
Data Structures and Algorithms
(CS210A)

Lecture 16:
• Solving recurrences

 that occur frequently …

1

in the analysis of algorithms.

Commonly occurring recurrences

2

T(𝒏) = 𝒄𝒏 + 2 T(𝒏/𝟐) T(𝒏) = 𝒄𝒏𝟐 + 4T(𝒏/𝟐) T(𝒏) = 𝒄𝒏 + T(𝟕𝒏/𝟏𝟎) + T(𝒏/𝟓) T(𝒏) = 𝒄 𝐥𝐨𝐠 𝒏 + 2 T(𝒏/𝟐) T(𝒏) = 𝒄𝒏𝟏.𝟓 + 3T(𝒏/𝟐) T(𝒏) = 𝒄 + T(𝒏/2) T(𝒏) = 𝒄 + T(𝒏)

Methods for solving Recurrences

3

commonly occuring in

algorithm analysis

Methods for solving common Recurrences

• Unfolding the recurrence.

• Guessing the solution and then

• A General solution for a large class of recurrences

4

(Master theorem)

proving by induction.

Solving a recurrence by unfolding

Let T(1) = 1,

 T(𝑛) = 𝒄 𝑛 + 4 T(𝑛/2) for 𝑛>1, where 𝒄 is some positive constant

Solving the recurrence for T(𝑛) by unfolding (expanding)

 T(𝑛) = 𝑐𝑛 + 4 T(𝑛/2)

 = 𝒄𝑛 + 2𝑐𝑛 + 42 T(𝑛/22)

 = 𝑐𝑛 + 2𝑐𝑛 + 4𝑐𝑛+ 43 T(𝑛/23)

 = 𝑐𝑛 + 2 𝑐𝑛 + 4𝑐𝑛+ 8𝑐𝑛+ …+ 4log2𝑛

 = 𝑐𝑛 + 2 𝑐𝑛 + 4𝑐𝑛+ 8𝑐𝑛+ …+ 𝑛2

 = O(𝑛2)

5

A geometric increasing series with log 𝑛 terms and common ratio 2

Solving a recurrence by guessing and
then proving by induction

T(1) = 𝑐1

T(𝑛) = 2T(𝑛/2) + 𝑐2 𝑛

Guess: T(𝑛) ≤ 𝑎 𝑛 log 𝑛 + 𝑏 for some constants 𝑎 and 𝑏.

Proof by induction:

Base case: holds true if

Induction hypothesis: T(𝑘) ≤ 𝑎 𝑘 log 𝑘 + 𝑏 for all 𝑘<𝑛

To prove: T(𝑛) ≤ 𝑎 𝑛 log 𝑛 + 𝑏

Proof: T(𝑛) = 2T(𝑛/2) + 𝑐2 𝑛

 ≤ 2(𝑎
𝑛

2
 log

𝑛

2
 + 𝑏) + 𝑐2 𝑛 // by induction hypothesis

 = 𝑎 𝑛 log 𝑛 - 𝑎 𝑛 + 2 𝑏 + 𝑐2 𝑛

 = 𝑎 𝑛 log 𝑛 + 𝑏 + (𝑏 + 𝑐2 𝑛 - 𝑎 𝑛)

 ≤ 𝑎 𝑛 log 𝑛 + 𝑏 if 𝑎 ≥ 𝑏 + 𝑐2

 6

It looks similar/identical to
the recurrence of merge sort.

So we guess

T(𝑛) = O(𝑛 log 𝑛)

𝑏 ≥ 𝑐1

Hence T(𝑛) ≤ (𝑐1+ 𝑐2)𝑛 log 𝑛 +𝑐1 for all value of 𝑛.
So T(𝑛) = 𝐎(𝑛 log 𝑛)

These inequalities
can be satisfied
simultaneously

by selecting

𝑏 = 𝑐1 and
𝑎=𝑐1+ 𝑐2

Solving a recurrence by guessing and
then proving by induction

Key points:

• You have to make a right guess (past experience may help)

• What if your guess is too loose ?

• Be careful in the induction step.

7

Solving a recurrence by guessing and
then proving by induction

Exercise: Find error in the following reasoning.

For the recurrence T(1) = 𝑐1 , and T(𝑛) = 2T(𝑛/2) + 𝑐2 𝑛,

one guesses T(𝑛) = O(𝑛)

Proposed (wrong)proof by induction:

Induction hypothesis: T(𝑘) ≤ 𝑎𝑘 for all 𝑘 < 𝑛

 T(𝑛) = 2T(𝑛/2) + 𝑐2 𝑛

 ≤ 2(𝑎
𝑛

2
) + 𝑐2 𝑛 // by induction hypothesis

 = 𝑎𝑛 + 𝑐2𝑛

 = O(𝑛)

8

A General Method for solving a large class of
Recurrences

9

Solving a large class of recurrences

T(1) = 1,

T(𝑛) = f(𝑛) +

Where

• 𝑎 and 𝑏 are constants

• f(𝑛) is a multiplicative function:

 f(𝑥𝑦) = f(𝑥)f(𝑦)

AIM : To solve T(𝑛) for 𝑛 = 𝑏𝑘

10

and 𝑏 >1

𝑎 T(𝑛/𝑏)

Warm-up

f(𝑛) is a multiplicative function:

 f(𝑥𝑦) = f(𝑥)f(𝑦)

f(1) = ?

f(𝑎𝑖) = ?

f(𝑛−1) = ?

Example of a multiplicative function :

Question: Can you express 𝑎𝐥𝐨𝐠𝒃 𝒄 as power of 𝑐 ?

Answer: 𝑐𝐥𝐨𝐠𝒃 𝒂

11

1

f(𝑎)𝒊

1/f(𝑛)

f(𝑛) = 𝑛α

Solving a slightly general class of recurrences

T(𝑛) = f(𝑛) + 𝑎 T(𝑛/𝑏)

 = f(𝑛) + 𝑎 f(𝑛/𝑏) + 𝑎2T(𝑛/𝑏2)

 = f(𝑛) + 𝑎 f(𝑛/𝑏) + 𝑎2f(𝑛/𝑏2) + 𝑎3T(𝑛/𝑏3)

 = …

 = f(𝑛) + 𝑎 f(𝑛/𝑏) + … + 𝑎𝑖f(𝑛/𝑏𝑖) + … + 𝑎𝑘−1f(𝑛/𝑏𝑘−1) +𝑎𝑘T(1)

 = (𝑎𝑖f(𝑛/𝑏𝑖)𝑘−1
𝑖=0) + 𝑎𝑘

 … after rearranging …

 = 𝑎𝑘 + 𝑎𝑖f(𝑛/𝑏𝑖)𝑘−1
𝑖=0

 … continued to the next page …

12

T(𝑛) = 𝑎𝑘 + 𝑎𝑖f(𝑛/𝑏𝑖)𝑘−1
𝑖=0

 (since f is multiplicative)

 = 𝑎𝑘 + 𝑎𝑖f(𝑛)/f(𝑏𝑖)𝑘−1
𝑖=0

 = 𝑎𝑘 + 𝑎𝑖f(𝑛)/(f(𝑏))𝑖𝑘−1
𝑖=0

 = 𝑎𝑘 + f(𝑛) 𝑎𝑖/(f(𝑏))𝑖𝑘−1
𝑖=0

 = 𝑎𝑘 + f(𝑛) (𝑎/f(𝑏))𝑖𝑘−1
𝑖=0

 = 𝑎𝑘 + (f(𝑏))𝑘 (𝑎/f(𝑏))𝑖𝑘−1
𝑖=0

Case 1: 𝑎 = f(𝑏), T(𝑛) = ??

13

A geometric series

𝑎𝑘(𝑘 + 1) = O(𝑛𝐥𝐨𝐠𝒃 𝒂 log𝑏 𝑛) = O(𝒂𝐥𝐨𝐠𝒃 𝒏 log𝑏 𝑛)

T(𝑛) = 𝑎𝑘 + 𝑎𝑖f(𝑛/𝑏𝑖)𝑘−1
𝑖=0

 (since f is multiplicative)

 = 𝑎𝑘 + 𝑎𝑖f(𝑛)/f(𝑏𝑖)𝑘−1
𝑖=0

 = 𝑎𝑘 + 𝑎𝑖f(𝑛)/(f(𝑏))𝑖𝑘−1
𝑖=0

 = 𝑎𝑘 + f(𝑛) 𝑎𝑖/(f(𝑏))𝑖𝑘−1
𝑖=0

 = 𝑎𝑘 + f(𝑛) (𝑎/f(𝑏))𝑖𝑘−1
𝑖=0

 = 𝑎𝑘 + (f(𝑏))𝑘 (𝑎/f(𝑏))𝑖𝑘−1
𝑖=0

Case 2: 𝑎 < f(𝑏), T(𝑛) = ??

14

𝑎𝑘+(f(𝑏))𝑘 ∙O(1) = O(f(𝑛)) = O((f(𝑏))𝑘)

For 𝑎 < f(𝑏), the sum of this
series is bounded by

? 𝟏

𝟏 −
𝒂

f(𝑏)
 = O(1)

T(𝑛) = 𝑎𝑘 + 𝑎𝑖f(𝑛/𝑏𝑖)𝑘−1
𝑖=0

 (since f is multiplicative)

 = 𝑎𝑘 + 𝑎𝑖f(𝑛)/f(𝑏𝑖)𝑘−1
𝑖=0

 = 𝑎𝑘 + 𝑎𝑖f(𝑛)/(f(𝑏))𝑖𝑘−1
𝑖=0

 = 𝑎𝑘 + f(𝑛) 𝑎𝑖/(f(𝑏))𝑖𝑘−1
𝑖=0

 = 𝑎𝑘 + f(𝑛) (𝑎/f(𝑏))𝑖𝑘−1
𝑖=0

 = 𝑎𝑘 + (f(𝑏))𝑘 (𝑎/f(𝑏))𝑖𝑘−1
𝑖=0

Case 3: 𝑎 > f(𝑏), T(𝑛) = ??

15

For 𝑎 > f(𝑏), the sum of this
series is equal to

𝑎
f(𝑏)

𝒌
− 𝟏

𝑎

f(𝑏)
 − 𝟏

𝑎𝑘 + O(𝑎𝑘) = O(𝑛log𝑏 𝑎)

Three cases

 T(𝑛) = 𝑎𝑘 + (f(𝑏))𝑘 (𝑎/f(𝑏))𝑖𝑘−1
𝑖=0

Case 1: 𝑎 = f(𝑏),

 T(𝑛) = O(𝑛log𝑏 𝑎 log𝑏 𝑛)

Case 2: 𝑎 < f(𝑏),

 T(𝑛) = O(f(𝑛))

Case 3: 𝑎 > f(𝑏),

 T(𝑛) = O(𝑛log𝑏 𝑎)

16

Master theorem

T(1) = 1,

T(𝑛) = f(𝑛) + a T(𝑛/b) where f is multiplicative.

There are the following solutions

Case 1: 𝑎 = f(𝑏), T(𝑛) = 𝑛log𝑏 𝑎 log𝑏 𝑛

Case 2: 𝑎 < f(𝑏), T(𝑛) = O(f(𝑛))

Case 3: 𝑎 > f(𝑏), T(𝑛) = O(𝑛log𝑏 𝑎)

17

Examples

18

Master theorem

If T(1) = 1, and T(𝑛) = f(𝑛) + a T(𝑛/b) where f is multiplicative,
then there are the following solutions

Case 1: 𝑎 = f(𝑏), T(𝑛) =𝑛log𝑏 𝑎 log𝑏 𝑛

Case 2: 𝑎 < f(𝑏), T(𝑛) = O(f(𝑛))

Case 3: 𝑎 > f(𝑏), T(𝑛) = O(𝑛log𝑏 𝑎)

Example 1: T(𝑛)= 𝑛 + 4 T(𝑛/2)

Solution: T(𝑛)= ??

19

O(𝑛2)

This is case 3

Master theorem

If T(1) = 1, and T(𝑛) = f(𝑛) + a T(𝑛/b) where f is multiplicative,
then there are the following solutions

Case 1: 𝑎 = f(𝑏), T(𝑛) = 𝑛log𝑏 𝑎 log𝑏 𝑛

Case 2: 𝑎 < f(𝑏), T(𝑛) = O(f(𝑛))

Case 3: 𝑎 > f(𝑏), T(𝑛) = O(𝑛log𝑏 𝑎)

Example 2: T(𝑛)= 𝑛𝟐+ 4 T(𝑛/2)

Solution: T(𝑛)= ??

20

 O(𝑛𝟐 log2 𝑛)

This is case 1

Master theorem

If T(1) = 1, and T(𝑛) = f(𝑛) + a T(𝑛/b) where f is multiplicative,
then there are the following solutions

Case 1: 𝑎 = f(𝑏), T(𝑛) = 𝑛log𝑏 𝑎 log𝑏 𝑛

Case 2: 𝑎 < f(𝑏), T(𝑛) = O(f(𝑛))

Case 3: 𝑎 > f(𝑏), T(𝑛) = O(𝑛log𝑏 𝑎)

Example 3: T(𝑛)= 𝑛3+ 4 T(𝑛/2)

Solution: T(𝑛)= ??

21

 O(𝑛3)

This is case 2

Master theorem

If T(1) = 1, and T(𝑛) = f(𝑛) + a T(𝑛 /b) where f is multiplicative,
then there are the following solutions

Case 1: 𝑎 = f(𝑏), T(𝑛) =𝑛log𝑏 𝑎 log𝑏 𝑛

Case 2: 𝑎 < f(𝑏), T(𝑛) = O(f(𝑛))

Case 3: 𝑎 > f(𝑏), T(𝑛) = O(𝑛log𝑏 𝑎)

Example 4: T(𝑛)= 2 𝑛𝟏.𝟓 + 3 T(𝑛/2)

Solution: T(𝑛)= ??

22

We can not apply master theorem directly
since f(𝑛) = 2 𝑛1.5 is not multiplicative.

Master theorem

If T(1) = 1, and T(𝑛) = f(𝑛) + a T(𝑛/b) where f is multiplicative,
then there are the following solutions

Case 1: 𝑎 = f(𝑏), T(𝑛) =𝑛log𝑏 𝑎 log𝑏 𝑛

Case 2: 𝑎 < f(𝑏), T(𝑛) = O(f(𝑛))

Case 3: 𝑎 > f(𝑏), T(𝑛) = O(𝑛log𝑏 𝑎)

Example 4: T(𝑛)= 2 𝑛𝟏.𝟓 + 3 T(𝑛/2)

Solution: G(𝑛)= T(𝑛)/2

G(𝑛)= 𝑛𝟏.𝟓 + 3 G(𝑛/2)

G(n) = O(𝑛log2 3)

T(n) = O(𝑛1.58).
23

= O(𝑛1.58)

This is case 3

Master theorem

If T(1) = 1, and T(𝑛) = f(𝑛) + a T(𝑛/b) where f is multiplicative,
then there are the following solutions

Case 1: 𝑎 = f(𝑏), T(𝑛) = 𝑛log𝑏 𝑎 log𝑏 𝑛

Case 2: 𝑎 < f(𝑏), T(𝑛) = O(f(𝑛))

Case 3: 𝑎 > f(𝑏), T(𝑛) = O(𝑛log𝑏 𝑎)

Example 6: T(𝑛) = T(𝑛) + c 𝑛

Solution: T(𝑛)= ??

24

We can not apply master theorem directly
since T(𝑛) <> T(𝑛/𝑏) for any constant 𝑏.

Solving T(𝑛) = T(𝑛) + c 𝑛 using the method of
unfolding

T(𝑛) = c 𝑛 + T(𝑛)

 = c 𝑛 + c 𝑛 + T(𝑛4)

 = c 𝑛 + c 𝑛 + c 𝑛4 + T(𝑛8)

 = c 𝑛 + c 𝑛 + … c 𝑛𝑖 + … + T(1)

 = O(𝑛)

25

A series which is decreasing at a rate
 faster than any geometric series

Can you guess the
number of terms in

this series ?

log log 𝑛

Master theorem

If T(1) = 1, and T(𝒏) = f(𝒏) + a T(𝒏/b) where f is multiplicative,
then there are the following solutions

Case 1: 𝑎 = f(𝑏), T(𝒏) = 𝒏log𝑏 𝑎 log𝑏 𝒏

Case 2: 𝑎 < f(𝑏), T(𝒏) = O(f(𝒏))

Case 3: 𝑎 > f(𝑏), T(𝒏) = O(𝒏log𝑏 𝑎)

Example 5: T(𝒏)= 𝒏 (log 𝒏)2 + 2 T(𝒏/2)

Solution: T(𝒏)= ??

26

We can not apply master theorem since
f(𝒏) = 𝒏 (log𝒏)2 is not multiplicative.

Using the method of “unfolding”,
it can be shown that T(𝒏) = O(𝒏 (log𝒏)3).

Homework

Solve the following recurrences systematically (if possible by various
methods). Assume that T(1) =1 for all these recurrences.

• T(𝑛) = 1 + 2 T(𝑛/2)

• T(𝑛) = 𝑛3 + 2 T(𝑛/2)

• T(𝑛) = 𝑛2 + 7 T(𝑛/3)

• T(𝑛) = 𝑛/ log 𝑛 + 2T(𝑛/2)

• T(𝑛) = 1 + T(𝑛/5)

• T(𝑛) = 𝑛 + 2 T(𝑛/4)

• T(𝑛) = 1 + T(𝑛)

• T(𝑛) = 𝑛 + T(9 𝑛/10)

• T(𝑛) = log 𝑛 + T(𝑛/4)

27

Next 2 classes

Either miss both or attend both the classes 

28

Red Black Tree

