
Data Structures and Algorithms 
(CS210A) 

 

Lecture 19 
Analysis of 

• Red Black trees  

• Nearly Balanced BST 

1 



 A Red Black Tree is height balanced 

 

2 

A detailed proof from scratch 



Red Black Tree 

Red Black tree:   

a full binary search tree 

and satisfying the following properties. 

 

• Each node is colored red or black. 

 

• Each leaf is colored black and so is the root. 

 

• Every red node will have both its children black. 

 

• No. of black nodes on a path from root to each leaf node is same.  

3 

with each leaf as a null node 

black height 



A red-black tree 

 

4 

root 

2 

28 

46 

67 

25 

5 

31 41 

35 49 



Terminologies 

Full binary tree:  

A binary tree where every internal node has exactly two children. 

 

 

 

 

 

5 

This node has exactly one child. So 
the current tree is not a full binary 

tree. 

This is now a full 
binary tree. 



Red-black tree: as a Full Binary Tree 

 

 

 

 

 

 
       

6 

root 

2 

28 

46 

67 

25 

5 

31 41 

35 49 

48 

Ignore the values 



Red-black tree: as a Full Binary Tree 

 

 

 

 

 

 
       

7 

root 

Ignore the distinction 
between internal nodes 

and leaf nodes 



Red-black tree: as a Full Binary Tree 

 

 

 

 

 

 
       

8 

root 



 Properties of  
a Red-Black Tree viewed as a full binary tree  

9 

Relationship between  
Number of leaf nodes and 

 Number of internal nodes  



A full binary tree  

 

10 

Any deepest node 

This node must have a left 
child since the tree is a full 

binary tree 

This node must be a leaf 
node. Give reason. Otherwise this node won’t 

be the deepest node. 



A full binary tree 

 

 

 

 

 

 

 

 

 

 

 

What happened to the number of internal nodes ? 

What happened to the number of leaf nodes ? 

 11 

Is it still a full 
binary tree ? Yes. 

Reduced by one 

Reduced by one 



A full binary tree 

Analyze the process: 

 Repeat   

                {            Delete the deepest node and its sibling   }   

 until only root remains 

Let 𝑻𝟎 be the full binary tree before the process starts. 

Let  𝑻𝟏, 𝑻𝟐,… be the full binary trees after 1st, 2nd, … iterations of the process.  

 

 

 

 

 

 

Question: What might be the relation between leaf nodes and internal nodes in 𝑻𝟎 ? 

Answer: No. of leaf nodes in 𝑻𝟎 = No. of internal nodes in 𝑻𝟎  + 1.  

 12 

𝑻𝟎 
# leaf nodes reduce by 1 
# internal nodes reduce by 1 𝑻𝟏 

# leaf nodes reduce by 1 
# internal nodes reduce by 1 𝑻𝟐 

Finally only  
root node remains 



A full binary tree 

 

 

Question:  If 𝒊 is the number of internal nodes in a full binary tree T,  

what is the size (number of nodes) of the tree ? 

Answer:     ?? 

 

 

Question:  What is the size of a Red Black tree storing  𝒏 keys ?  

Answer:     ?? 

 

 

13 

𝟐𝒊 +  𝟏 

𝟐𝒏 +  𝟏 



 A complete binary tree of height 𝒉 and its 
Properties 

 

14 



A complete binary tree of height 𝒉 

 

Definition:  

A full binary tree of height 𝒉 is said to be  

a complete binary tree of height 𝒉  

if every leaf node is at depth 𝒉. 

 

 

 

 

Question: How will any complete binary tree of height 𝒉 look like ? 

 

 

 

15 

There is no reason to believe at 
this stage that there is a unique 

complete binary tree of height 𝒉. 



A complete binary tree of height 𝒉 

 

 

 

Definition:  

A full binary tree of height 𝒉 is said to be  

a complete binary tree of height 𝒉  

if every leaf node is at depth 𝒉. 

 

 

 

 

 

 

 16 



A complete binary tree of height 𝒉 

 

 

Complete binary tree of height 1 ? 

 

 

Complete binary tree of height 2 ? 

 

 

 

Complete binary tree of height 3 ? 

 

17 

Try to generalize 
the type of tree 
shown here to 

tree of height 𝒉.  



A complete binary tree of height 𝒉 

 

 

Complete binary tree of height 1 ? 

 

 

Complete binary tree of height 2 ? 

 

 

 

Complete binary tree of height 3 ? 

 

18 



A complete binary tree of height 𝒉         

Total number of nodes = 

19 

2 

1 

𝒉 

𝟐𝒉 - 1 

𝟐𝒉−𝟏 

𝟐𝒊−𝟏 

𝟐 

1 

Level 
No. of  
nodes 

Certainly this tree is a complete binary tree of height 𝒉 
We shall now show that this is the only possible complete 

binary tree of height 𝒉. 

i 



Uniqueness  
of a complete binary tree of height 𝒉  

 
Let T* be the complete binary tree of height 𝒉 shown in previous slide.  

Notice that this is densest possible tree of height 𝒉.  

Let T be any other complete binary tree of height 𝒉 different from T*. 

 

Question: How to show that T can not exist ? 

 

 

                     Watch the following slide carefully. 

20 

Think over this question carefully. 



Uniqueness  
of a complete binary tree of height 𝒉  

 

21 

T* T 

At least one node present in T*  
but absent in T 

x 

Just place T   symmetrically above T*. 
  If T is different from T*, then what will you see ? 



Uniqueness  
of a complete binary tree of height 𝒉  

 

 

 

 

 

 

 

 

 

 

 

 

Since T is a full binary tree and right child of v is missing,  

 v can not be an internal node in T . 

 v must be  leaf node.  

 

 

 

22 

i 

2 

1 

h 

? 

Any node present in T* but absent in T 

v 

x 

Trace the path from 
x to root until we 

reach a node 
present in both T* 

and T. 

Such a node v 
must exist since 

both both T* and T 
meet at least at the 

root. 

Note that one child (in this case 
the right child) of v  is missing in T.  

Depth of v must be  
less than 𝒉 since  
v is ancestor of x. 

Hence v is a leaf node of T  at depth < 𝒉 
  
 

Hence 
T is not a compete binary tree of height 𝒉 



 

 
Hence there is no complete binary tree of height 𝒉 different from  T*.  

 

 There exists a unique a complete binary tree of height 𝒉. 

 

Theorem:  

A complete binary tree of height 𝒉 has exactly 𝟐𝒉 - 1 nodes. 

23 



 A Red Black Tree is height balanced 

 

24 

The final proof  



𝑻 : a red black tree storing 𝒏 keys. 

Total number of nodes = 

𝒉 : the black height 

Every leaf node is at depth ≥ 𝒉 

 

 

Hence     𝟐𝒏 +  𝟏 ≥  

           𝟐𝒉 ≤ 𝟐𝒏 +  𝟐 

             𝒉 ≤ 𝟏 + 𝐥𝐨𝐠𝟐(𝒏 + 𝟏) 

 

So Height of 𝑻 

 

 

 

 

25 

How does 𝑻  look like  
if we remove all nodes at 

depth > 𝒉  ? 

a complete binary tree of height 𝒉  𝟐𝒉 − 𝟏 

≤  2𝒉  - 1 ≤  2 𝐥𝐨𝐠𝟐(𝒏 + 𝟏) + 1 

𝟐𝒏 +  𝟏 



NEARLY BALANCED BST 

Analysis 

26 



Nearly balanced Binary Search Tree 
 

Terminology:  

size of a binary tree is the number of nodes present in it. 

 

Definition: A binary search tree T is said to be nearly balanced at node v, if  

size(left(v))   ≤
3

4
  size(v) 

                    and 

size(right(v))   ≤
3

4
  size(v) 

Definition: A binary search tree T is said to be nearly balanced if  

                     it is nearly balanced at each node. 

 

Theorem: Height of a nearly balanced BST on 𝑛 nodes is O(log4/3 𝑛) 

27 



Nearly balanced Binary Search Tree 
 

Maintaining under Insertion 
 

Each node v in T maintains additional field size(v) which is the number of 
nodes in the subtree(v). 

 

• Keep Search(T,x) operation unchanged. 

 

• Modify Insert(T,x) operation as follows:  

– Carry out normal insert and update the size fields of  nodes traversed. 

– If BST  T is ceases to be  nearly imbalanced at any node v,  

      transform subtree(v) into  perfectly balanced BST. 

 

 

 

28 



“Perfectly Balancing” subtree at a node v 

 

29 

v 

> 
𝟑

𝟒
𝑘 

Size differs by at most 1 𝑘 𝑘 



Nearly balanced Binary Search Tree 
 

 

 

Observation :  

It takes O( 𝒌) time to transform an imbalanced tree of size 𝒌 into a perfectly 
balanced BST. (It was given as a Homework.) 

 

Observation: Worst case search time in nearly balanced BST is O(log 𝒏) 

 

Theorem:  

For any arbitrary sequence of 𝒏  operations, total time will be O(𝒏 log 𝒏). 

 

We shall now prove this theorem formally. 

 

Watch the next slide slowly to get a useful insight. 

 
30 



Suppose T(v) is perfectly balanced at some moment. 

31 

v 

> 
𝟑

𝟐
𝑘 

Size differs by at most 1 2𝑘 

𝑘 

How many new elements to make T(v) imbalanced ? 

v 

≥ 𝑘 



The intuition for proving the Theorem 

 

 

 

 

“A perfectly balanced subtree T(v) will have to have  large number of insertions  

before it becomes unbalanced enough to be rebuilt again.” 

 

 

We shall transform this intuition into a formal proof now. 

 

32 



Notations 

                  : no. of nodes in T(𝑣) at any moment. 

 

For 𝑘th insertion,  

𝑰𝑘(𝑣) =   

 

Question: For a nearly balanced BST, what is  

 𝑰𝑘(𝑣)

𝑣

=  ? 

  𝑰𝑘(𝑣)

𝑣

=  ?

𝑘=1 to 𝑛

 

33 

O(log 𝑘) 

O(𝑛 log 𝑛) 

𝐬𝐢𝐳𝐞(𝑣) 

𝟏  if  𝑘th insertion increases 𝐬𝐢𝐳𝐞(𝑣) 

𝟎  Otherwise 

This is because  
• T, being nearly Balanced, has 

O(log 𝑘) height. 
      and  
• an insertion can increase size 

field for only the nodes lying 
along a root to leaf path. 



Journey of an element/node 𝑣 during 𝑛 
insertions 

 

 

 

 
 

 

Let 𝐬𝐢𝐳𝐞(𝑣) after 𝑗 insertions = 𝑘, 

What might be 𝐬𝐢𝐳𝐞(𝑣) after 𝑞 insertions ?  

 Time complexity of rebalancing T(𝑣) after 𝑞th insertion ?   

What might be  𝑰𝑟(𝑣)
𝑞
𝑟=𝑗+1 =  ? 

 Time complexity of rebalancing T(𝑣) after 𝑞th insertion =     ? 
34 

𝑡𝑣 𝑛 𝑗 𝑞 

Rebalancing at 𝑣 

≥ 2𝑘 

≥ 𝑘 

= O(𝑘) 

O(  𝑰𝑟(𝑣)
𝑞
𝑟=𝑗+1 ) 



Time complexity of 𝒏 insertions 

For a vertex 𝑣,  

Time complexity of rebalancing T(𝑣) during 𝒏 insertions = ? 

 

 

 

For all vertices,  

the time complexity of rebalancing during 𝒏 insertions  = ? 

 

After swapping these two “summations”   

 

35 

 𝑰𝑟(𝑣)

𝑛

𝑟=𝑡𝑣

 

=   𝑰𝑘(𝑣)

𝑣𝑘=1 to 𝑛

 = O(𝑛 log 𝑛) 

  𝑰𝑟(𝑣)

𝑛

𝑟=𝑡𝑣

 

𝑣

 



 

 

 

 

Theorem:  

For any arbitrary sequence of 𝒏  insert operations, total time to maintain 
nearly balanced BST will be O(𝒏 log 𝒏). 

 

36 


