Data Structures and Algorithms (CS210A)

Lecture 28:

- Heap : an important tree data structure
- Implementing some special binary tree using an array !
- Binary heap

Неар

Definition: a tree data structure where :

Operations on a heap

Query Operations

• Find-min: report the smallest key stored in the heap.

Update Operations

- **CreateHeap(H)** : Create an empty heap **H**.
- Insert(x,H) : Insert a <u>new key</u> with value x into the heap H.
- Extract-min(H) : delete the <u>smallest</u> key from H.
- **Decrease-key**(p, Δ , H) : decrease the value of the key p by amount Δ .
- Merge(H1,H2) : Merge two heaps H1 and H2.

Can we implement a binary tree using an array ?

A complete binary of 12 nodes.

A complete binary tree and array

Question: What is the relation between a complete binary trees and an array ? **Answer:** A complete binary tree can be **implemented** by an array.

Binary heap

Binary heap

a complete binary tree satisfying heap property at each node.

Implementation of a Binary heap

n

then we keep

- **H**[] : an **array** of size *n* used for storing the binary heap.
- **size** : a **variable** for the total number of keys <u>currently</u> in the heap.

Find_min(H)

Report **H**[0].

Think hard on designing efficient algorithm for this operation.

The challenge is:

how to preserve the complete binary tree structure as well as the heap property ?

16

We are done.

The no. of operations performed = O(no. of levels in binary heap)= O(log n) ...show it as an **homework exercise**.

Insert(x,H)

```
Insert(x,H)
{
       i \leftarrow size(H);
       H(size) \leftarrow x;
       size(H) \leftarrow size(H) + 1;
                                                       and H(i) < H(\lfloor (i - 1)/2 \rfloor))
       While(
                         i > 0
       {
               \mathsf{H}(\mathbf{i}) \leftrightarrow \mathsf{H}(\lfloor (\mathbf{i} - 1)/2 \rfloor);
                i \in \lfloor (i-1)/2 \rfloor;
       }
}
```

Time complexity: O(log n)

The remaining operations on Binary heap

- **Decrease-key**(p, Δ , **H**): decrease the value of the key p by amount Δ .
 - Similar to Insert(x,H).
 - O(log n) time
 - Do it as an exercise
- Merge(H1,H2): Merge two heaps H1 and H2.
 - O(n) time where n = total number of elements in H₁ and H₂

(This is because of the array implementation)

Other heaps

Fibonacci heap : a link based data structure.

	Binary heap	Fibonacci heap
Find-min(H)	O (1)	O(1)
Insert(x,H)	O (log <i>n</i>)	O(1)
Extract-min(H)	O (log <i>n</i>)	O (log <i>n</i>)
Decrease-key(p, △, H)	O (log <i>n</i>)	O (1)
Merge(H1,H2)	O (<i>n</i>)	O (1)

Excited to study **Fibonaccci heap**? We shall study it during **CS345**.

Building a Binary heap

Building a Binary heap

Problem: Given **n** elements $\{x_0, ..., x_{n-1}\}$, build a binary heap **H** storing them.

Trivial solution:

(Building the Binary heap incrementally)

CreateHeap(H);

For(i = 0 to n - 1) Insert(x_i ,H);

Building a Binary heap incrementally

Η

Time complexity

Theorem: Time complexity of building a binary heap **incrementally** is **O**(*n* log *n*).

 \rightarrow Theorem: Time complexity of building a binary heap incrementally is $O(n \log n)$. 33

