
Data Structures and Algorithms
(CS210A)

Lecture 28:
• Heap : an important tree data structure

• Implementing some special binary tree using an array !

• Binary heap

1

Heap
 Definition: a tree data structure where :

value stored in a node ? value stored in each of its children.

2

11

4

18 23

47 21

7

71 9 13

37

43

19

<

Operations on a heap

Query Operations
• Find-min: report the smallest key stored in the heap.

Update Operations
• CreateHeap(H)

• Insert(x,H)

• Extract-min(H)

• Decrease-key(p, ∆, H)

• Merge(H1,H2)

3

: Create an empty heap H.

: Insert a new key with value x into the heap H.

: delete the smallest key from H.

: decrease the value of the key p by amount ∆.

: Merge two heaps H1 and H2.

Can we implement
 a binary tree using an array ?

4

Yes.
In some special cases

A complete binary tree

 A complete binary of 12 nodes.

5

A complete binary tree

The label of the leftmost node at level 𝒊 = ??

The label of a node v at level 𝒊 occurring at 𝒌th place from left = ??

The label of the left child of v is= ??

The label of the right child of v is= ??

6

0 1

Level nodes

1 2

2 4

0

1 2

3 4 5 6

7 8 9 10 11

𝟐𝒊 − 𝟏

𝟐𝒊 + 𝒌 − 𝟐

𝟐𝒊+𝟏 + 𝟐𝒌 − 𝟑

𝟐𝒊+𝟏 + 𝟐𝒌 − 𝟐

𝟐𝒊+𝟏 − 𝟏+ ? 𝟐(𝒌 − 𝟏)

Can you see a relationship
between label of a node

and labels of its children ?

A complete binary tree

Let v be a node with label 𝒋.

Label of left child(v) =

Label of right child(v) =

Label of parent(v) = 7

0 1

Level nodes

1 2

2 4

0

1 2

3 4 5 6

7 8 9 10 11

2 𝒋 +1

2𝒋 +2

(𝒋 − 1)/2

A complete binary tree and array

Question: What is the relation between a complete binary trees and an array ?

Answer: A complete binary tree can be implemented by an array.

8

41

17

57

91

 9

1 33 70

37 25 88 35

41 17 9 57 33 1 70 91 37 25 88 35

0

1 2

3 4 5 6

7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

Advantages ? The most compact
representation.

Binary heap

9

Binary heap
a complete binary tree

10

4

14

17

91

 9

21 23 29

37 25 88 33

4 14 9 17 23 21 29 91 37 25 88 33 H

satisfying heap property at each node.

Implementation of a Binary heap

 𝒏 : the maximum number of keys at any moment of time,

then we keep

• H[]

• size

11

: an array of size 𝒏 used for storing the binary heap.

: a variable for the total number of keys currently in the heap.

Find_min(H)
Report H[0].

12

4

14

17

91

 9

21 23 29

37 25 88 33

4 14 9 17 23 21 29 91 37 25 88 33 H

Extract_min(H)
Think hard on designing efficient algorithm for this operation.

The challenge is:

how to preserve the complete binary tree structure as well as the heap property ?

13

4

14

17

91

 9

21 23 29

37 25 88 33

4 14 9 17 23 21 29 91 37 25 88 33 H

Extract_min(H)

14

4

14

17

91

 9

21 23 29

37 25 88 33

4 14 9 17 23 21 29 91 37 25 88 33 H

Extract_min(H)

15

33

14

17

91

 9

21 23 29

37 25 88 4

33 14 9 17 23 21 29 91 37 25 88 H 4

Extract_min(H)

16

9

14

17

91

 33

21 23 29

37 25 88

 9 14 33 17 23 21 29 91 37 25 88 H

Extract_min(H)
We are done.

The no. of operations performed = O(no. of levels in binary heap)

= O(log 𝑛) …show it as an homework exercise.

17

9

14

17

91

 21

33 23 29

37 25 88

 9 14 21 17 23 33 29 91 37 25 88 H

Insert(x,H)

18

9

14

17

71

 21

33 23 29

37 25 88 41 52 32 76

98 85 47 57 11

 9 14 21 17 23 33 29 71 37 25 88 41 52 32 76 98 85 47 57 H 11

Insert(x,H)

19

9

14

17

71

 21

33 23 29

37 25 88 41 52 32 76

98 85 47 57 11

 9 14 21 17 23 33 29 71 37 25 88 41 52 32 76 98 85 47 57 H 11

Insert(x,H)

20

9

14

17

71

 21

33 23 29

37 11 88 41 52 32 76

98 85 47 57 25

 9 14 21 17 23 33 29 71 37 11 88 41 52 32 76 98 85 47 57 25 H

Insert(x,H)

21

9

14

17

71

 21

33 11 29

37 23 88 41 52 32 76

98 85 47 57 25

 9 14 21 17 11 33 29 71 37 23 88 41 52 32 76 98 85 47 57 25 H

Insert(x,H)

22

9

11

17

71

 21

33 14 29

37 23 88 41 52 32 76

98 85 47 57 25

 9 11 21 17 14 33 29 71 37 23 88 41 52 32 76 98 85 47 57 25 H

Insert(x,H)

Insert(x,H)

{ 𝒊  size(H);

 H(size) x;

 size(H)  size(H) + 1;

 While(?? and ??)

 {

 ??

 ??

 }

}

 Time complexity: O(log n)

 23

H(𝒊) < H((𝒊 − 1)/2)

H(𝒊) ↔ H((𝒊 − 1)/2);

𝒊 > 0

𝒊  (𝒊 − 1)/2 ;

The remaining operations on Binary heap

• Decrease-key(p, ∆, H): decrease the value of the key p by amount ∆.
– Similar to Insert(x,H).

– O(log 𝒏) time

– Do it as an exercise

• Merge(H1,H2): Merge two heaps H1 and H2.
– O(𝒏) time where 𝒏 = total number of elements in H1 and H2

 (This is because of the array implementation)

24

Other heaps

Fibonacci heap : a link based data structure.

25

Binary heap Fibonacci heap

Find-min(H)

Insert(x,H)

Extract-min(H)

Decrease-key(p, ∆, H)

Merge(H1,H2)

Excited to study Fibonaccci heap ?
We shall study it during CS345.

O(1)

O(log 𝑛)

O(1)

O(1)

O(1)

O(1)

O(log 𝑛)

O(log 𝑛)

O(log 𝑛)

O(𝑛)

Building a Binary heap

26

Building a Binary heap

Problem: Given n elements {𝑥0, …, 𝑥𝑛−1}, build a binary heap H storing them.

Trivial solution:

(Building the Binary heap incrementally)

 CreateHeap(H);

 For(𝒊 = 0 to 𝒏 − 𝟏)

 Insert(𝑥𝑖,H);

27

What is the time
complexity of this

algorithm?

Building a Binary heap incrementally

28

9

11

17

71

 21

33 14 29

37 23 88 41 52 32 76

98 85 47 57 25

 9 11 21 17 14 33 29 71 37 23 88 41 52 32 76 98 85 47 57 25 H

Time complexity

Theorem: Time complexity of building a binary heap incrementally is O(𝒏 log 𝒏).

29

A binary heap can be built in O(𝒏).

A complete binary tree

30

A complete binary tree

31

How many leaves are
there in a complete

Binary tree of size 𝒏 ?

No. of Leaf nodes = No. of Internal nodes + 1

A complete binary tree

32

How many leaves are
there in a Complete

Binary tree of size 𝒏 ?

𝒏/𝟐

No. of Leaf nodes = No. of Internal nodes No. of Leaf nodes = No. of Internal nodes + 1 No. of Leaf nodes = No. of Internal nodes

Building a Binary heap incrementally

The time complexity for inserting a leaf node = ?

leaf nodes = 𝒏/𝟐 ,

 Theorem: Time complexity of building a binary heap incrementally is O(𝒏 log 𝒏). 33

O(log 𝒏)

What useful inference
can you draw from

this Theorem ?

Top-down
approach

Building a Binary heap incrementally

34

The O(𝒏) time algorithm must take O(1) time
for each of the 𝒏/𝟐 leaves.

Top-down
approach

Ponder over the design of
the O(𝒏) algorithm based

on this insight.

