
Data Structures and Algorithms 
(CS210A) 

 

Lecture 25 
• A data structure problem for graphs. 

• Depth First Search (DFS) Traversal 

• Novel application: computing biconnected components of a graph 
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BFS Traversal  
in Undirected Graphs 

 

 

 

 

 

 

 

 

 

 

Theorem: 

BFS Traversal from x visits all vertices reachable from x in the given graph. 
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Connectivity problem in a Graph 
 

 

 

 

 

 

 

 

 

 

Problem:  

Build an O(𝒏) size data structure for a given undirected graph s.t. 

the following query can be answered in O(1) time. 

Is vertex 𝒊 reachable from vertex  𝒋 ? 
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Connectivity problem in a Graph 
 

BFS(x) 

    CreateEmptyQueue(Q); 

    Visited(x)  true; 

    Enqueue(x,Q); 

    While(Not IsEmptyQueue(Q)) 

    {              v Dequeue(Q); 

                   For each neighbor w of v  

                   {          if (Visited(w) = false)                         

                                    {    Visited(w)   true ;                        

                                          Enqueue(w, Q); 

                                    } 

                   } 

    } 

Connectivity(G) 

{   For each vertex x Visited(x) false;  

     For each vertex v in V 

              If (Visited(v) = false)    BFS(x);  

     return Label; 

} 7 

Label[w]  x ; 

Label[x]  x;  

Create an array Label; 



Analysis of the algorithm 

Output of the algorithm:  

Array Label[] of size O(𝒏)  such that 

Label[x]=Label[y]  if and only if x and y belong to same connected component.  

 

 

Running time of the algorithm :  

                                                  O(𝒏 + 𝒎) 

 

Theorem:  

An undirected graph can be processed in O(𝒏 + 𝒎) time  

to build an O(𝒏)  size data structure  

which can answer any connectivity query in O(1) time.  
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Is there alternate way to traverse a graph ? 
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Yes 
 
 

More Natural  

More Powerful  
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Suppose you go to Paris.  
You wish to travel to various 

monuments. 

How will you do it without any map or 
asking any one for directions ? 

Try to get inspiration from your “human  executable method” 
to design  

“a machine executable algorithm” for traversing a graph. 



A  natural  way to traverse a graph 

 

 

 

 

 

 

 

 

 

We need a mechanism to 

 

• Avoid visiting a vertex multiple times 

 

 

 

• Trace back in case we reach a dead end. 

 

12 

z 

y 

c 

d 

f 

g h 

u 

w 

v 

r 

s 

recursive 

We can solve it by keeping a label 
“Visited” for each vertex  

like in BFS traversal. 

Recursion takes care of it  



DFS traversal of G 
  DFS(v)   

{  Visited(v)  true;     

    For each neighbor w of v  

    {          if (Visited(w)  = false)                         

               {    DFS(w) ;                           

                

               } 

      

    } 

} 

 

DFS-traversal(G) 

{   For each vertex vϵ V  {       Visited(v)  false;        } 

     For each vertex v ϵ V {        

                                                    If (Visited(v ) = false)     DFS(v);                     

                                            } 

} 
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……..; 

……..; 
Add a few extra statements here  

to get an efficient algorithm  
for a new problem  



DFS traversal 
 

 

 

Invented by Robert Endre Tarjan in 1972 

• One of the pioneers in the field of 
data structures and algorithms. 

• Got the Turing award  

       (equivalent to Nobel prize)  

       for his fundamental contribution to 

       data structures and algorithms. 

• DFS traversal has proved to be a very 
powerful tool for graph algorithms. 

14 

a milestone in the area of graph algorithms 



DFS traversal 
 

Applications: 
• Connected components of a graph. 

• Biconnected components of a graph. 

      (Is the connectivity of a graph robust to failure of any node ?) 

• Finding bridges in a graph. 

      (Is the connectivity of a graph robust to failure of any edge) 

• Planarity testing of a graph 

      (Can a given graph be embedded on a plane so that no two edges intersect ?) 

• Strongly connected components of a  directed graph. 

      (the extension of connectivity in case of directed graphs) 
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a milestone in the area of graph algorithms 



Insight into DFS through an example 

 

 

 

 

 

 

 

 

 

DFS(v) begins 

   v visits y 

   DFS(y) begins  

      y visits f  

      DFS(f) begins 

          f visits b 

         DFS(b) begins 

             all neighbors of b are already visited 

         DFS(b) ends  

          control returns to DFS(f) 

           f visits h 

          DFS(h) begins 

           …. and so on ….   

After visiting z, control returns to 

    v visits w 

    DFS(w) begins 

    …. and so on ….   16 
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Insight into DFS through an example 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observation1: (Recursive nature of DFS)   

If DFS(v) invokes DFS(w), then  

        DFS(w) finishes          ?           DFS(v). 
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Insight into DFS through an example 

 

 

 

 

 

 

 

 

 

 

 

 

Question :  

When DFS reaches a vertex u, what is the role 
of vertices already visited ?   
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The traversal will not proceed along the 
vertices which are already visited. Hence 
the visited vertices act as a barrier for the 

traversal from u. 



Insight into DFS through an example 

 

 

 

 

 

 

 

 

 

 

 

 

Observation 2:  

Let X  be the set of vertices visited before DFS traversal 
reaches vertex  u for the first time.  

The DFS(u) pursued now is like 

                  fresh DFS(u) executed in graph G\X. 

 

NOTE: 

G\X is  the graph G after removal of all vertices X along 
with their edges. 
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Proving that 
 DFS(v) visits all vertices reachable from v 
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By induction on the 

 size of connected component of v  

Can you figure out the inductive assertion now? 

Think over it. It is given on the following slide… 

 

 



Inductive assertion  

A(𝒊):  

If a connected component has size = 𝒊,  

PROOF: 

Base case: 𝒊 =1. 

      The component is {v} and the first statement of DFS(v) marks it visited. 

      So A(1) holds. 

 

Induction hypothesis:  

If a connected component has size < 𝒊, then DFS from any of its vertices will visit all its vertices. 

Induction step:  

             We have to prove that A(𝒊) holds.  

             Consider any connected component of size 𝒊.  

            Let V* be the set of its vertices. |V*|= 𝒊. 

            Let v be any vertex in the connected component.  
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Watch the following slides 
 very slowly and very carefully. 

then DFS from any of its vertices will visit all its vertices. 
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DFS(v) 

 

 

 

 

 

 

 

 

 

Let y  be the first neighbor visited by v. 

B= the set of vertices such that every path from 

      y to them passes through v. 

C= V*\B. 

 

B= {v, g, w, d} 

C= {y, b, f, h, u, s, c, r, z} 

Question: What is DFS(y) like ? 

Answer: DFS(y) in G\{v}. 

Question: What is the connected component of y in G\{v} ? 
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|B|< i since y∉ B 

|C|< i since v∉ C 
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DFS(v) 
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Let y  be the first neighbor visited by v. 

B= the set of vertices such that every path from 

      y to them passes through v. 

C= V*\B. 

 

B= {v, g, w, d} 

C= {y, b, f, h, u, s, c, r, z} 

Question: What is DFS(y) like ? 

Answer: DFS(y) in G\{v}. 

Question: What is the connected component of y in G\{v} ? 

Answer: C. 

|C|< i, so by I.H., DFS(y) visits entire set C & we return to v. 

Question: What is DFS(v) like when DFS(y) finishes ? 

Answer: DFS(v) in G\C. 

Question: What is the connected component of v in G\C ? 

|B|< i since y∉ B 

|C|< i since v∉ C 
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DFS(v) 
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Let y  be the first neighbor visited by v. 

B= the set of vertices such that every path from 

      y to them passes through v. 

C= V*\B. 

 

B= {v, g, w, d} 

C= {y, b, f, h, u, s, c, r, z} 

Question: What is DFS(y) like ? 

Answer: DFS(y) in G\{v}. 

Question: What is the connected component of y in G\{v} ? 

Answer: C. 

|C|< i, so by I.H., DFS(y) visits entire set C & we return to v. 

Question: What is DFS(v) like when DFS(y) finishes ? 

Answer: DFS(v) in G\C. 

Question: What is the connected component of v in G\C ? 

Answer: B. 

|B|< i, so by I.H., DFS(v) pursued after finishing DFS(y) 
visits entire set B. 

|B|< i since y∉ B 

|C|< i since v∉ C 

Hence entire component 
of v gets visited 
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Theorem:  DFS(v) visits all vertices of the connected component of v. 

 

Homework:  

Use DFS traversal to compute all connected components of a given G  

in time O(𝒎 + 𝒏). 
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