
Data Structures and Algorithms
(CS210A)

Lecture 24
• BFS traversal (proof of correctness)
• BFS tree
• An important application of BFS traversal

1

 Breadth First Search traversal

2

BFS Traversal
in Undirected Graphs

3

y

b

c

d

x

f

g

h

u
w

v

r

s

BFS traversal of G from a vertex 𝒙

BFS(G, 𝒙)

{ CreateEmptyQueue(Q);

 Distance(𝒙)  0;

 Enqueue(𝒙,Q);

 While(Not IsEmptyQueue(Q))

 {

 For each neighbor 𝒘 of 𝒗

 {

 if (Distance(𝒘) = ∞)

 { Distance(𝒘)  Distance(𝒗) +1 ;

 Enqueue(𝒘, Q);

 }

 }

 }
4

, and Visited(𝒗)  false.

Visited(𝒙)  true;

Visited(𝒘)  true;

//Initially for each 𝒗, Distance(𝒗)  ∞

𝒗 Dequeue(Q);

Observations about BFS(𝒙)

Observations:

• Any vertex 𝒗 enters the queue at most once.

• Before entering the queue, Distance(𝒗) is updated.

• When a vertex 𝒗 is dequeued,

– its distance is computed,

– It is enqueued.

• A vertex 𝒗 in the queue is surely removed from the queue during the algorithm.

5

𝒗 processes all its unvisited neighbors as follows

Correctness of BFS traversal

Question: What do we mean by correctness of BFS(G, 𝒙) ?

Answer:

• All vertices reachable from 𝒙 get visited.

• Vertices are visited in non-decreasing order of distance from 𝒙.

• At the end of the algorithm, Distance(𝒗) is the distance of vertex 𝒗 from 𝒙.

6

1 𝑽𝟏

0 𝑽𝟎

The key idea

Partition the vertices according to their distance from 𝒙.

7

𝒙

2 𝑽𝟐

𝒊 − 𝟏 𝑽𝒊−𝟏

𝒊 𝑽𝒊

𝒊 + 𝟏 𝑽𝒊+𝟏

𝒘

𝒘 can not have any neighbor
from level 𝒊 − 𝟐 or higher.

Correctness of BFS(𝒙) traversal
Part 1

8

All vertices reachable from 𝒙 get visited

Proof of Part 1

Theorem: Each vertex 𝒗 reachable from 𝒙 gets visited during BFS(G, 𝒙).

Proof:

 (By induction on ?)

Inductive Assertion A(𝒊) :

 Every vertex 𝒗 at distance 𝒊 from 𝒙 get visited.

Base case: 𝒊 = 𝟎.

 𝒙 is the only vertex at distance 0 from 𝒙.

Right in the beginning of the algorithm Visited(𝒙)  true;

Hence the assertion A(0) is true.

Induction Hypothesis: A(𝒋) is true for all 𝒋 < 𝒊.

Induction step: To prove that A(𝒊) is true.

Let 𝒘 ϵ 𝑽𝒊.

9

distance from 𝒙

BFS traversal of G from a vertex 𝒙

BFS(G, 𝒙)

{ CreateEmptyQueue(Q);

 Distance(𝒙)  0;

 Enqueue(𝒙,Q);

 While(Not IsEmptyQueue(Q))

 {

 For each neighbor 𝒘 of 𝒗

 {

 if (Distance(𝒘) = ∞)

 { Distance(𝒘)  Distance(𝒗) +1 ;

 Enqueue(𝒘, Q);

 }

 }

 }
10

, and Visited(𝒗)  false.

Visited(𝒙)  true;

Visited(𝒘)  true;

//Initially for each 𝒗, Distance(𝒗)  ∞

𝒗 Dequeue(Q);

Induction step:
To prove that w ϵ 𝑽𝒊 is visited during BFS(𝒙)

 Let 𝒗 ϵ 𝑽𝒊−𝟏 be any neighbor of 𝒘.

By induction hypothesis,

 𝒗 gets visited during BFS(𝒙).

So 𝒗 gets Enqueued.

Hence 𝒗 gets dequeued.

Focus on the moment when 𝒗 is dequeued,



𝒗 scans all its neighbors and

marks all its unvisited neighbors as visited.

Hence 𝒘 gets visited too

This proves the induction step.

Hence by the principle of mathematical
induction, A(𝒊) holds for each 𝒊.

This completes the proof of part 1.

11

𝒙 0

1

𝒊

𝒊 − 𝟏

2

𝒗

𝒘

if not already visited.

Correctness of BFS(𝒙) traversal
Part 3

12

Distance(𝒗) stores distance of 𝒗 from 𝒙

Homework
 To be discussed in the doubt clearing session

 BFS tree

13

1 𝑽𝟏

0 𝑽𝟎

BFS traversal gives a tree

Perform BFS traversal from 𝒙.

14

𝒙

2 𝑽𝟐

𝒊 − 𝟏 𝑽𝒊−𝟏

𝒊 𝑽𝒊

𝒊 + 𝟏 𝑽𝒊+𝟏

𝒘

𝒗

 A nontrivial application of BFS traversal

15

Determining

if a graph is bipartite

Bipartite graph

Definition: A graph G=(V,E) is said to be bipartite

if its vertices can be partitioned into two sets A and B

such that every edge in E has one endpoint in A and another in B.

16

A B

Is this graph
bipartite ?

YES

Nontriviality
in determining whether a graph is bipartite

17

A B

 bipartite bipartite

A

B A

A

B

B

Is this graph
bipartite ?

Both are same graph
but drawn in different
ways. Can you see it ?

Bipartite graph

Question: Is a path bipartite ?

Answer: Yes

 18

A B A B A B A

Bipartite graph

Question: Is a cycle bipartite ?

19

A

B

B

A

B

B

A

non-bipartite bipartite

Bipartite graph

Question: Is a cycle bipartite ?

20

A

B

B A

A B

B

A

non-bipartite

bipartite

Odd length cycle

Even length cycle

B

B

B

B

A

A

A

A

A

A

A

A B

B

B

B

A

Subgraph

A subgraph of a graph G=(V,E)

is a graph G’=(V’,E’) such that

• V’ ⊆ V

• E’ ⊆ E

Question: If G has a subgraph which is an odd cycle, is G bipartite ?

Answer: No.

21

∩ (V’ ⨯ V’)

Bipartite graph

Question: Is a tree bipartite ?

Answer: Yes

Even level vertices: A

Odd level vertices: B
22

0

1

2

3

4

 An algorithm for determining if a given graph
is bipartite

23

Assumption:

the graph is a single connected component

1 𝑽𝟏

0 𝑽𝟎

Compute a BFS tree at any vertex x.

24

𝒙

2 𝑽𝟐

𝒊 − 𝟏 𝑽𝒊−𝟏

𝒊 𝑽𝒊

𝒊 + 𝟏 𝑽𝒊+𝟏

𝒘

A

B

A

B

A

B

The BFS tree is
bipartite. Now place the

non tree edges

If every nontree edge
goes between two

consecutive levels, what
can we say ?

The graph is bipartite

Observation:
If every non-tree edge goes between two consecutive levels of BFS tree,

 then the graph is bipartite.

Question:
What if there is an edge with both end points at same level ?

25

1 𝑽𝟏

0 𝑽𝟎

What if there is an edge

26

𝒙

2 𝑽𝟐

𝒊 − 𝟏 𝑽𝒊−𝟏

𝒊 𝑽𝒊

𝒊 + 𝟏 𝑽𝒊+𝟏

𝒘

A

B

A

B

A

B

𝒖

with both end points at same level ?

Can you spot
an odd length
cycle here ?

Keep following parent pointer from
𝒖 and 𝒘 simultaneously until we reach
a common ancestor. What do we get ?

1 𝑽𝟏

0 𝑽𝟎

27

𝒙

2 𝑽𝟐

𝒊 − 𝟏 𝑽𝒊−𝟏

𝒊 𝑽𝒊

𝒊 + 𝟏 𝑽𝒊+𝟏

𝒘

A

B

A

B

A

B

𝒖

An odd cycle
containing 𝒖 and 𝒘

Observation:
If there is any non-tree edge with ?

then the graph has an odd length cycle.

Hence the graph is not bipartite.

28

both endpoints at the same level

Theorem:
There is an O(𝒏 + 𝒎) time algorithm to determine

 if a given graph is bipartite.

In the next 3 classs, we are going to discuss

: the most nontrivial, elegant graph traversal technique with wide
applications.

Make sure you attend these 3 classes 

29

Depth First Traversal

