Data Structures and Algorithms
(CS210A)

Lecture 20
Red Black tree (Final lecture)
* 9 types of operations
each executed in O(log 1) time !




Red Black tree
(Height Balanced BST)

Operations you already know

. Search(T,x)
. Insert(T,x)
. Delete(T,x)
. Min(T)

. Max(T)
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2 Every operation in O(log n) time. g




Binary Search Tree

How well have you understood ?



How do the elements
of T(v)
appearinA?

Sorted




Predecessor(T,x)

The largest element in T which is smaller than x
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Predecessor of 25 ?

Can you figure out
the algorithm for
Predecessor(T,x) ?




Predecessor(T,x)

Let v be the node of T storing value x.
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Case 1: left(v) <> NULL, then Predecessor(T,x) is Max(left(v))



Predecessor(T,x)

Let v be the node of T storing value x.

Case 2: left(v) == NULL, then Predecessor(T,x) is ?



Predecessor(T,x)

Let v be the node of T storing value x.

AW

Case 2: left(v) == NULL, and v is right child of its parent
then Predecessor(T,x) is parent(v)



Predecessor(T,x)

Let v be the node of T storing value x.

Case 3: left(v) == NULL, and v is left child of its parent
then Predecessor(T,x) is ?
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Predecessor(T,x)

Predecessor(T,x)
{ Letv bethe node of T storing value x.
If (left(v) <> NULL) then return Max(left(v))
else
if (v = right (parent(v)) return parent(v)
else
{
while(v = left (parent(v))

v € parent(v);
return parent(v);



Predecessor(T,x)

Predecessor(T,x)
{ Letv bethe node of T storing value x.
If (left(v) <> NULL) then return Max(left(v))
else
{ while(v = left (parent(v))
v € parent(v);
return parent(v);

Homework 1: Modify the code so that it runs even when x is minimum element.
Homework 2: Modify the code so that it runs even when x ¢ T.



Successor(T,x)

The smallest elementin T which is bigger than x
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Red Black tree
(Height Balanced BST)

Operations you already know  New operations

1. Search(T,x) 8. SpecialUnion(T, T’):
2. Insert(T,x) Given T and T’ such that T< T/,
3. Delete(T,x) compute T*=TUT’.
4. Min(T)
5. Max(T) NOTE: T and T’ don’t exist after the union.
6. Predecessor(T,x)
7. Successor(T,x)
9. Split(T, x):

A NOTATION Split Tinto T"and T” such that T" < x< T”.

T<T:

every element of T is smaller than every

element of T'.
2 Every operation in O(log n) time. g o




Red-Black Tree

How well have you understood ?



Insertion in a red-black tree

Can you handle it
in general as well ?
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Color imbalance
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SpecialUnion(T,T’)

Remember:

every element of T is smaller than every element of T’



A trivial algorithm that does not work

®

Height balance lost

Time complexity: O(log n)
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Towards an O(log n) time for SpecialUnion(T,T’) ...

Can we solve some
simple cases easily ?

* Simplifying the problem OO
e Solving the simpler version efficiently

* Extending the solution to generic version

19



Simplifying the problem

Simplified problem:

Given two trees T, T’ of same black height
and a key x, such that T<x<T’,

transform them into a tree T*=TU{x}UT’

T
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Solving the simplified problem

x

O (1) time

Simplified problem:

Given two trees T, T’ of same black height
and a key x, such that T<x<T’,

transform them into a tree T*=TU{x}UT’
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Extending the algorithm to the generic problem

//
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Extending the algorithm to the generic problem
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Extending the algorithm to the generic problem

/
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Extending the algorithm to the generic problem
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Extending the algorithm to the generic problem
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Extending the algorithm to the generic problem
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Extending the algorithm to the generic problem

Algorithm for SpecialUnion(T,T’):

1. Let x be the node storing smallest element of T'.
2. Delete the node x from T'.

Let black height of T < black height of T’

1. Keep following left pointer of T’ until we reach a node v such that
1. left(v) is black
2. The subtree T” rooted at Left(v) has black height same as that of T

2. left(x)€T;

3. right(x) € T7; F" ?
4. Color(x)€ red; Total time : O(log n)

5. left(v)€ x;

6. parent(x)€ v;

7. If color(v) is red, remove the color imbalance

(like in the usual procedure of insertion in a red-black tree)



Split(T,x)
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Achieving O(log n) time for Split(T,x)

o

Take a scissor
cut T into trees starting from x
Make use of SpecialUnion algorithm.



