Data Structures and Algorithms

(CS210A)

Lecture 20

Red Black tree (Final lecture)

9 types of operations

each executed in $O(\log n)$ time!

Red Black tree

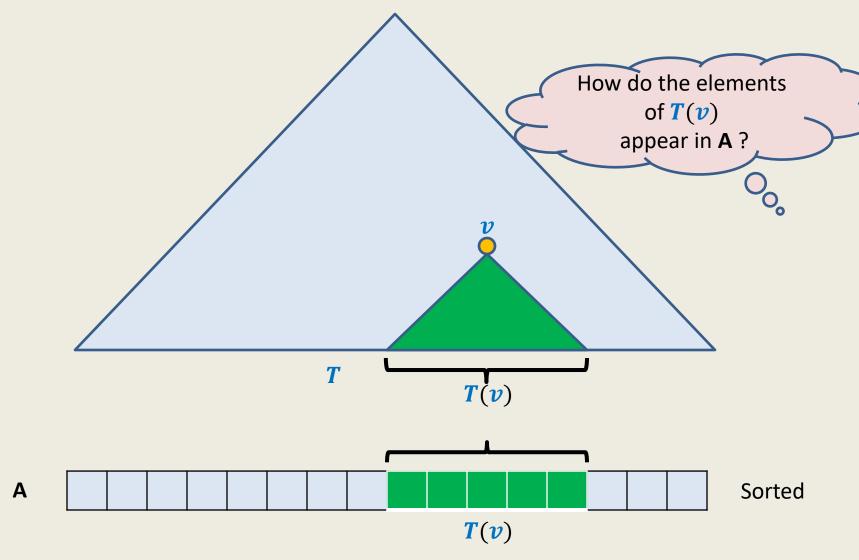
(Height Balanced BST)

Operations you already know

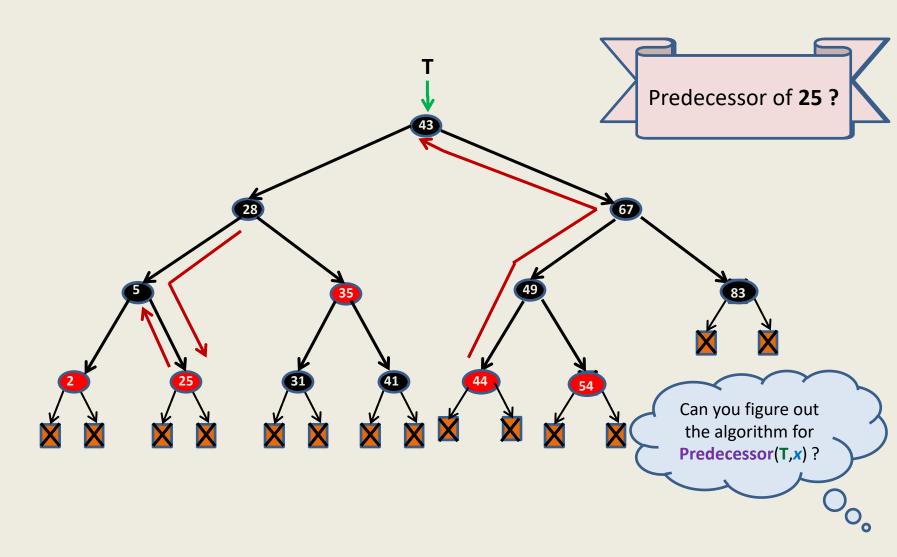
- 1. Search(T,x)
- 2. Insert(T,x)
- 3. Delete(T,x)
- 4. Min(T)
- 5. Max(T)

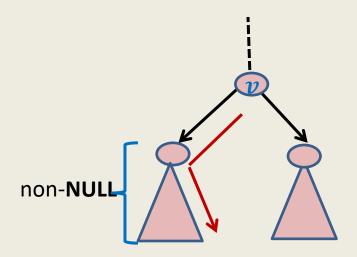
Binary Search Tree

How well have you understood?

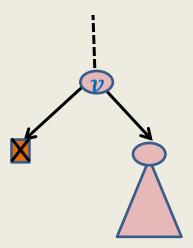


The largest element in T which is smaller than x

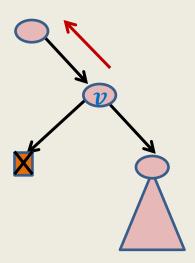




Case 1: $left(v) \Leftrightarrow NULL$, then Predecessor(T,x) is Max(left(v))



Case 2: left(v) == NULL, then Predecessor(T,x) is ?



Case 2: left(v) == NULL, and v is right child of its parent then Predecessor(T,x) is parent(v)

Case 3: left(v) == NULL, and v is left child of its parent then Predecessor(T,x) is ?

```
Predecessor(T,x)
Let \boldsymbol{v} be the node of \boldsymbol{\mathsf{T}} storing value \boldsymbol{x}.
If (left(v) <> NULL) then return Max(left(v))
else
     if (v = right (parent(v))) return
                                                      parent(v)
     else
          \mathbf{while}(\mathbf{v} = \mathbf{left} (\mathbf{parent}(\mathbf{v}))
                  v \leftarrow parent(v);
          return parent(v);
```

Homework 1: Modify the code so that it runs even when x is minimum element. **Homework 2**: Modify the code so that it runs even when $x \notin T$.

Successor(T,x)

The smallest element in T which is bigger than x

Red Black tree

(Height Balanced BST)

Operations you already know

- Search(T,x)
- 2. Insert(T,x)
- 3. Delete(T,x)
- 4. Min(T)
- 5. Max(**T**)
- 6. Predecessor(T,x)
- Successor(T,x)

A NOTATION

T < T':

every element of **T** is <u>smaller</u> than every element of **T**'.

New operations

8. SpecialUnion(T, T'):

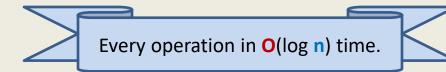
Given T and T' such that T < T',

compute **T*=TUT'**.

NOTE: T and T' don't exist after the union.

9. Split(**T**, **x**):

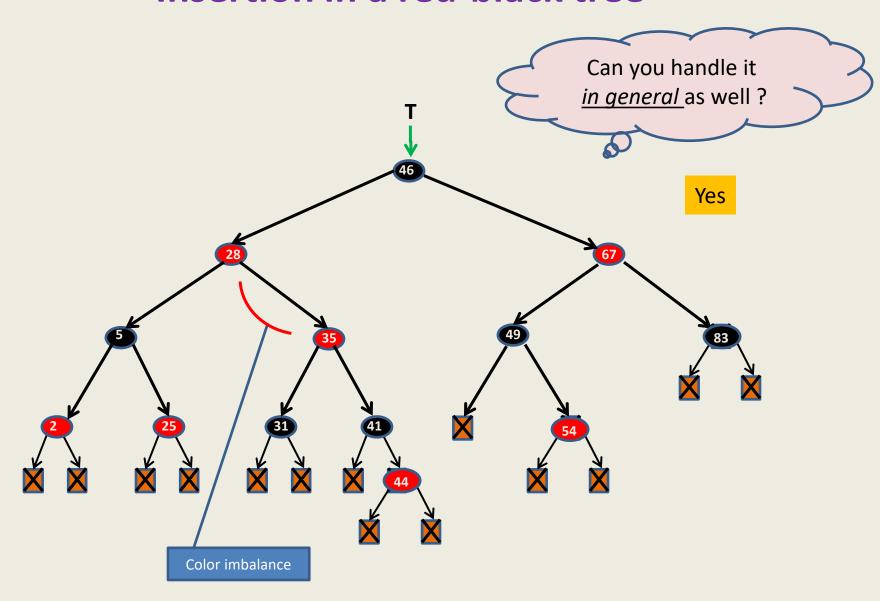
Split T into T' and T" such that T' < x < T".



Red-Black Tree

How well have you understood?

Insertion in a red-black tree

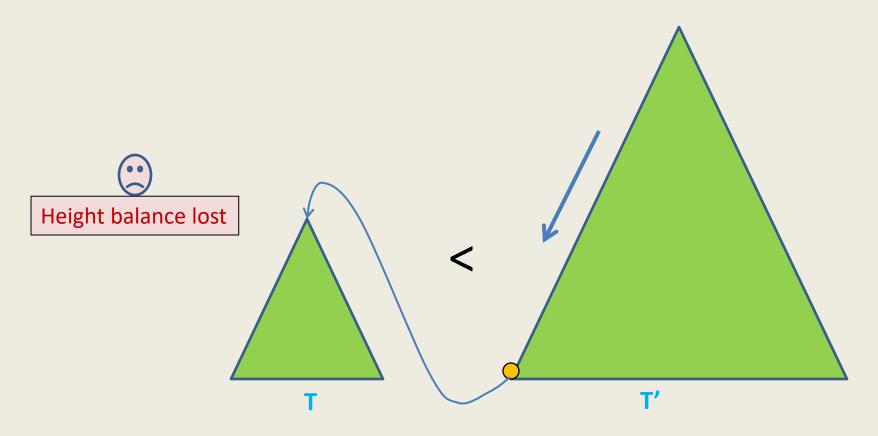


SpecialUnion(T,T')

Remember:

every element of T is smaller than every element of T'

A trivial algorithm that does not work



Time complexity: O(log n)

Towards an O(log n) time for SpecialUnion(T,T') ...

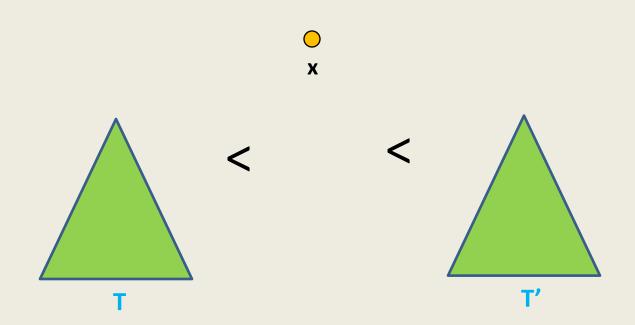
Can we solve some simple cases easily?

Simplifying the problem

Solving the simpler version efficiently

Extending the solution to generic version

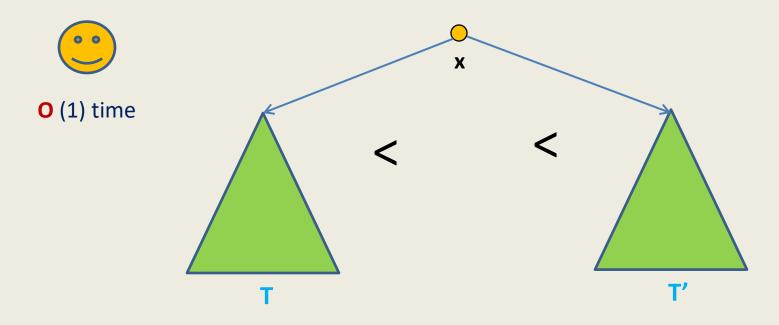
Simplifying the problem



Simplified problem:

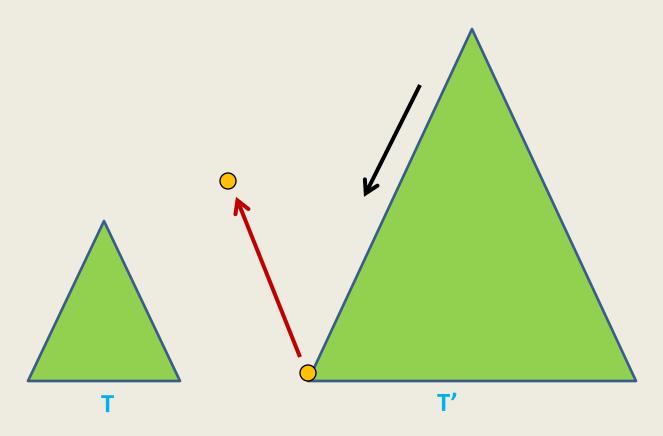
Given two trees **T**, **T**' of <u>same</u> **black height** and a key **x**, such that **T**<**x**<**T**', transform them into a tree **T***=**T**U{**x**}U**T**'

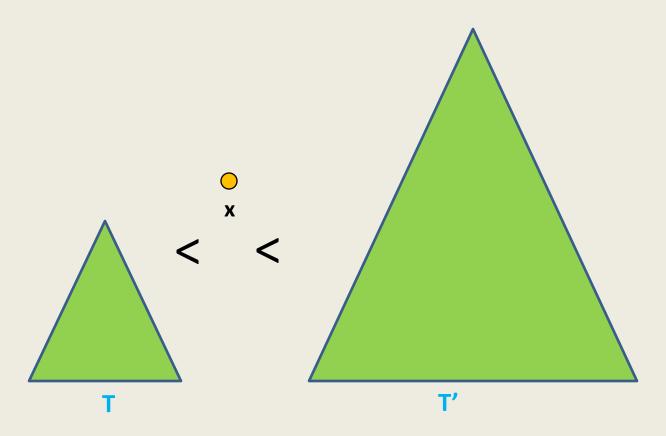
Solving the simplified problem

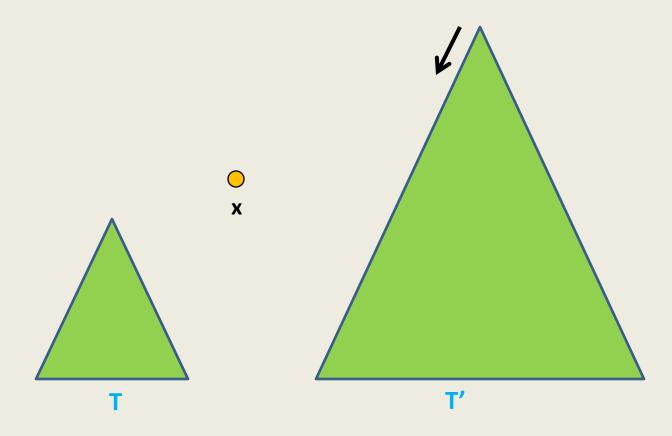


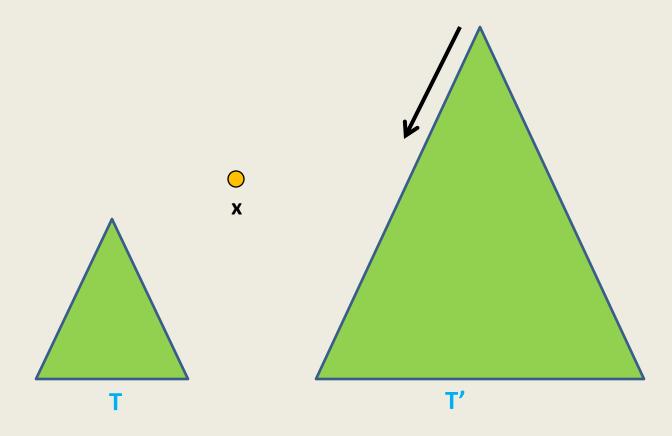
Simplified problem:

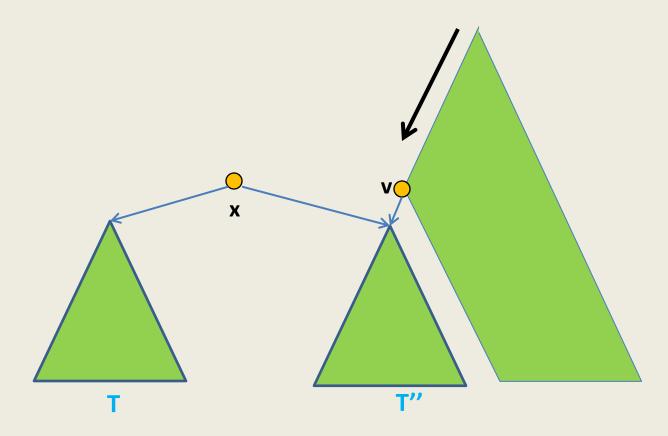
Given two trees **T**, **T**' of <u>same</u> **black height** and a key **x**, such that **T**<**x**<**T**', transform them into a tree **T***=**T**U{**x**}U**T**'

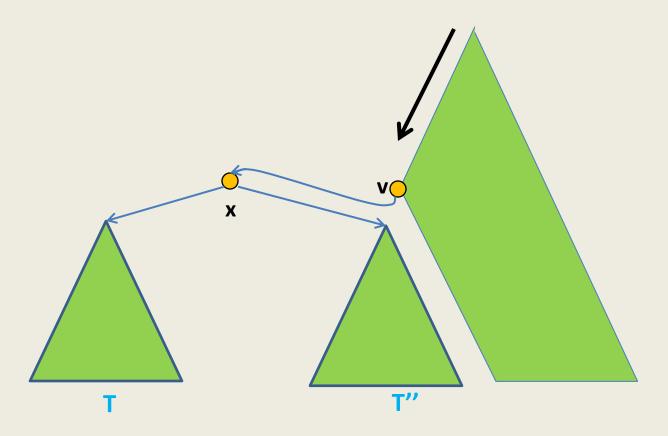












Algorithm for **SpecialUnion**(**T**,**T**'):

- 1. Let x be the node storing smallest element of T'.
- 2. Delete the node x from T'.

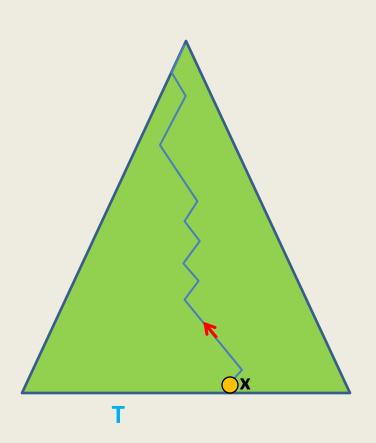
Let **black height** of **T** ≤ **black height** of **T**'

- 1. Keep following left pointer of T' until we reach a node v such that
 - 1. **left(v)** is black
 - 2. The subtree T" rooted at Left(v) has black height same as that of T
- 2. $left(x) \leftarrow T$;
- 3. right(x) \leftarrow T";
- 4. Color(x) \leftarrow red;
- 5. $\operatorname{left}(v) \leftarrow x$;
- 6. parent(x) \leftarrow v;
- 7. If **color(v)** is **red**, remove the color imbalance

(like in the usual procedure of insertion in a **red-black** tree)

Split(T,x)

Achieving O(log n) time for Split(T,x)



- Take a scissor
- cut T into trees starting from x
- Make use of SpecialUnion algorithm.