
Data Structures and Algorithms 
(CS210A) 

 

Lecture 24 
• BFS traversal (proof of correctness) 
• BFS tree 
• An important application of BFS traversal 
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 Breadth First Search traversal 
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BFS Traversal  
in Undirected Graphs 
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BFS traversal of G from a vertex 𝒙 

BFS(G, 𝒙)  

{   CreateEmptyQueue(Q); 

    Distance(𝒙)  0; 

    Enqueue(𝒙,Q); 

    While(Not IsEmptyQueue(Q)) 

    { 

         For each neighbor 𝒘 of 𝒗  

         {      

               if (Distance(𝒘) = ∞)                         

               {    Distance(𝒘)  Distance(𝒗) +1 ;                           

                     Enqueue(𝒘, Q); 

               } 

         } 

    } 
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, and Visited(𝒗)  false.  

Visited(𝒙)  true; 

Visited(𝒘)  true; 

//Initially for each 𝒗, Distance(𝒗)  ∞    

𝒗 Dequeue(Q); 



Observations about BFS(𝒙)  

Observations: 

 

• Any vertex 𝒗 enters the queue at most once. 

 

• Before entering the queue, Distance(𝒗) is updated. 

 

• When a vertex 𝒗 is dequeued,  

– its distance is computed,  

– It is enqueued. 

 

• A vertex 𝒗 in the queue is surely removed from the queue during the algorithm. 
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𝒗 processes all its unvisited neighbors as follows 



Correctness of BFS traversal 

Question:    What do we mean by correctness  of BFS(G, 𝒙) ? 

 

Answer: 

 

• All vertices reachable from 𝒙  get visited. 

 

• Vertices are visited in non-decreasing order of distance from 𝒙. 

 

• At the end of the algorithm, Distance(𝒗) is the distance of vertex 𝒗 from 𝒙. 
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1 𝑽𝟏 

0 𝑽𝟎 

The key idea 

Partition the vertices according to their distance from 𝒙. 
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𝒙 

2 𝑽𝟐 

𝒊 − 𝟏 𝑽𝒊−𝟏 

𝒊 𝑽𝒊 

𝒊 + 𝟏 𝑽𝒊+𝟏 

𝒘 

𝒘 can not have any neighbor 
from level 𝒊 − 𝟐 or higher. 



Correctness of  BFS(𝒙) traversal 
Part 1 
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All vertices reachable from 𝒙 get visited 



Proof of Part 1   

Theorem: Each vertex 𝒗 reachable from 𝒙 gets visited during BFS(G, 𝒙). 

Proof:  

                               (By induction on                   ?              ) 

Inductive Assertion A(𝒊) :  

                                        Every vertex 𝒗 at distance 𝒊 from 𝒙 get visited. 

Base case: 𝒊 =  𝟎.   

 𝒙 is the only vertex at distance 0 from 𝒙.  

Right in the beginning of the algorithm Visited(𝒙)  true; 

Hence the assertion A(0) is true. 

Induction Hypothesis:  A(𝒋) is true  for all 𝒋 <  𝒊. 

Induction step: To prove that A(𝒊) is true. 

Let 𝒘 ϵ 𝑽𝒊. 
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distance from 𝒙 



BFS traversal of G from a vertex 𝒙 

BFS(G, 𝒙)  

{   CreateEmptyQueue(Q); 

    Distance(𝒙)  0; 

    Enqueue(𝒙,Q); 

    While(Not IsEmptyQueue(Q)) 

    { 

         For each neighbor 𝒘 of 𝒗  

         {      

               if (Distance(𝒘) = ∞)                         

               {    Distance(𝒘)  Distance(𝒗) +1 ;                           

                     Enqueue(𝒘, Q); 

               } 

         } 

    } 
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, and Visited(𝒗)  false.  

Visited(𝒙)  true; 

Visited(𝒘)  true; 

//Initially for each 𝒗, Distance(𝒗)  ∞    

𝒗 Dequeue(Q); 



Induction step:  
To prove that w ϵ 𝑽𝒊 is visited during BFS(𝒙) 

 Let 𝒗 ϵ 𝑽𝒊−𝟏 be any neighbor of 𝒘. 

By induction hypothesis,  

                      𝒗 gets visited during BFS(𝒙). 

So 𝒗 gets Enqueued. 

Hence 𝒗 gets dequeued. 

Focus on the moment when 𝒗 is dequeued,  

 

𝒗 scans all its neighbors and  

marks all its unvisited neighbors as visited.  

Hence 𝒘 gets visited too  

This proves the induction step. 

Hence by the principle of mathematical 
induction, A(𝒊) holds for each 𝒊. 

This completes the proof of part 1. 
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if not already visited. 



Correctness of  BFS(𝒙) traversal 
Part 3 
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Distance(𝒗)  stores distance of 𝒗 from 𝒙 

Homework 
 To be discussed in the doubt clearing session 



 BFS tree 
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1 𝑽𝟏 

0 𝑽𝟎 

BFS traversal gives a tree 

Perform BFS traversal from 𝒙. 
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𝒙 

2 𝑽𝟐 

𝒊 − 𝟏 𝑽𝒊−𝟏 

𝒊 𝑽𝒊 

𝒊 + 𝟏 𝑽𝒊+𝟏 

𝒘 

𝒗 



 A nontrivial application of BFS traversal 
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Determining  

if a graph is bipartite 



Bipartite graph 

Definition: A graph G=(V,E) is said to be bipartite  

if its vertices can be partitioned into two sets A and B  

such that every edge in E has one endpoint in A and another in B. 
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A B 

Is this graph 
bipartite ? 

YES 



Nontriviality  
in determining whether a graph is bipartite 
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A B 

    bipartite     bipartite 

A 

B A 

A 

B 

B 

Is this graph 
bipartite ? 

Both are same graph 
but drawn in different 
ways. Can you see it  ? 



Bipartite graph 

 

 

Question: Is a path bipartite ? 

 

 

 

 

Answer: Yes 
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Bipartite graph 

 

 

Question: Is a cycle bipartite ? 
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Bipartite graph 

Question: Is a cycle bipartite ? 
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Subgraph 

A subgraph of a graph G=(V,E)  

is a graph G’=(V’,E’) such that  

• V’ ⊆ V  

• E’ ⊆ E 

 

 

Question: If G has a subgraph which is an odd cycle, is G bipartite ? 

Answer: No. 
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∩ (V’ ⨯ V’) 



Bipartite graph 

Question: Is a tree bipartite ? 

 

 

 

 

 

 

 

 

 

Answer: Yes 

Even level vertices:  A 

Odd level vertices:   B 
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 An algorithm for determining if a given graph 
is bipartite 
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Assumption:  

the graph is a single connected component 



1 𝑽𝟏 

0 𝑽𝟎 

Compute a BFS tree at any vertex x. 
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𝒙 

2 𝑽𝟐 

𝒊 − 𝟏 𝑽𝒊−𝟏 

𝒊 𝑽𝒊 
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The BFS tree is  
bipartite. Now place the 

non tree edges  

If every nontree edge 
goes between two 

consecutive levels, what 
can we say ? 

The graph is bipartite 



 

 

Observation: 
If every non-tree edge goes between two consecutive levels of BFS tree, 

 then the graph is bipartite. 

 

Question: 
What if there is an edge with both end points at same level ? 
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1 𝑽𝟏 

0 𝑽𝟎 

What if there is an edge  
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𝒙 

2 𝑽𝟐 
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𝒖 

with both end points at same level ? 

Can you spot 
an odd length 
cycle here ? 

Keep following parent pointer from 
𝒖 and 𝒘 simultaneously until we reach 
a common ancestor. What do we get  ? 



1 𝑽𝟏 

0 𝑽𝟎 
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An odd cycle  
containing 𝒖 and 𝒘 



 

 

Observation:  
If there is  any non-tree edge with                 ?  

then the graph has an odd length cycle.  

Hence the graph is not bipartite. 
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both endpoints  at the same level 



Theorem:  
There is an O(𝒏 + 𝒎) time algorithm to determine 

 if a given graph is bipartite. 

 

In the next 3 classs, we are going to discuss  

: the most nontrivial, elegant graph traversal technique with wide 
applications. 

 

Make sure you attend these 3 classes  
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Depth First Traversal 


