
Data Structures and Algorithms 
(CS210A) 

 

Lecture 29: 
• Building a Binary heap on 𝒏 elements in O(𝒏) time. 

• Applications of Binary heap : sorting 

• Binary trees: beyond searching and sorting 
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Recap from the last lecture 
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A complete binary tree 
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How many leaves are 
there in a Complete 

Binary tree of size 𝒏 ? 

𝒏/𝟐  



Building a Binary heap 

 

 

Problem: Given 𝒏 elements {𝑥0, …, 𝑥𝑛−1}, build a binary heap H storing them. 

 

Trivial solution:  

(Building the Binary heap incrementally) 

           CreateHeap(H); 

           For( 𝒊 = 0 to 𝒏 − 𝟏 ) 

                      Insert(𝑥𝑖,H); 
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What is the time 
complexity of this 

algorithm? 



Building a Binary heap incrementally 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

The time complexity for inserting a leaf node =  ? 

# leaf nodes = 𝒏/𝟐 ,  

 Theorem: Time complexity of building a binary heap incrementally is O(𝒏 log 𝒏). 5 

O(log 𝒏 ) 

What useful inference 
can you draw from 

this Theorem ? 

Top-down 
approach 



Building a Binary heap incrementally 
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The O(𝒏) time algorithm must take O(1) time 
for each of the 𝒏/𝟐  leaves.   

Top-down 
approach 

What useful inference 
can you draw from 

this Theorem ? 



Building a Binary heap incrementally 
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Top-down 
approach 



Think of alternate approach for building a binary heap  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

heap property:           ?  

We just need to ensure this property at each node. 8 

“Every node stores value smaller than its children” 

In any complete 
binary tree, how 

many nodes satisfy 
heap property ? 

98 

14 

37 

85 

33 

52 11 32 

17 25 88 41 21 29 76 

47 75 9 57 23 

all leaf 
nodes  

Bottom-up 
approach 

Does it suggest a 
new approach to 

build binary heap ? 



Think of alternate approach for building a binary heap  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

heap property:           ?  

We just need to ensure this property at each node. 9 

“Every node stores value smaller than its children” 

98 

14 

37 

85 

33 

52 11 32 

17 25 88 41 21 29 76 

47 75 9 57 23 

Bottom-up 
approach 



A new approach to build binary heap 

 
1. Just copy the given 𝒏 elements {𝑥0, …, 𝑥𝑛−1} into an array H. 

 

2. The heap property holds for all the leaf nodes in the corresponding 
complete binary tree. 

 

3. Leaving all the leaf nodes,  

        process the elements in the  decreasing order of their numbering  

        and set the heap property for each of them. 
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A new approach to build binary heap 
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98 

14 

37 

85 

33 

52 11 32 

17 25 88 41 21 29 76 

47 75 9 57 23 

98   14  33   37   11   52   32  85    17   25   88   41  21   29   76   47   75   9    57    23   H 

The first node to be 
processed. 



A new approach to build binary heap 
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98 

14 

37 

85 

33 

52 11 32 

17 23 88 41 21 29 76 

47 75 9 57 25 

98   14  33   37   11   52   32  85    17   23   88   41  21   29   76   47   75   9    57    25   H 

The second node to 
be processed. 



A new approach to build binary heap 
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98 

14 

37 

85 

33 

52 11 32 

 9 23 88 41 21 29 76 

47 75 17 57 25 

98   14  33   37   11   52   32  85      9   23   88   41  21   29   76   47   75   17   57    25   H 

The third node to 
be processed. 



A new approach to build binary heap 
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98 

14 

37 

47 

33 

52 11 32 

 9 23 88 41 21 29 76 

85 75 17 57 25 

98   14  33   37   11   52   32  47      9   23   88   41  21   29   76   85   75   17   57    25   H 



A new approach to build binary heap 
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v  

98 

54 

 9 

47 

21 

33 11 29 

 17 23 88 41 52 32 76 

85 75 37 57 25 

98   54  21    9    11   33   29   47   17   23   88   41  52   32   76   85   75   37  57   25   H 



A new approach to build binary heap 
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v  

98 

 9 

 54 

47 

21 

33 11 29 

 17 23 88 41 52 32 76 

85 75 37 57 25 

98   54  21    9    11   33   29   47   17   23   88   41  52   32   76   85   75   37  57   25   H 



A new approach to build binary heap 
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v  

98 

 9 

 17 

47 

21 

33 11 29 

 54 23 88 41 52 32 76 

85 75 37 57 25 

98   54  21    9    11   33   29   47   17   23   88   41  52   32   76   85   75   37  57   25   H 



A new approach to build binary heap 
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v  

98 

 9 

 17 

47 

21 

33 11 29 

 37 23 88 41 52 32 76 

85 75 54 57 25 

98   54  21    9    11   33   29   47   17   23   88   41  52   32   76   85   75   37  57   25   H 

 Let v be a node corresponding to index i in H. 
The process of restoring heap property at i called Heapify(i,H). 



Heapify(𝒊,H) 

Heapify(𝒊,H) 

{      𝒏  size(H) -1 ; 

 

       While (               ?           and          ?          ) 

       { 

 

 

 

 

 

 

 

        } 

} 
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For node 𝒊, compare its value with those of its children 

If it is smaller than any of its children  Swap it with smallest child 
     and move down … 

Else stop ! 



Heapify(𝒊,H) 

Heapify(𝒊,H) 

{      𝒏  size(H) -1 ; 

 

       While (               ?           and          ?          ) 

       { 

               If(                   ?                  )        𝒎𝒊𝒏  𝟐𝒊 + 𝟏; 

               If(                             ?                                  )      𝒎𝒊𝒏  𝟐𝒊 + 𝟐; 

               If(𝒎𝒊𝒏 ≠ 𝒊)       

                   {      H(𝒊) ↔ H(𝒎𝒊𝒏); 

                             𝒊  𝒎𝒊𝒏;   } 

               else   

                         Flag  false; 

        } 

} 
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Flag = true 𝒊  ≤ (𝒏−1)/2  

Flag  true; 

𝒎𝒊𝒏  𝒊; 

𝟐𝒊 + 𝟐 ≤ 𝒏   and H[𝒎𝒊𝒏]>H[𝟐𝒊 + 𝟐] 

H[𝒊]>H[𝟐𝒊 + 𝟏] 



Building Binary heap in O(n) time 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Time complexity of algorithm =     ? 21 

98 

54 

 9 

47 

21 

33 11 29 

 17 23 88 41 52 32 76 

85 75 37 57 25 

98   54  21    9    11   33   29   47    17   23   88   41  52   32   76   85   75   37  57   25   H 

Time to heapify node v ?  

v  

Height(v) 

 𝑶(ℎ) ∙ 𝑵(ℎ)

ℎ

 
No. of nodes of height ℎ  

How many nodes of 
height ℎ can there be 
in a complete Binary 

tree of 𝒏 nodes ? 



A complete binary tree 

 

 

 

 

 

 

 

 

 

 

 

 
Each subtree is also a complete binary tree. 

 A subtree of  height  ℎ has at least 2ℎ nodes 

Moreover, no two subtrees of height ℎ in the given tree have any element in common 
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How many nodes of 
height ℎ can there be 
in a complete Binary 

tree of 𝒏 nodes ? 

Hence the number of nodes 

of height ℎ is bounded by 
𝑛

𝟐𝒉
 



Building Binary heap in O(n) time 

Lemma: the number of nodes of height ℎ is bounded by 
𝑛

𝟐ℎ
 . 

 

   Hence Time complexity to build the heap =  𝑛

𝟐ℎ
  𝑶(ℎ)

log 𝑛
𝒉=1   

                                                                             = 𝑛  𝑐  ℎ

𝟐ℎ

log 𝑛

𝑖=1   

                                                                             = O(𝑛)  
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As an exercise (using knowledge from your JEE 

preparation days), show that  ℎ

𝟐𝒉
log 𝑛
ℎ=1  is bounded by 2 



Sorting using a Binary heap 
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Sorting using heap 

 

Build heap H on the given  𝒏 elements; 

While (H is not empty) 

 {    x  Extract-min(H); 

      print x; 

} 

                                  This is HEAP SORT algorithm 

Time complexity : O(𝒏 log 𝒏) 

 

Question: 

Which is the best sorting algorithm : (Merge sort, Heap sort, Quick sort) ? 

Answer: Practice programming assignment   
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Binary trees:  
beyond searching and sorting 

 

 

• Elegant solution for two interesting problem 

 

• An important lesson:  

 
Lack of proper understanding of a problem is a big hurdle to solve the problem 
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Two interesting problems on sequences 
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What is a sequence ? 

 

 

 

A sequence S =  ≺ 𝑥0, …, 𝑥𝑛−1 ≻ 

• Can be viewed as a mapping from [0, 𝑛]. 

• Order does matter. 

 

28 



Problem 1 

29 

Multi-increment 



Problem 1 
Given an initial sequence S =  ≺ 𝑥0, …, 𝑥𝑛−1 ≻ of numbers,  

maintain a compact data structure to perform the following operations: 

• ReportElement(𝒊): 

                                       Report the current value of 𝑥𝑖.  

• Multi-Increment(𝒊, 𝒋, ∆):  

                                        Add ∆ to each 𝑥𝑘 for each 𝒊 ≤ 𝒌 ≤  𝒋 

 

Example:  

Let the initial sequence be S =  ≺ 14,   12,   23,   12,   111,   51,   321,  -40 ≻ 

After Multi-Increment(2,6,10),  S becomes 

                                                      ≺ 14,   12,   33,   22,   121,   61,   331,  -40 ≻ 

After Multi-Increment(0,4,25),  S becomes 

                                                      ≺ 39,   37,   58,   47,   146,   61,   331,  -40 ≻ 

After Multi-Increment(2,5,31),  S becomes 

                                                      ≺ 39,   37,   89,   78,   177,   92,   331,  -40 ≻ 
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Problem 1 
Given an initial sequence S =  ≺ 𝑥0, …, 𝑥𝑛−1 ≻ of numbers,  

maintain a compact data structure to perform the following operations: 

• ReportElement(𝒊): 

                                       Report the current value of 𝑥𝑖.  

• Multi-Increment(𝒊, 𝒋, ∆):  

                                        Add ∆ to each 𝑥𝑘 for each 𝒊 ≤ 𝒌 ≤  𝒋 

 

Trivial solution :  

 Store S in an array A[0.. 𝒏-1] such that A[𝒊] stores the current value of 𝑥𝒊. 

Multi-Increment(𝒊, 𝒋, ∆) 

{             

               For (𝒊 ≤ 𝒌 ≤  𝒋)          A[𝒌] A[𝒌]+ ∆; 

} 

 

ReportElement(𝒊){         return  A[𝒊]     } 
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O(𝒋 − 𝒊) = O(𝒏) 

O(1) 



Problem 1 
Given an initial sequence S =  ≺ 𝑥0, …, 𝑥𝑛−1 ≻ of numbers,  

maintain a compact data structure to perform the following operations: 

• ReportElement(𝒊): 

                                       Report the current value of 𝑥𝑖.  

• Multi-Increment(𝒊, 𝒋, ∆):  

                                        Add ∆ to each 𝑥𝑘 for each 𝒊 ≤ 𝒌 ≤  𝒋 

 

Trivial solution :  

 Store S in an array A[0.. 𝒏-1] such that A[𝒊] stores the current value of 𝑥𝒊. 

 

Question: the source of difficulty in breaking the O (n) barrier for Multi-Increment() ? 

Answer: we need to explicitly maintain in S. 

 

Question: who asked/inspired us to maintain S explicitly.  

Answer:  1. incomplete understanding of the problem   

                2. conditioning based on incomplete understanding 
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Towards efficient solution of Problem 1 

 

Assumption:  without loss of generality assume 𝒏 is power of 2. 

 

Explore ways to maintain sequence S implicitly such that 

• Multi-Increment(𝒊, 𝒋, ∆) is efficient 

• Report(𝒊) is efficient too. 

 

 

 

Main hurdle: To perform Multi-Increment(𝒊, 𝒋, ∆) efficiently 
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Problem 2 
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Dynamic Range-minima 



Problem 2 

 

Given an initial sequence S =  ≺ 𝑥0, …, 𝑥𝑛−1 ≻ of numbers,  

maintain a compact data structure to perform the following operations efficiently for  

any 0 ≤ 𝒊 < 𝒋 < 𝒏. 

• ReportMin(𝒊, 𝒋):  

                                     Report the minimum element from {𝑥𝑘 | for each 𝒊 ≤ 𝒌 ≤  𝒋} 

• Update(𝒊, a):  

                                     a becomes the new value of 𝑥𝑖. 

 

AIM:  

• O(𝒏) size data structure. 

• ReportMin(𝒊, 𝒋) in O(log 𝒏) time. 

• Update(𝒊, a) in O(log 𝒏) time.  
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All data structure lovers must ponder 
over these two problems .  

We shall discuss them in the next class. 


