15,15]			
x_0 x_1	x_2 x_3	x_4 x_5	x_6 x_7	x_8 x_9	$x_{10} x_{11}$	x_{12} x_{13}	$x_{14} x_{15}$			

Maintain 2n intervals with a field increment

Multi-Increment $(i, j, \Delta) \rightarrow \text{add } \Delta \text{ to increment field of its } O(\log n) \text{ intervals.}$

Maintain 2n intervals with a field increment

Multi-Increment(i, j, Δ) \Rightarrow add Δ to increment field of its $O(\log n)$ intervals. How to perform Report(i) ?

[0,15]										
[0,7]				[8,15]						
[0,3]		[4,7]		[8,11]		[12,15]				
[0,1]	[2,3]	[4,5]	[6,7]	[8,9]	[10,11]	[12,13]	[14,15]			
[0,0] [1,1]	[2,2] [3,3]	[4,4] [5,5]	[6,6] [7,7]	[8,8] [9,9]			[15,15]			
x_0 x_1	x_2 x_3	x_4 x_5	x_6 x_7	x_8 x_9	$x_{10} x_{11}$	x_{12} x_{13}	$x_{14} x_{15}$			

Maintain 2n intervals with a field increment

Multi-Increment(i, j, Δ) \rightarrow add Δ to increment field of its $O(\log n)$ intervals. How to perform Report(i) ? What data structure to use?

You might like to have another look on the last slide to answer this question.

I have **reproduced** it for you again in the next slide

Have another look,

think for a while ... and then only proceed.

Which data structure emerges?

[0,15]														_
[0,7]						[8,15]							_	
[0,3]		[4,7]			[8,11]				[12,15]					
[0,1]	[0,1] [2,3]		[4,5] [6,7]			[8,9] [10,11]		1]	[12,13] [14,15]		_			
[0,0] [1,	1] [2,2]	[3,3]	[4,4]	[5,5]	[6,6]	[7,7]	[8,8]	[9,9]		· <u></u> ·		. <u></u> .	[15,	15] •
x_0 x	x_2	x_3	x_4	x_5	x_6	x_7	x_8	<i>x</i> ₉	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	$x_{14} x_{15}$	5

Isn't it a **Binary tree** that you thought?

How to do Multi-Increment(3,11,10)?

How to do Multi-Increment(3,11,10)?

How to do Multi-Increment(3,11,10)?

How to do Multi-Increment(3,11,10)?

How to do Multi-Increment(3,11,10)?

Are we done?

How to do Multi-Increment(3,11,10)?

Yes

How to do Multi-Increment(3,11,10)?

What path was followed?

Multi-Increment(i, j, Δ) efficiently

Sketch:

- 1. Let **u** and **v** be the leaf nodes corresponding to x_i and x_j .
- 2. Increment the value stored at u and v.
- Keep repeating the following step as long as parent(u) <> parent(v)
 Move up by one step simultaneously from u and v
 - If **u** is **left child** of its parent, increment value stored in sibling of **u**.
 - If v is right child of its parent, increment value stored in sibling of v.

Executing Report(i) efficiently

Sketch:

- 1. Let \mathbf{u} be the leaf nodes corresponding to x_i .
- 2. $val \leftarrow 0$;
- 3. Keep moving up from u and keep adding the value of all the nodes on the path to the root to val.
- 4. Return val.

What is an efficient implementation of the tree data structure for these two algorithms?

Realize that it was a **complete binary tree**.

Exploiting complete binary tree structure

Data structure: An array A of size 2n-1.

Copy the sequence $S = \langle x_0, ..., x_{n-1} \rangle$ into A[n-1]...A[2n-2]

Leaf node corresponding to $x_i = A[(n-1) + i]$

How to check if a node is **left child** or **right child** of its parent?

(if index of the node is odd, then the node is left child, else the node is right child)

Exploiting complete binary tree structure

Data structure: An array A of size 2n-1.

Copy the sequence $S = \langle x_0, ..., x_{n-1} \rangle$ into A[n-1]...A[2n-2]

Leaf node corresponding to $x_i = A[(n-1) + i]$

How to check if a node is **left child** or **right child** of its parent?

MultiIncrement(i, j, Δ)

```
MultiIncrement(i, j,\Delta)
     i \leftarrow (n-1)+i;
    j \leftarrow (n-1)+j;
    A(i) \leftarrow A(i) + \Delta;
     If (i > i)
            A(j) \leftarrow A(j) + \Delta;
              While ([(i-1)/2] <> [(j-1)/2])
                     If (i\%2=1) A(i+1) \leftarrow A(i+1) + \Delta;
                     If (j\%2=0) A(j-1) \leftarrow A(j-1) + \Delta;
                     i \leftarrow \lfloor (i-1)/2 \rfloor;
                    j \leftarrow \lfloor (j-1)/2 \rfloor;
```

Report(i)

The solution of Multi-Increment Problem

Theorem:

There exists a data structure of size O(n) for maintaining a sequence $S = \langle x_0, ..., x_{n-1} \rangle$ such that each Multi-Increment() and Report() operation takes $O(\log n)$ time.

Problem 2

Dynamic Range-minima

Problem 2

Given an initial sequence $S = \langle x_0, ..., x_{n-1} \rangle$ of numbers, maintain a compact data structure to perform the following operations efficiently for any $0 \le i < j < n$.

```
    ReportMin(i, j):
```

Report the minimum element from $\{x_k \mid \text{ for each } i \leq k \leq j\}$

Update(*i*, a):

a becomes the new value of x_i .

AIM:

- O(n) size data structure.
- ReportMin(i, j) in O(log n) time.
- Update(i, a) in $O(\log n)$ time.

Efficient dynamic range minima

What to store at internal nodes?

How to perform ReportMin(i, j)?

How to perform **Update**(*i*, a)?

Make sincere attempts to solve the problem. We shall discuss it in next class ©