
Data Structures and Algorithms 
(CS210A) 

 

Lecture 16: 
• Solving recurrences   

                             that occur frequently     … 

1 

in the analysis of algorithms. 



Commonly occurring recurrences  
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T(𝒏) = 𝒄𝒏  + 2 T(𝒏/𝟐) T(𝒏) = 𝒄𝒏𝟐 + 4T(𝒏/𝟐) T(𝒏) = 𝒄𝒏  + T(𝟕𝒏/𝟏𝟎) + T(𝒏/𝟓) T(𝒏) = 𝒄 𝐥𝐨𝐠 𝒏  + 2 T(𝒏/𝟐) T(𝒏) = 𝒄𝒏𝟏.𝟓 + 3T(𝒏/𝟐) T(𝒏) =  𝒄 + T(𝒏/2) T(𝒏) = 𝒄  + T( 𝒏) 



Methods for solving Recurrences 

3 

commonly occuring in  

algorithm analysis 



Methods for solving common Recurrences 

 
 

• Unfolding the recurrence. 

 

• Guessing the solution and then 

 

• A General solution for a large class of recurrences 
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(Master theorem) 

proving by induction. 



Solving a recurrence by unfolding 

Let T(1) = 1, 

      T(𝑛) = 𝒄 𝑛 + 4 T(𝑛/2) for 𝑛>1, where 𝒄 is some positive constant 

 

Solving the recurrence for T(𝑛) by unfolding (expanding) 

      T(𝑛) = 𝑐𝑛 + 4 T(𝑛/2)  

              = 𝒄𝑛 + 2𝑐𝑛 + 42 T(𝑛/22)   

              = 𝑐𝑛 + 2𝑐𝑛 + 4𝑐𝑛+ 43 T(𝑛/23)    

              = 𝑐𝑛 + 2 𝑐𝑛 + 4𝑐𝑛+ 8𝑐𝑛+ …+  4log2𝑛  

              = 𝑐𝑛 + 2 𝑐𝑛 + 4𝑐𝑛+ 8𝑐𝑛+ …+  𝑛2  

               

               

               = O(𝑛2) 
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A geometric increasing series with log 𝑛 terms and common ratio 2 



Solving a recurrence by guessing and  
then proving by induction 

T(1) = 𝑐1  

T(𝑛) = 2T(𝑛/2) + 𝑐2 𝑛 

Guess:      T(𝑛) ≤ 𝑎 𝑛 log 𝑛 + 𝑏  for some constants 𝑎 and 𝑏.  

Proof by induction:  

Base case: holds true if 

Induction hypothesis:      T(𝑘) ≤ 𝑎 𝑘 log 𝑘 + 𝑏 for all  𝑘<𝑛 

To prove:  T(𝑛) ≤ 𝑎 𝑛 log 𝑛 + 𝑏  

Proof:      T(𝑛) = 2T(𝑛/2) + 𝑐2 𝑛 

                          ≤ 2(𝑎
𝑛

2
 log

𝑛

2
 + 𝑏) + 𝑐2 𝑛  // by induction hypothesis 

                          = 𝑎 𝑛 log 𝑛 - 𝑎 𝑛  + 2 𝑏 + 𝑐2 𝑛 

                          = 𝑎 𝑛 log 𝑛 + 𝑏 + (𝑏 + 𝑐2 𝑛 - 𝑎 𝑛)  

                          ≤ 𝑎 𝑛 log 𝑛 + 𝑏      if  𝑎 ≥ 𝑏 + 𝑐2 
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It looks similar/identical  to 
the recurrence of merge sort.  

So we guess  

T(𝑛)  = O(𝑛 log 𝑛) 

𝑏 ≥ 𝑐1 

Hence T(𝑛) ≤ (𝑐1+ 𝑐2)𝑛 log 𝑛 +𝑐1 for all value of 𝑛. 
So T(𝑛) = 𝐎(𝑛 log 𝑛) 

These inequalities  
can be satisfied 
simultaneously   

by selecting   

𝑏 = 𝑐1 and  
𝑎=𝑐1+ 𝑐2 



Solving a recurrence by guessing and  
then proving by induction 

Key points: 

 

• You have to make a right guess (past experience may help) 

 

• What if your guess is too loose ? 

 

• Be careful in the induction step. 
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Solving a recurrence by guessing and  
then proving by induction 

Exercise: Find error in the following reasoning.             

For the recurrence  T(1) = 𝑐1 , and T(𝑛) = 2T(𝑛/2) + 𝑐2 𝑛, 

 

one guesses T(𝑛) = O(𝑛)  

Proposed (wrong)proof by induction: 

 

Induction hypothesis: T(𝑘) ≤ 𝑎𝑘 for all 𝑘 < 𝑛 

                  T(𝑛) = 2T(𝑛/2) + 𝑐2 𝑛 

                          ≤ 2(𝑎
𝑛

2
) + 𝑐2 𝑛  // by induction hypothesis 

                                 = 𝑎𝑛 + 𝑐2𝑛  

            = O(𝑛)  
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A General Method for solving a large class of 
Recurrences 
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Solving a large class of recurrences 

 

T(1) = 1, 

T(𝑛) = f(𝑛) + 

Where  

• 𝑎 and 𝑏 are constants 

• f(𝑛) is a multiplicative function: 

                             f(𝑥𝑦) = f(𝑥)f(𝑦) 

       

AIM : To solve T(𝑛) for 𝑛 = 𝑏𝑘  
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and 𝑏 >1 

𝑎 T(𝑛/𝑏) 



Warm-up 

f(𝑛) is a multiplicative function: 

                             f(𝑥𝑦) = f(𝑥)f(𝑦) 

f(1)      = ? 

f(𝑎𝑖)    = ? 

f(𝑛−1) = ? 

Example of a multiplicative function : 

 

 

Question: Can you express  𝑎𝐥𝐨𝐠𝒃 𝒄 as power of 𝑐 ? 

Answer:                                    𝑐𝐥𝐨𝐠𝒃 𝒂 
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1 

f(𝑎)𝒊 

1/f(𝑛) 

f(𝑛) = 𝑛α 



Solving a slightly general class of recurrences 

T(𝑛) = f(𝑛) + 𝑎 T(𝑛/𝑏) 

        = f(𝑛) + 𝑎 f(𝑛/𝑏) + 𝑎2T(𝑛/𝑏2) 

        = f(𝑛) + 𝑎 f(𝑛/𝑏) + 𝑎2f(𝑛/𝑏2) + 𝑎3T(𝑛/𝑏3) 

        =    … 

        = f(𝑛) + 𝑎 f(𝑛/𝑏) + … + 𝑎𝑖f(𝑛/𝑏𝑖) + … + 𝑎𝑘−1f(𝑛/𝑏𝑘−1) +𝑎𝑘T(1) 

 

        = ( 𝑎𝑖f(𝑛/𝑏𝑖)𝑘−1
𝑖=0  )     +   𝑎𝑘 

             … after rearranging … 

        = 𝑎𝑘    +     𝑎𝑖f(𝑛/𝑏𝑖)𝑘−1
𝑖=0  

             … continued to the next page … 

 

 

12 



T(𝑛)  = 𝑎𝑘    +     𝑎𝑖f(𝑛/𝑏𝑖)𝑘−1
𝑖=0  

          (since  f is multiplicative) 

         = 𝑎𝑘    +     𝑎𝑖f(𝑛)/f(𝑏𝑖)𝑘−1
𝑖=0   

         = 𝑎𝑘    +     𝑎𝑖f(𝑛)/(f(𝑏))𝑖𝑘−1
𝑖=0  

         =  𝑎𝑘    +   f(𝑛)  𝑎𝑖/(f(𝑏))𝑖𝑘−1
𝑖=0  

         = 𝑎𝑘    +   f(𝑛)  (𝑎/f(𝑏))𝑖𝑘−1
𝑖=0  

 

          = 𝑎𝑘    +   (f(𝑏))𝑘  (𝑎/f(𝑏))𝑖𝑘−1
𝑖=0  

 

Case 1: 𝑎 = f(𝑏),  T(𝑛)  = ?? 
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A geometric series 

𝑎𝑘(𝑘 + 1)  = O(𝑛𝐥𝐨𝐠𝒃 𝒂 log𝑏 𝑛 )  = O(𝒂𝐥𝐨𝐠𝒃 𝒏 log𝑏 𝑛 ) 



T(𝑛)  = 𝑎𝑘    +     𝑎𝑖f(𝑛/𝑏𝑖)𝑘−1
𝑖=0  

          (since  f is multiplicative) 

         = 𝑎𝑘    +     𝑎𝑖f(𝑛)/f(𝑏𝑖)𝑘−1
𝑖=0   

         = 𝑎𝑘    +     𝑎𝑖f(𝑛)/(f(𝑏))𝑖𝑘−1
𝑖=0  

         =  𝑎𝑘    +   f(𝑛)  𝑎𝑖/(f(𝑏))𝑖𝑘−1
𝑖=0  

         = 𝑎𝑘    +   f(𝑛)  (𝑎/f(𝑏))𝑖𝑘−1
𝑖=0  

 

          = 𝑎𝑘    +   (f(𝑏))𝑘  (𝑎/f(𝑏))𝑖𝑘−1
𝑖=0  

 

Case 2: 𝑎 < f(𝑏),  T(𝑛)  = ?? 
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𝑎𝑘+(f(𝑏))𝑘  ∙O(1) = O(f(𝑛)) = O((f(𝑏))𝑘) 

For 𝑎 < f(𝑏), the sum of this 
series is bounded by  

? 𝟏

𝟏 −  
𝒂

f(𝑏)
 = O(1) 



T(𝑛)  = 𝑎𝑘    +     𝑎𝑖f(𝑛/𝑏𝑖)𝑘−1
𝑖=0  

          (since  f is multiplicative) 

         = 𝑎𝑘    +     𝑎𝑖f(𝑛)/f(𝑏𝑖)𝑘−1
𝑖=0   

         = 𝑎𝑘    +     𝑎𝑖f(𝑛)/(f(𝑏))𝑖𝑘−1
𝑖=0  

         =  𝑎𝑘    +   f(𝑛)  𝑎𝑖/(f(𝑏))𝑖𝑘−1
𝑖=0  

         = 𝑎𝑘    +   f(𝑛)  (𝑎/f(𝑏))𝑖𝑘−1
𝑖=0  

 

          = 𝑎𝑘    +   (f(𝑏))𝑘  (𝑎/f(𝑏))𝑖𝑘−1
𝑖=0  

 

Case 3: 𝑎 > f(𝑏),  T(𝑛)  = ?? 
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For 𝑎 > f(𝑏), the sum of this 
series is equal to   

𝑎
f(𝑏)

𝒌
− 𝟏

 
𝑎

f(𝑏)
 − 𝟏

 

 

𝑎𝑘  + O(𝑎𝑘) = O(𝑛log𝑏 𝑎) 



Three cases 

 T(𝑛) = 𝑎𝑘    +   (f(𝑏))𝑘  (𝑎/f(𝑏))𝑖𝑘−1
𝑖=0  

 

Case 1: 𝑎 = f(𝑏),   

                                T(𝑛)  = O(  𝑛log𝑏 𝑎 log𝑏 𝑛) 

 

Case 2: 𝑎 < f(𝑏),   

                                T(𝑛)  = O(f(𝑛)) 

 

Case 3: 𝑎 > f(𝑏),   

                                T(𝑛) = O(𝑛log𝑏 𝑎)   

 

 
16 



Master theorem 

T(1) = 1, 

T(𝑛) = f(𝑛) + a T(𝑛/b)  where f is multiplicative. 

There are the following solutions 

Case 1: 𝑎 = f(𝑏),  T(𝑛)  =  𝑛log𝑏 𝑎 log𝑏 𝑛 

Case 2: 𝑎 < f(𝑏),  T(𝑛)  = O(f(𝑛)) 

Case 3: 𝑎 > f(𝑏),  T(𝑛) = O( 𝑛log𝑏 𝑎) 
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Examples 
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Master theorem 

If T(1) = 1, and T(𝑛) = f(𝑛) + a T(𝑛/b)  where f is multiplicative, 
then there are the following solutions 

Case 1: 𝑎 = f(𝑏),  T(𝑛)  =𝑛log𝑏 𝑎 log𝑏 𝑛 

Case 2: 𝑎 < f(𝑏),  T(𝑛)  = O(f(𝑛)) 

Case 3: 𝑎 > f(𝑏),  T(𝑛) = O(𝑛log𝑏 𝑎) 

 

Example 1: T(𝑛)= 𝑛 + 4 T(𝑛/2)  

 

Solution: T(𝑛)= ?? 
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O( 𝑛2) 

This is case 3 



Master theorem 

If T(1) = 1, and T(𝑛) = f(𝑛) + a T(𝑛/b)  where f is multiplicative, 
then there are the following solutions 

Case 1: 𝑎 = f(𝑏),  T(𝑛)  = 𝑛log𝑏 𝑎 log𝑏 𝑛 

Case 2: 𝑎 < f(𝑏),  T(𝑛)  = O(f(𝑛)) 

Case 3: 𝑎 > f(𝑏),  T(𝑛) = O(𝑛log𝑏 𝑎) 

  

Example 2: T(𝑛)=  𝑛𝟐+ 4 T(𝑛/2) 

 

Solution: T(𝑛)= ?? 

 

 
20 

 O( 𝑛𝟐 log2 𝑛 ) 

This is case 1 



Master theorem 

If T(1) = 1, and T(𝑛) = f(𝑛) + a T(𝑛/b)  where f is multiplicative, 
then there are the following solutions 

Case 1: 𝑎 = f(𝑏),  T(𝑛)  = 𝑛log𝑏 𝑎 log𝑏 𝑛 

Case 2: 𝑎 < f(𝑏),  T(𝑛)  = O(f(𝑛)) 

Case 3: 𝑎 > f(𝑏),  T(𝑛) = O( 𝑛log𝑏 𝑎) 

 

Example 3: T(𝑛)=  𝑛3+ 4 T(𝑛/2) 

 

Solution: T(𝑛)= ?? 

 

 
21 

 O( 𝑛3) 

This is case 2 



Master theorem 

If T(1) = 1, and T(𝑛) = f(𝑛) + a T(𝑛 /b)  where f is multiplicative, 
then there are the following solutions 

Case 1: 𝑎 = f(𝑏),  T(𝑛)  =𝑛log𝑏 𝑎 log𝑏 𝑛 

Case 2: 𝑎 < f(𝑏),  T(𝑛)  = O(f(𝑛)) 

Case 3: 𝑎 > f(𝑏),  T(𝑛) = O(𝑛log𝑏 𝑎) 

 

Example 4: T(𝑛)= 2 𝑛𝟏.𝟓 + 3 T(𝑛/2) 

 

Solution: T(𝑛)= ?? 
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We can not apply master theorem directly 
since f(𝑛) = 2 𝑛1.5 is not multiplicative.  



Master theorem 

If T(1) = 1, and T(𝑛) = f(𝑛) + a T(𝑛/b)  where f is multiplicative, 
then there are the following solutions 

Case 1: 𝑎 = f(𝑏),  T(𝑛)  =𝑛log𝑏 𝑎 log𝑏 𝑛 

Case 2: 𝑎 < f(𝑏),  T(𝑛)  = O(f(𝑛)) 

Case 3: 𝑎 > f(𝑏),  T(𝑛) = O(𝑛log𝑏 𝑎) 

 

Example 4: T(𝑛)= 2 𝑛𝟏.𝟓 + 3 T(𝑛/2) 

Solution: G(𝑛)= T(𝑛)/2 

G(𝑛)= 𝑛𝟏.𝟓 + 3 G(𝑛/2) 

G(n) = O( 𝑛log2 3)  

T(n) = O( 𝑛1.58). 
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= O( 𝑛1.58) 

This is case 3 



Master theorem 

If T(1) = 1, and T(𝑛) = f(𝑛) + a T(𝑛/b)  where f is multiplicative, 
then there are the following solutions 

Case 1: 𝑎 = f(𝑏),  T(𝑛)  = 𝑛log𝑏 𝑎 log𝑏 𝑛 

Case 2: 𝑎 < f(𝑏),  T(𝑛)  = O(f(𝑛)) 

Case 3: 𝑎 > f(𝑏),  T(𝑛) = O( 𝑛log𝑏 𝑎) 

 

Example 6: T(𝑛) = T( 𝑛) + c 𝑛  

 

Solution: T(𝑛)= ?? 
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We can not apply master theorem directly  
since T( 𝑛) <> T(𝑛/𝑏) for any constant 𝑏.  



Solving T(𝑛) = T( 𝑛) + c 𝑛 using the method of 
unfolding 

T(𝑛) = c 𝑛 + T( 𝑛) 

         = c 𝑛 + c 𝑛 + T( 𝑛4 ) 

         = c 𝑛 + c 𝑛 + c 𝑛4 + T( 𝑛8 ) 

         = c 𝑛 + c 𝑛 + … c 𝑛𝑖  + … + T(1) 

 

 

 

         = O(𝑛) 
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A series which is decreasing at a rate  
    faster than any geometric series 

Can you guess the 
number of terms in 

this series ? 

log log 𝑛  



Master theorem  

If T(1) = 1, and T(𝒏) = f(𝒏) + a T(𝒏/b)  where f is multiplicative, 
then there are the following solutions 

Case 1: 𝑎 = f(𝑏),  T(𝒏)  = 𝒏log𝑏 𝑎 log𝑏 𝒏 

Case 2: 𝑎 < f(𝑏),  T(𝒏)  = O(f(𝒏)) 

Case 3: 𝑎 > f(𝑏),  T(𝒏) = O( 𝒏log𝑏 𝑎) 

 

Example 5: T(𝒏)= 𝒏 (log 𝒏)2 + 2 T(𝒏/2) 

 

Solution: T(𝒏)= ?? 
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We can not apply master theorem since 
f(𝒏) = 𝒏 (log𝒏)2 is not multiplicative.  

Using the method of “unfolding”,  
it can be shown that  T(𝒏) = O(𝒏 (log𝒏)3). 



Homework 

Solve the following recurrences systematically  (if possible by various 
methods). Assume that T(1) =1 for all these recurrences.  

• T(𝑛) = 1 + 2 T(𝑛/2) 

• T(𝑛) = 𝑛3 + 2 T(𝑛/2) 

• T(𝑛) = 𝑛2 + 7 T(𝑛/3) 

• T(𝑛) = 𝑛/ log 𝑛 + 2T(𝑛/2) 

• T(𝑛) = 1 +  T(𝑛/5) 

• T(𝑛) = 𝑛 + 2 T(𝑛/4) 

• T(𝑛) = 1 + T( 𝑛) 

• T(𝑛) = 𝑛 + T(9 𝑛/10) 

• T(𝑛) = log 𝑛 + T(𝑛/4) 
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Next 2 classes 

 

 

 

 

 

Either miss both or attend both the classes  
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Red Black Tree 


