Data Structures and Algorithms
(CS210A)

Lecture 20
Red Black tree (Final lecture)
* 9 types of operations
each executed in O(log 1) time !

Red Black tree
(Height Balanced BST)

Operations you already know

. Search(T,x)
. Insert(T,x)
. Delete(T,x)
. Min(T)

. Max(T)

Ui H W N =

2 Every operation in O(log n) time. g

Binary Search Tree

How well have you understood ?

How do the elements
of T(v)
appearinA?

Sorted

Predecessor(T,x)

The largest element in T which is smaller than x

25

28

Predecessor(T,x)

5

35 49

31 41 a4

67

Predecessor of 25 ?

Can you figure out
the algorithm for
Predecessor(T,x) ?

Predecessor(T,x)

Let v be the node of T storing value x.

-
ol A ﬁ

Case 1: left(v) <> NULL, then Predecessor(T,x) is Max(left(v))

Predecessor(T,x)

Let v be the node of T storing value x.

Case 2: left(v) == NULL, then Predecessor(T,x) is ?

Predecessor(T,x)

Let v be the node of T storing value x.

AW

Case 2: left(v) == NULL, and v is right child of its parent
then Predecessor(T,x) is parent(v)

Predecessor(T,x)

Let v be the node of T storing value x.

Case 3: left(v) == NULL, and v is left child of its parent
then Predecessor(T,x) is ?

10

Predecessor(T,x)

Predecessor(T,x)
{ Letv bethe node of T storing value x.
If (left(v) <> NULL) then return Max(left(v))
else
if (v = right (parent(v)) return parent(v)
else
{
while(v = left (parent(v))

v € parent(v);
return parent(v);

Predecessor(T,x)

Predecessor(T,x)
{ Letv bethe node of T storing value x.
If (left(v) <> NULL) then return Max(left(v))
else
{ while(v = left (parent(v))
v € parent(v);
return parent(v);

Homework 1: Modify the code so that it runs even when x is minimum element.
Homework 2: Modify the code so that it runs even when x ¢ T.

Successor(T,x)

The smallest elementin T which is bigger than x

13

Red Black tree
(Height Balanced BST)

Operations you already know New operations

1. Search(T,x) 8. SpecialUnion(T, T’):
2. Insert(T,x) Given T and T’ such that T< T/,
3. Delete(T,x) compute T*=TUT’.
4. Min(T)
5. Max(T) NOTE: T and T’ don’t exist after the union.
6. Predecessor(T,x)
7. Successor(T,x)
9. Split(T, x):

A NOTATION Split Tinto T"and T” such that T" < x< T”.

T<T:

every element of T is smaller than every

element of T'.
2 Every operation in O(log n) time. g o

Red-Black Tree

How well have you understood ?

Insertion in a red-black tree

Can you handle it
in general as well ?

) <—

Yes

28)

25 31 41

44

Color imbalance

16

SpecialUnion(T,T’)

Remember:

every element of T is smaller than every element of T’

A trivial algorithm that does not work

®

Height balance lost

Time complexity: O(log n)

18

Towards an O(log n) time for SpecialUnion(T,T’) ...

Can we solve some
simple cases easily ?

* Simplifying the problem OO
e Solving the simpler version efficiently

* Extending the solution to generic version

19

Simplifying the problem

Simplified problem:

Given two trees T, T’ of same black height
and a key x, such that T<x<T’,

transform them into a tree T*=TU{x}UT’

T

20

Solving the simplified problem

x

O (1) time

Simplified problem:

Given two trees T, T’ of same black height
and a key x, such that T<x<T’,

transform them into a tree T*=TU{x}UT’

21

Extending the algorithm to the generic problem

//

22

Extending the algorithm to the generic problem

23

Extending the algorithm to the generic problem

/

24

Extending the algorithm to the generic problem

25

Extending the algorithm to the generic problem

26

Extending the algorithm to the generic problem

27

Extending the algorithm to the generic problem

Algorithm for SpecialUnion(T,T’):

1. Let x be the node storing smallest element of T'.
2. Delete the node x from T'.

Let black height of T < black height of T’

1. Keep following left pointer of T’ until we reach a node v such that
1. left(v) is black
2. The subtree T” rooted at Left(v) has black height same as that of T

2. left(x)€T;

3. right(x) € T7; F" ?
4. Color(x)€ red; Total time : O(log n)

5. left(v)€ x;

6. parent(x)€ v;

7. If color(v) is red, remove the color imbalance

(like in the usual procedure of insertion in a red-black tree)

Split(T,x)

29

Achieving O(log n) time for Split(T,x)

o

Take a scissor
cut T into trees starting from x
Make use of SpecialUnion algorithm.

