
Data Structures and Algorithms
(CS210A)

Lecture 25
• A data structure problem for graphs.

• Depth First Search (DFS) Traversal

• Novel application: computing biconnected components of a graph

1

BFS Traversal
in Undirected Graphs

Theorem:

BFS Traversal from x visits all vertices reachable from x in the given graph.

2

y

b

c

d

x

f

g

h

u
w

v

r

s

Connectivity problem in a Graph

Problem:

Build an O(𝒏) size data structure for a given undirected graph s.t.

the following query can be answered in O(1) time.

Is vertex 𝒊 reachable from vertex 𝒋 ?

Connectivity problem in a Graph

Problem:

Build an O(𝒏) size data structure for a given undirected graph s.t.

the following query can be answered in O(1) time.

Is vertex 𝒊 reachable from vertex 𝒋 ?

Connectivity problem in a Graph

Problem:

Build an O(𝒏) size data structure for a given undirected graph s.t.

the following query can be answered in O(1) time.

Is vertex 𝒊 reachable from vertex 𝒋 ?

Connectivity problem in a Graph

Problem:

Build an O(𝒏) size data structure for a given undirected graph s.t.

the following query can be answered in O(1) time.

Is vertex 𝒊 reachable from vertex 𝒋 ?

Connectivity problem in a Graph

BFS(x)

 CreateEmptyQueue(Q);

 Visited(x)  true;

 Enqueue(x,Q);

 While(Not IsEmptyQueue(Q))

 { v Dequeue(Q);

 For each neighbor w of v

 { if (Visited(w) = false)

 { Visited(w)  true ;

 Enqueue(w, Q);

 }

 }

 }

Connectivity(G)

{ For each vertex x Visited(x) false;

 For each vertex v in V

 If (Visited(v) = false) BFS(x);

 return Label;

} 7

Label[w]  x ;

Label[x]  x;

Create an array Label;

Analysis of the algorithm

Output of the algorithm:

Array Label[] of size O(𝒏) such that

Label[x]=Label[y] if and only if x and y belong to same connected component.

Running time of the algorithm :

 O(𝒏 + 𝒎)

Theorem:

An undirected graph can be processed in O(𝒏 + 𝒎) time

to build an O(𝒏) size data structure

which can answer any connectivity query in O(1) time.

8

Is there alternate way to traverse a graph ?

9

Yes

More Natural

More Powerful

10

Suppose you go to Paris.
You wish to travel to various

monuments.

How will you do it without any map or
asking any one for directions ?

Try to get inspiration from your “human executable method”
to design

“a machine executable algorithm” for traversing a graph.

A natural way to traverse a graph

We need a mechanism to

• Avoid visiting a vertex multiple times

• Trace back in case we reach a dead end.

12

z

y

c

d

f

g h

u

w

v

r

s

recursive

We can solve it by keeping a label
“Visited” for each vertex

like in BFS traversal.

Recursion takes care of it 

DFS traversal of G
 DFS(v)

{ Visited(v)  true;

 For each neighbor w of v

 { if (Visited(w) = false)

 { DFS(w) ;

 }

 }

}

DFS-traversal(G)

{ For each vertex vϵ V { Visited(v) false; }

 For each vertex v ϵ V {

 If (Visited(v) = false) DFS(v);

 }

}

13

……..;

……..;
Add a few extra statements here

to get an efficient algorithm
for a new problem 

DFS traversal

Invented by Robert Endre Tarjan in 1972

• One of the pioneers in the field of
data structures and algorithms.

• Got the Turing award

 (equivalent to Nobel prize)

 for his fundamental contribution to

 data structures and algorithms.

• DFS traversal has proved to be a very
powerful tool for graph algorithms.

14

a milestone in the area of graph algorithms

DFS traversal

Applications:
• Connected components of a graph.

• Biconnected components of a graph.

 (Is the connectivity of a graph robust to failure of any node ?)

• Finding bridges in a graph.

 (Is the connectivity of a graph robust to failure of any edge)

• Planarity testing of a graph

 (Can a given graph be embedded on a plane so that no two edges intersect ?)

• Strongly connected components of a directed graph.

 (the extension of connectivity in case of directed graphs)

15

a milestone in the area of graph algorithms

Insight into DFS through an example

DFS(v) begins

 v visits y

 DFS(y) begins

 y visits f

 DFS(f) begins

 f visits b

 DFS(b) begins

 all neighbors of b are already visited

 DFS(b) ends

 control returns to DFS(f)

 f visits h

 DFS(h) begins

 …. and so on ….

After visiting z, control returns to

 v visits w

 DFS(w) begins

 …. and so on …. 16

z

y

c

d
b

f

g h

u

w

v

r

s

rcsuhfyv

Insight into DFS through an example

Observation1: (Recursive nature of DFS)

If DFS(v) invokes DFS(w), then

 DFS(w) finishes ? DFS(v).

17

z

y

c

d
b

f

g h

u

w

v

r

s

before

Insight into DFS through an example

Question :

When DFS reaches a vertex u, what is the role
of vertices already visited ?

18

z

y

c

d
b

f

g h

u

w

v

r

s

The traversal will not proceed along the
vertices which are already visited. Hence
the visited vertices act as a barrier for the

traversal from u.

Insight into DFS through an example

Observation 2:

Let X be the set of vertices visited before DFS traversal
reaches vertex u for the first time.

The DFS(u) pursued now is like

 fresh DFS(u) executed in graph G\X.

NOTE:

G\X is the graph G after removal of all vertices X along
with their edges.

19

z

c

d
g

u

w

r

s

X

y

f

b
h

v

Proving that
 DFS(v) visits all vertices reachable from v

20

By induction on the

 size of connected component of v

Can you figure out the inductive assertion now?

Think over it. It is given on the following slide…

Inductive assertion

A(𝒊):

If a connected component has size = 𝒊,

PROOF:

Base case: 𝒊 =1.

 The component is {v} and the first statement of DFS(v) marks it visited.

 So A(1) holds.

Induction hypothesis:

If a connected component has size < 𝒊, then DFS from any of its vertices will visit all its vertices.

Induction step:

 We have to prove that A(𝒊) holds.

 Consider any connected component of size 𝒊.

 Let V* be the set of its vertices. |V*|= 𝒊.

 Let v be any vertex in the connected component.

21

Watch the following slides
 very slowly and very carefully.

then DFS from any of its vertices will visit all its vertices.

22

DFS(v)

Let y be the first neighbor visited by v.

B= the set of vertices such that every path from

 y to them passes through v.

C= V*\B.

B= {v, g, w, d}

C= {y, b, f, h, u, s, c, r, z}

Question: What is DFS(y) like ?

Answer: DFS(y) in G\{v}.

Question: What is the connected component of y in G\{v} ?

z

c

d
g

u

w

r

s

y

f

b
h

v

|B|< i since y∉ B

|C|< i since v∉ C

23

DFS(v)

d
g

w

z

c

u r

s

y

f

b
h

v

Let y be the first neighbor visited by v.

B= the set of vertices such that every path from

 y to them passes through v.

C= V*\B.

B= {v, g, w, d}

C= {y, b, f, h, u, s, c, r, z}

Question: What is DFS(y) like ?

Answer: DFS(y) in G\{v}.

Question: What is the connected component of y in G\{v} ?

Answer: C.

|C|< i, so by I.H., DFS(y) visits entire set C & we return to v.

Question: What is DFS(v) like when DFS(y) finishes ?

Answer: DFS(v) in G\C.

Question: What is the connected component of v in G\C ?

|B|< i since y∉ B

|C|< i since v∉ C

24

DFS(v)

d
g

w

v

Let y be the first neighbor visited by v.

B= the set of vertices such that every path from

 y to them passes through v.

C= V*\B.

B= {v, g, w, d}

C= {y, b, f, h, u, s, c, r, z}

Question: What is DFS(y) like ?

Answer: DFS(y) in G\{v}.

Question: What is the connected component of y in G\{v} ?

Answer: C.

|C|< i, so by I.H., DFS(y) visits entire set C & we return to v.

Question: What is DFS(v) like when DFS(y) finishes ?

Answer: DFS(v) in G\C.

Question: What is the connected component of v in G\C ?

Answer: B.

|B|< i, so by I.H., DFS(v) pursued after finishing DFS(y)
visits entire set B.

|B|< i since y∉ B

|C|< i since v∉ C

Hence entire component
of v gets visited

z

c

u r

s

y

f

b
h

Theorem: DFS(v) visits all vertices of the connected component of v.

Homework:

Use DFS traversal to compute all connected components of a given G

in time O(𝒎 + 𝒏).

25

