
Data Structures and Algorithms
(CS210A)

Lecture 29:
• Building a Binary heap on 𝒏 elements in O(𝒏) time.

• Applications of Binary heap : sorting

• Binary trees: beyond searching and sorting

1

Recap from the last lecture

2

A complete binary tree

3

How many leaves are
there in a Complete

Binary tree of size 𝒏 ?

𝒏/𝟐

Building a Binary heap

Problem: Given 𝒏 elements {𝑥0, …, 𝑥𝑛−1}, build a binary heap H storing them.

Trivial solution:

(Building the Binary heap incrementally)

 CreateHeap(H);

 For(𝒊 = 0 to 𝒏 − 𝟏)

 Insert(𝑥𝑖,H);

4

What is the time
complexity of this

algorithm?

Building a Binary heap incrementally

The time complexity for inserting a leaf node = ?

leaf nodes = 𝒏/𝟐 ,

 Theorem: Time complexity of building a binary heap incrementally is O(𝒏 log 𝒏). 5

O(log 𝒏)

What useful inference
can you draw from

this Theorem ?

Top-down
approach

Building a Binary heap incrementally

6

The O(𝒏) time algorithm must take O(1) time
for each of the 𝒏/𝟐 leaves.

Top-down
approach

What useful inference
can you draw from

this Theorem ?

Building a Binary heap incrementally

7

Top-down
approach

Think of alternate approach for building a binary heap

heap property: ?

We just need to ensure this property at each node. 8

“Every node stores value smaller than its children”

In any complete
binary tree, how

many nodes satisfy
heap property ?

98

14

37

85

33

52 11 32

17 25 88 41 21 29 76

47 75 9 57 23

all leaf
nodes 

Bottom-up
approach

Does it suggest a
new approach to

build binary heap ?

Think of alternate approach for building a binary heap

heap property: ?

We just need to ensure this property at each node. 9

“Every node stores value smaller than its children”

98

14

37

85

33

52 11 32

17 25 88 41 21 29 76

47 75 9 57 23

Bottom-up
approach

A new approach to build binary heap

1. Just copy the given 𝒏 elements {𝑥0, …, 𝑥𝑛−1} into an array H.

2. The heap property holds for all the leaf nodes in the corresponding
complete binary tree.

3. Leaving all the leaf nodes,

 process the elements in the decreasing order of their numbering

 and set the heap property for each of them.

10

A new approach to build binary heap

11

98

14

37

85

33

52 11 32

17 25 88 41 21 29 76

47 75 9 57 23

98 14 33 37 11 52 32 85 17 25 88 41 21 29 76 47 75 9 57 23 H

The first node to be
processed.

A new approach to build binary heap

12

98

14

37

85

33

52 11 32

17 23 88 41 21 29 76

47 75 9 57 25

98 14 33 37 11 52 32 85 17 23 88 41 21 29 76 47 75 9 57 25 H

The second node to
be processed.

A new approach to build binary heap

13

98

14

37

85

33

52 11 32

 9 23 88 41 21 29 76

47 75 17 57 25

98 14 33 37 11 52 32 85 9 23 88 41 21 29 76 47 75 17 57 25 H

The third node to
be processed.

A new approach to build binary heap

14

98

14

37

47

33

52 11 32

 9 23 88 41 21 29 76

85 75 17 57 25

98 14 33 37 11 52 32 47 9 23 88 41 21 29 76 85 75 17 57 25 H

A new approach to build binary heap

15

v

98

54

 9

47

21

33 11 29

 17 23 88 41 52 32 76

85 75 37 57 25

98 54 21 9 11 33 29 47 17 23 88 41 52 32 76 85 75 37 57 25 H

A new approach to build binary heap

16

v

98

 9

 54

47

21

33 11 29

 17 23 88 41 52 32 76

85 75 37 57 25

98 54 21 9 11 33 29 47 17 23 88 41 52 32 76 85 75 37 57 25 H

A new approach to build binary heap

17

v

98

 9

 17

47

21

33 11 29

 54 23 88 41 52 32 76

85 75 37 57 25

98 54 21 9 11 33 29 47 17 23 88 41 52 32 76 85 75 37 57 25 H

A new approach to build binary heap

18

v

98

 9

 17

47

21

33 11 29

 37 23 88 41 52 32 76

85 75 54 57 25

98 54 21 9 11 33 29 47 17 23 88 41 52 32 76 85 75 37 57 25 H

 Let v be a node corresponding to index i in H.
The process of restoring heap property at i called Heapify(i,H).

Heapify(𝒊,H)

Heapify(𝒊,H)

{ 𝒏  size(H) -1 ;

 While (? and ?)

 {

 }

}

19

For node 𝒊, compare its value with those of its children

If it is smaller than any of its children  Swap it with smallest child
 and move down …

Else stop !

Heapify(𝒊,H)

Heapify(𝒊,H)

{ 𝒏  size(H) -1 ;

 While (? and ?)

 {

 If(?) 𝒎𝒊𝒏  𝟐𝒊 + 𝟏;

 If(?) 𝒎𝒊𝒏  𝟐𝒊 + 𝟐;

 If(𝒎𝒊𝒏 ≠ 𝒊)

 { H(𝒊) ↔ H(𝒎𝒊𝒏);

 𝒊  𝒎𝒊𝒏; }

 else

 Flag  false;

 }

}

20

Flag = true 𝒊 ≤ (𝒏−1)/2

Flag  true;

𝒎𝒊𝒏  𝒊;

𝟐𝒊 + 𝟐 ≤ 𝒏 and H[𝒎𝒊𝒏]>H[𝟐𝒊 + 𝟐]

H[𝒊]>H[𝟐𝒊 + 𝟏]

Building Binary heap in O(n) time

Time complexity of algorithm = ? 21

98

54

 9

47

21

33 11 29

 17 23 88 41 52 32 76

85 75 37 57 25

98 54 21 9 11 33 29 47 17 23 88 41 52 32 76 85 75 37 57 25 H

Time to heapify node v ?

v

Height(v)

 𝑶(ℎ) ∙ 𝑵(ℎ)

ℎ

No. of nodes of height ℎ

How many nodes of
height ℎ can there be
in a complete Binary

tree of 𝒏 nodes ?

A complete binary tree

Each subtree is also a complete binary tree.

 A subtree of height ℎ has at least 2ℎ nodes

Moreover, no two subtrees of height ℎ in the given tree have any element in common

22

How many nodes of
height ℎ can there be
in a complete Binary

tree of 𝒏 nodes ?

Hence the number of nodes

of height ℎ is bounded by
𝑛

𝟐𝒉

Building Binary heap in O(n) time

Lemma: the number of nodes of height ℎ is bounded by
𝑛

𝟐ℎ
 .

 Hence Time complexity to build the heap = 𝑛

𝟐ℎ
 𝑶(ℎ)

log 𝑛
𝒉=1

 = 𝑛 𝑐 ℎ

𝟐ℎ

log 𝑛

𝑖=1

 = O(𝑛)

23

As an exercise (using knowledge from your JEE

preparation days), show that ℎ

𝟐𝒉
log 𝑛
ℎ=1 is bounded by 2

Sorting using a Binary heap

24

Sorting using heap

Build heap H on the given 𝒏 elements;

While (H is not empty)

 { x  Extract-min(H);

 print x;

}

 This is HEAP SORT algorithm

Time complexity : O(𝒏 log 𝒏)

Question:

Which is the best sorting algorithm : (Merge sort, Heap sort, Quick sort) ?

Answer: Practice programming assignment 

25

Binary trees:
beyond searching and sorting

• Elegant solution for two interesting problem

• An important lesson:

Lack of proper understanding of a problem is a big hurdle to solve the problem

26

Two interesting problems on sequences

27

What is a sequence ?

A sequence S = ≺ 𝑥0, …, 𝑥𝑛−1 ≻

• Can be viewed as a mapping from [0, 𝑛].

• Order does matter.

28

Problem 1

29

Multi-increment

Problem 1
Given an initial sequence S = ≺ 𝑥0, …, 𝑥𝑛−1 ≻ of numbers,

maintain a compact data structure to perform the following operations:

• ReportElement(𝒊):

 Report the current value of 𝑥𝑖.

• Multi-Increment(𝒊, 𝒋, ∆):

 Add ∆ to each 𝑥𝑘 for each 𝒊 ≤ 𝒌 ≤ 𝒋

Example:

Let the initial sequence be S = ≺ 14, 12, 23, 12, 111, 51, 321, -40 ≻

After Multi-Increment(2,6,10), S becomes

 ≺ 14, 12, 33, 22, 121, 61, 331, -40 ≻

After Multi-Increment(0,4,25), S becomes

 ≺ 39, 37, 58, 47, 146, 61, 331, -40 ≻

After Multi-Increment(2,5,31), S becomes

 ≺ 39, 37, 89, 78, 177, 92, 331, -40 ≻

30

Problem 1
Given an initial sequence S = ≺ 𝑥0, …, 𝑥𝑛−1 ≻ of numbers,

maintain a compact data structure to perform the following operations:

• ReportElement(𝒊):

 Report the current value of 𝑥𝑖.

• Multi-Increment(𝒊, 𝒋, ∆):

 Add ∆ to each 𝑥𝑘 for each 𝒊 ≤ 𝒌 ≤ 𝒋

Trivial solution :

 Store S in an array A[0.. 𝒏-1] such that A[𝒊] stores the current value of 𝑥𝒊.

Multi-Increment(𝒊, 𝒋, ∆)

{

 For (𝒊 ≤ 𝒌 ≤ 𝒋) A[𝒌] A[𝒌]+ ∆;

}

ReportElement(𝒊){ return A[𝒊] }

31

O(𝒋 − 𝒊) = O(𝒏)

O(1)

Problem 1
Given an initial sequence S = ≺ 𝑥0, …, 𝑥𝑛−1 ≻ of numbers,

maintain a compact data structure to perform the following operations:

• ReportElement(𝒊):

 Report the current value of 𝑥𝑖.

• Multi-Increment(𝒊, 𝒋, ∆):

 Add ∆ to each 𝑥𝑘 for each 𝒊 ≤ 𝒌 ≤ 𝒋

Trivial solution :

 Store S in an array A[0.. 𝒏-1] such that A[𝒊] stores the current value of 𝑥𝒊.

Question: the source of difficulty in breaking the O (n) barrier for Multi-Increment() ?

Answer: we need to explicitly maintain in S.

Question: who asked/inspired us to maintain S explicitly.

Answer: 1. incomplete understanding of the problem

 2. conditioning based on incomplete understanding

32

Towards efficient solution of Problem 1

Assumption: without loss of generality assume 𝒏 is power of 2.

Explore ways to maintain sequence S implicitly such that

• Multi-Increment(𝒊, 𝒋, ∆) is efficient

• Report(𝒊) is efficient too.

Main hurdle: To perform Multi-Increment(𝒊, 𝒋, ∆) efficiently

33

Problem 2

34

Dynamic Range-minima

Problem 2

Given an initial sequence S = ≺ 𝑥0, …, 𝑥𝑛−1 ≻ of numbers,

maintain a compact data structure to perform the following operations efficiently for

any 0 ≤ 𝒊 < 𝒋 < 𝒏.

• ReportMin(𝒊, 𝒋):

 Report the minimum element from {𝑥𝑘 | for each 𝒊 ≤ 𝒌 ≤ 𝒋}

• Update(𝒊, a):

 a becomes the new value of 𝑥𝑖.

AIM:

• O(𝒏) size data structure.

• ReportMin(𝒊, 𝒋) in O(log 𝒏) time.

• Update(𝒊, a) in O(log 𝒏) time.

35

All data structure lovers must ponder
over these two problems .

We shall discuss them in the next class.

