
Data Structures and Algorithms
(CS210A)

Lecture 18:

Height balanced BST
• Red-black trees - II

1

Red Black Tree

Red Black tree:

a full binary search tree

and satisfying the following properties.

• Each node is colored red or black.

• Each leaf is colored black and so is the root.

• Every red node will have both its children black.

• No. of black nodes on a path from root to each leaf node is same.

2

with each leaf as a null node

black height

A red-black tree

3

root

2

28

46

67

25

5

31 41

35 49

 Handling Deletion in a Red Black Tree

4

Notations to be used

5

a black node

a red node

a node whose color is not specified

a BST
Could potentially be

Deletion in a BST is slightly harder than Insertion

6

 T

2

28

46

67

25

5

31 41

35 49 83

54

44

How to delete 28 ?

(even if we ignore the height factor)

Is deletion of a node easier for some cases ?

7

 T

2

28

46

67

25

5

31 41

35 49 83

54

44

Deletion of 31 is easy.
Can you see ?

Is deletion of a node easier for some cases ?

8

 T

2

28

46

67

25

5

41

35 49 83

54

44

What about deletion
of 49 ?

Is deletion of a node easier for some cases ?

9

 T

2

28

46

67

25

5

41

35 83

44

54

An insight

It is easier to maintain a BST under deletion if

the node to be deleted

10

p

q

has at most one child which is non-leaf.

An insight

It is easier to maintain a BST under deletion if

the node to be deleted has at most one child which is non-leaf.

11

q

An important question

It is easier to maintain a BST under deletion if

the node to be deleted has at most one child which is non-leaf.

Question: Can we transform every other case to the above case ?

Answer: ??

12

p

non-leaf non-leaf

How to delete a node whose both children are non-leaves?

13

 T

2

28

46

67

25

5

31 41

35 49 83

54

44

How to delete 28 ?

Swap 28 and 25
and then delete 28

How to delete 46 ?

Swap 46 and 44
and then delete 46

Can you figure
out the strategy

now ?

An important observation

It is easier to maintain a BST under deletion if the node to be deleted has at
most one child which is non-leaf.

Question: Can we transform every other case to the above case ?

Answer: by swapping value(p) with its predecessor,

 and then deleting the predecessor node.

 14

p

non-leaf non-leaf

We need to handle deletion only for the
following case

15

p

q

 How to maintain a red-black tree under
deletion ?

16

We shall first perform deletion like in an ordinary BST

and then restore all properties of red-black tree.

Easy cases and difficult case

17

p

q

Easy case Difficult case

p

q

p

q

Easy case:
Change color of q to

black

Handling the difficult case

18

p

q

s

Handling the difficult case

19

q

s p

Handling the difficult case

20

q

s

Handling the difficult case

21

q s

r

As some student had noticed during the class that the subtree(q) will
actually be just a leaf node in the beginning. But we are not showing it
explicitly here. This is because we are depicting the most general case.

During the algorithm, we might shift the height imbalance upwards and
in that case the subtree(q) might not be a leaf node.

Moreover, this generic procedure of restoring the of black height of one
entire subtree will have many other applications. One such application

will be discussed in the class on Friday.

Notice that the number of
black nodes to each leaf
node in subtree(q) has

become one less than leaf
nodes in other trees. We

need an algorithm to
remove this black-height

imbalance.

−

Handling the difficult case: An overview

22

s is red s is black reduction

At least one child of s is red Both children of s are black

right(s) is red
left(s) is red and
right(s) is black reduction

Eventually we need
to handle these two

cases only

Color of s ?

“s is red” “s is black”

23

reduction

“s is red” “s is black”

24

q s

2 1

r

reduction

−

What can we say
about parent and

children of s ?

“s is red” “s is black”

25

q s

2 1

r

Left rotation

reduction

−

r

q

2

1

s

−

The new sibling of q is now a black
node. But the number of black nodes
to leaves of tree 2 have reduced by

one. What to do ?

“s is red” “s is black”

26

q s

2 1

r

Left rotation

r

q

2

1

reduction

−

s

s

Convince yourself that the number of
black nodes to any leaf of subtree(q)
or subtrees 1 and 2 is now the same
as before the rotation. And now the
sibling of q is black. So we are done.

We just need to handle the case

“s is black”

27

Handling the case: s is black

Case 1: both children of s are black

Case 2: at least one child of s is red

28

q s

r

−

 Handling the case:
s is black and both children of s are black

29

Handling the case:
s is black and both children of s are black

30

What if we swap colors of
s and r

q s

2 1

r

−

q s

2 1

r

−

How to handle this case ?

When r is red When r is black

Handling the case:
s is black and both children of s are black

31

q s

2 1

r

q s

2 1

r

What if we change color
of s to red

When r is red When r is black

− −

Are we done ?

YES.
As a result of swapping the colors, the
number of black nodes to the leaves of
trees 1 and 2 unchanged. Interestingly,
the deficiency of one black node on the
path to the leaves of subtree(q) is also

compensated. So we are done

How to handle this case ?

Handling the case:
s is black and both children of s are black

32

q s

r

When r is red When r is black

−

− −

q

r

s

Changing color of s to red has reduced
the number of black nodes on the path

to the root of subtree(s) by one. As a
result the imbalance of black height

has propagated upward. So we
process the new q.

 Handling the case:
s is black and one of its children is red

33

There are two cases

34

reduction

q s

r

When left(s) is red and right(s) is black

−

q s

r

When right(s) is red

−

 Handling the case: right(s) is red

35

Handling the case: right(s) is red

36

q s

2 1

r

Let color(r) be c

−

Handling the case: right(s) is red

37

q s

2 1

r

Left rotation

q

r

2

1

s

−

−

The number of black nodes on the path from root to
any leaf node of subtree(q) has increased by one

(this is good!), has remained unchanged for leaves of
tree 1, and is uncertain for leaves of tree 2(depends

upon c). How to get rid of this uncertainty ?

Handling the case: right(s) is red

38

q s

2 1

r

Left rotation

q

r

2

1

s

−

The number of black nodes on the path from
root to any leaf node of tree 2 is now less by

one node. What to do ? (Hint: root of tree 2 is
red)

Change color of root
of tree 2 to black and

we are done.

Handling the case: right(s) is red

39

q s

2 1

r

Left rotation

q

r

2

1

s

−

Convince yourself that left rotation at r,
followed by color swap of s and r, followed by
change of color of root of tree 2 removes the
imbalance of black height for all leaf nodes of

the subtrees shown.

 Handling the case
“left(s) is red and right(s) is black”

40

Handling the case:
left(s) is red and right(s) is black

41

q s

r

−

Handling the case:
left(s) is red and right(s) is black

42

q s

3

1

r

2

−

Handling the case:
left(s) is red and right(s) is black

43

q s

3

1

r

2

Right rotation

−

q

s

3

1

r

2

−

The number of black nodes on the path from
root to any leaf node in tree 1 has now reduced
by one although it is the same for trees 2 and 3.

What should we do ?

Handling the case:
left(s) is red and right(s) is black

44

q s

3

1

r

2

Right rotation

q

3

1

r

2

−
−

Notice that now the new sibling of q has its right
child red. So we have effectively reduced the

current case to the case which we know how to
handle.

s

s

Theorem: We can maintain red-black trees in O(log 𝑛) time per
insert/delete/search operation.

where 𝑛 is the number of the nodes in the tree.

45

 A Red Black Tree is height balanced

46

A detailed proof from scratch

Why is a red black tree height balanced ?

 𝑻 : a red black tree

 ℎ : black height of 𝑻.

Question: What can be height of 𝑻 ?

Answer: ≤ 2ℎ − 1

Theorem: The shaded green tree is a complete binary tree & so has≥ 2ℎ elements.

47

𝑻

2ℎ − 1

ℎ
?

What is its size ?

We shall prove it
rigorously in the next

class.

A practice problem

On deletion in

red-black trees

How to delete 9 ?

49

15

26

5 11

9

19 37

20 17

3

root

