
Data Structures and Algorithms 
(CS210A) 

 

Lecture 28: 
• Heap : an important tree data structure 

• Implementing some special binary tree using an array ! 

• Binary heap 
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Heap 
 Definition: a tree data structure where : 

value stored in  a node     ?      value stored in each of its children. 
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Operations on a heap 

Query Operations 
• Find-min: report the smallest key stored in the heap. 

 

Update Operations 
• CreateHeap(H) 

• Insert(x,H)  

• Extract-min(H)  

• Decrease-key(p, ∆, H)  

• Merge(H1,H2) 

       

3 

: Create an empty heap H. 

: Insert a new key with value x into the heap H. 

: delete the smallest key from H. 

: decrease the value of the key p by amount ∆. 

: Merge two heaps H1 and H2. 



Can  we implement 
 a binary tree using an array ? 

4 

Yes. 
In some special cases 



A complete binary tree 

 

 

 

 

 

 

 

 

 

                                     A complete binary of 12 nodes. 
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A complete binary tree 

 

 

 

 

 

 

 

 
The label of the leftmost node at level  𝒊 = ??   

The label of  a node v at level 𝒊 occurring at 𝒌th place from left  = ??   

The label of the left child of v is= ?? 

The label of the right child of v is= ?? 
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𝟐𝒊 − 𝟏 

𝟐𝒊 + 𝒌 − 𝟐 

𝟐𝒊+𝟏 + 𝟐𝒌 − 𝟑 

𝟐𝒊+𝟏 + 𝟐𝒌 − 𝟐 

𝟐𝒊+𝟏 − 𝟏+ ? 𝟐(𝒌 − 𝟏) 

Can you see a relationship 
between label of a node 

and  labels of its children ? 



A complete binary tree 

 

 

 

 

 

 

 

 
Let v be a node with label 𝒋. 

Label of left child(v)   =  

Label of right child(v) =  

Label of parent(v)       =  7 
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A complete binary tree and array 
 

Question: What is the relation between a complete binary trees and an array ? 

Answer:  A complete binary tree can be implemented by an array.  
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Advantages ? The most compact 
representation. 



Binary heap 
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Binary heap 
a complete binary tree 
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satisfying heap property at each node. 



Implementation of a Binary heap 

 

 𝒏 : the maximum number of keys at any moment of time,  

then we keep  

 

•  H[] 
 

• size 
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: an array of size 𝒏 used for storing the binary heap. 

:  a variable for the total number of keys currently in the heap.  



Find_min(H) 
Report H[0]. 
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Extract_min(H) 
Think hard on designing efficient algorithm for this operation. 

The challenge is:  

how to preserve the complete binary tree structure as well as the heap property ? 
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Extract_min(H) 
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Extract_min(H) 
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Extract_min(H) 
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Extract_min(H) 
We are done. 

The no. of operations  performed =  O(no. of levels in binary heap) 

= O(log 𝑛)      …show it as an homework exercise. 
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Insert(x,H) 
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Insert(x,H) 
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Insert(x,H) 
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Insert(x,H) 
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Insert(x,H) 
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Insert(x,H) 

Insert(x,H) 

{      𝒊  size(H); 

       H(size) x; 

       size(H)  size(H) + 1; 

       While(                ??                and                    ??               ) 

       { 

                  ?? 

                  ??       

       } 

} 

 

                                                   Time complexity: O(log n) 
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H(𝒊) < H( (𝒊 − 1)/2 ) 

H(𝒊) ↔ H( (𝒊 − 1)/2 ); 

𝒊 > 0 

𝒊    (𝒊 − 1)/2  ; 



The remaining operations on Binary heap 

 

 

 

• Decrease-key(p, ∆, H): decrease the value of the key p by amount ∆.   
– Similar to Insert(x,H). 

– O(log 𝒏) time  

– Do it as an exercise 

 

• Merge(H1,H2): Merge two heaps H1 and H2. 
– O(𝒏) time where 𝒏 = total number of elements in H1 and H2 

                    (This is because of the array implementation) 
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Other heaps 

Fibonacci heap : a link based data structure. 
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Binary heap Fibonacci heap 

Find-min(H) 

Insert(x,H) 

Extract-min(H) 

Decrease-key(p, ∆, H) 

Merge(H1,H2) 

Excited to study Fibonaccci heap ? 
We shall study it during CS345. 

O(1) 

O(log 𝑛) 

O(1) 

O(1) 

O(1) 

O(1) 

O(log 𝑛) 

O(log 𝑛) 

O(log 𝑛) 

O(𝑛) 



Building a Binary heap 
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Building a Binary heap 

 

 

Problem: Given n elements {𝑥0, …, 𝑥𝑛−1}, build a binary heap H storing them. 

 

Trivial solution:  

(Building the Binary heap incrementally) 

           CreateHeap(H); 

           For( 𝒊 = 0 to 𝒏 − 𝟏 ) 

                      Insert(𝑥𝑖,H); 
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What is the time 
complexity of this 

algorithm? 



Building a Binary heap incrementally 
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Time complexity 

 

 

 

Theorem: Time complexity of building a binary heap incrementally is O(𝒏 log 𝒏). 
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A binary heap can be built in O(𝒏). 



A complete binary tree 
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A complete binary tree 
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How many leaves are 
there in a complete 

Binary tree of size 𝒏 ? 

No. of Leaf nodes  = No. of Internal nodes + 1 



A complete binary tree 

 

32 

How many leaves are 
there in a Complete 

Binary tree of size 𝒏 ? 

𝒏/𝟐  

No. of Leaf nodes  = No. of Internal nodes  No. of Leaf nodes  = No. of Internal nodes + 1 No. of Leaf nodes  = No. of Internal nodes  



Building a Binary heap incrementally 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

The time complexity for inserting a leaf node =  ? 

# leaf nodes = 𝒏/𝟐 ,  

 Theorem: Time complexity of building a binary heap incrementally is O(𝒏 log 𝒏). 33 

O(log 𝒏 ) 

What useful inference 
can you draw from 

this Theorem ? 

Top-down 
approach 



Building a Binary heap incrementally 
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The O(𝒏) time algorithm must take O(1) time 
for each of the 𝒏/𝟐  leaves.   

Top-down 
approach 

Ponder over the design of 
the  O(𝒏) algorithm based 

on this insight. 


