
Data Structures and Algorithms 
(CS210A) 

 

Lecture 14: 
• Algorithm paradigms 

• Algorithm paradigm of Divide and Conquer  

• Proof of correctness of the algorithm for 2-Majority element 
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Algorithm Paradigms 
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Algorithm Paradigm 

Motivation: 
• Many problems whose algorithms are based on a common approach.  

• A need of a systematic study of such widely used approaches. 

 

Algorithm Paradigms: 

• Divide and Conquer 

• Greedy Strategy 

• Dynamic Programming 

• Local Search 
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Divide and Conquer paradigm for 
Algorithm Design 
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Divide and Conquer paradigm 
An Overview 

 
 

 

1.  Divide the problem instance  

2.  Solve each smaller instances 

3.  Combine the solutions of the smaller instances  

         to get the solution of the original instance. 
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into two or more instances  of the same problem 

recursively (base case suitably defined). 

This is usually the main nontrivial step 
in the design of an algorithm using 

divide and conquer strategy 



Example 1 
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Sorting 



A problem in Practice sheet 1 

 

 

Merging two sorted arrays: 
Given two sorted arrays A and B storing 𝒏 elements each, Design an O(𝒏) 
time algorithm to output a sorted array C containing all elements of A and B.  

 

Example: If A={1,5,17,19} B={4,7,9,13}, then output is   

C={1,4,5,7,9,13,17,19}.  
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B A 

Merging two sorted arrays A and B 
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1 5 13 9 7 17     19 4 

C 5 1 4 

17     19 

7       9        13 



Pesudo-code for Merging two sorted arrays  

Merge(A[0..𝑛-1],B[0..𝑚-1], C)    // Merging two sorted arrays A and B into array C. 

{  i 0;  j 0;  

    k 0; 

   While(i<𝑛  and j<𝑚) 

   {        If(A[i]< B[j]) {                      ?                      } 

            Else                {                     ?                      } 

    } 

    While(i<𝑛) {  C[k]  A[i]; k++;  i++   } 

    While(j<𝑚) {  C[k]  B[j]; k++;  j++   } 

    return C; 

} 
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Time Complexity = 
O(𝒏+𝒎) 

Correctness : homework exercise 

C[k]  A[i]; k++;  i++ 

C[k]  B[j]; k++;  j++ 



Divide and Conquer based sorting algorithm 

MSort(A,𝑖,𝑗)  

{   If (     ?     ) 

    {    mid(𝑖+𝑗)/2; 

         MSort(A,𝑖,mid); 

         MSort(A,mid+1,𝑗); 

         Create temporarily  C[0..𝑗 − 𝑖] 

         Merge(A[𝑖..mid], A[mid+1..𝑗], C); 

         Copy C[0..𝑗 − 𝑖]  to A[𝑖..𝑗] 

}          
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Divide step 

Combine/conquer step 

This is Merge Sort 
algorithm 

i< j 

// Sorting the subarray A[𝑖..𝑗]. 



Divide and Conquer based sorting algorithm 

MSort(A,𝑖,𝑗)  

{   If (     ?     ) 

    {    mid(𝑖+𝑗)/2; 

         MSort(A,𝑖,mid); 

         MSort(A,mid+1,𝑗); 

         Create temporarily  C[0..𝑗 − 𝑖] 

         Merge(A[𝑖..mid], A[mid+1..𝑗], C); 

         Copy C[0..𝑗 − 𝑖]  to A[𝑖..𝑗] 

}          

Time complexity: 

If 𝒏 = 1,       

 T(𝒏) = c for some constant c 

If 𝒏 > 1,         

 T(𝒏) =  c 𝒏 + 2 T(𝒏/2) 

         =  c 𝒏 + c 𝒏 + 𝟐𝟐 T(𝒏/𝟐𝟐) 

         =  c 𝒏 + c 𝒏 + c 𝒏 + 𝟐𝟑 T(𝒏 /𝟐𝟑) 

         =  c 𝒏 + …(log 𝒏 terms)…+ c 𝒏   

         = O(𝒏 log 𝒏) 
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c 𝒏 

i< j 

// Sorting the subarray A[𝑖..𝑗]. 

T(𝒏/2) 

T(𝒏/2) 



Proof of correctness of Merge-Sort 

MSort(A,𝑖,𝑗)  

{   If (     ?     ) 

    {    mid(𝑖+𝑗)/2; 

         MSort(A,𝑖,mid); 

         MSort(A,mid+1,𝑗); 

         Create temporarily  C[0..𝑗 − 𝑖] 

         Merge(A[𝑖..mid], A[mid+1..𝑗], C); 

         Copy C[0..𝑗 − 𝑖]  to A[𝑖..𝑗] 

}          

Question: What is to be proved ? 

Answer: MSort(A,𝑖,𝑗) sorts the 
subarray A[𝑖..𝑗] 

 

Question: How to prove ? 

Answer:   

• By induction on the length 
(𝑗 − 𝑖 + 1) of the subarray. 

• Use correctness of the 
algorithm Merge. 
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i< j 

// Sorting the subarray A[𝑖..𝑗]. 



Example 2 
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Faster algorithm for  

multiplying two integers 



Addition is faster than multiplication 

Given: any two 𝑛-bit numbers  X and Y 

 

Question: how many bit-operations are required to  compute X+Y ? 

Answer:  O(𝑛) 

 

Question: how many bit-operations are required to  compute X* 𝟐𝒏 ? 

Answer:  O(𝑛) 

 

Question: how many bit-operations are required to  compute X*Y ? 

Answer:  O(𝑛2) 
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Can we compute 
X*Y faster ?? 

[left shift the number X by 𝑛 places, (do it carefully)] 

0 

0 0 

0 0 0 

X 

+ 



Pursuing Divide and Conquer approach 

 

 

 
 

Question: how to express X*Y in terms of multiplication/addition of 

{A,B,C,D} ? 

Hint: First Express X  and Y in terms of {A,B,C,D}. 

           X =           ?                and Y =           ?            . 
Hence … 

           X*Y = (A*C)* ??    + (A*D   + B*C)* ??      +  B*D  
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X 

Y 

MSB LSB 

n-1  n-2…......………………n/2.............................2 1 0 

A B 

C D 

𝟐𝒏 𝟐𝒏/𝟐 

4 multiplications 

C* 𝟐𝒏/𝟐 + D A* 𝟐𝒏/𝟐 + B 



Pursuing Divide and Conquer approach 

 

 

 
 

X*Y = (A*C)* ??    + (A*D   + B*C)* ??      +  B*D  
Let T(𝒏) : time complexity of multiplying X and Y using the above equation.  

      T(𝒏) = c 𝒏 + 4 T(𝒏 /2) for some constant c 

              = c 𝒏 + 2c 𝒏 + 𝟒𝟐 T(𝒏 /𝟐𝟐)   

              = c 𝒏 + 2c 𝒏 + 4c 𝒏+ 𝟒𝟑 T(𝒏 /𝟐𝟑)    

              = c 𝒏 + 2c 𝒏 + 4c 𝒏+ 8c 𝒏+ … +  𝟒𝐥𝐨𝐠𝟐𝒏T(𝟏) 

              = c 𝒏 + 2c 𝒏 + 4c 𝒏+ 8c 𝒏+ … + c 𝒏𝟐  
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X 

Y 

MSB LSB 

n-1  n-2…......………………n/2.............................2 1 0 

A B 

C D 

𝟐𝒏 𝟐𝒏/𝟐 

O(𝒏𝟐) time algo 



Pursuing Divide and Conquer approach 

 

 

 
 

X*Y = (A*C)* ??    + (A*D   + B*C)* ??      +  B*D 

Observation: A*D + B*C =           ?           +        ?      +        ? 

Question: How many multiplications do we need now to compute X*Y ? 

Answer:  3 multiplications :  

• A*C 

• B*D 

• (A-B)*(D-C) . 
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X 

Y 

MSB LSB 

n-1  n-2…......………………n/2.............................2 1 0 

A B 

C D 

𝟐𝒏 𝟐𝒏/𝟐 

Expand and explore 

(A-B)*(D-C) 

(A-B)*(D-C) A*C B*D 



Pursuing Divide and Conquer approach 

 

 

 
 

X*Y = (A*C)* ??   + ((A-B)*(D-C) + A*C + B*D)* ??      +  B*D 
Let T(𝒏) : time complexity of the new algo for multiplying two 𝒏-bit numbers 

      T(𝒏) = c 𝒏 + 3 T(𝒏 /2) for some constant c 

              = c 𝒏 + 3 c 
𝒏

𝟐
 + 𝟑𝟐 T(𝒏 /𝟐𝟐) 

              = c 𝒏 + 3c 
𝒏

𝟐
 + 9c

𝒏

𝟒
+ + … + ? 

              = O(𝒏𝐥𝐨𝐠𝟐𝟑) = O(𝒏𝟏.𝟓𝟖)  

 

 

 

18 

X 

Y 

MSB LSB 

n-1  n-2…......………………n/2.............................2 1 0 

A B 

C D 

𝟐𝒏 𝟐𝒏/𝟐 

𝟑𝐥𝐨𝐠𝟐𝒏 T(𝟏)  



Conclusion 

 

Theorem: There is a divide and conquer based algorithm for multiplying any 

two 𝒏-bit numbers in O(𝒏𝟏.𝟓𝟖) time (bit operations). 

 

Note:  
The fastest algorithm for this problem runs in almost O(𝒏 log 𝒏) time.  

One such algorithm was designed in 2008 at CSE, IIT Kanpur. 

By (Dey, Kurur, Saha, and Saptharishi). 
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Example 3 

20 

Counting the number of  

“inversions” in an array 



Counting Inversions in an array 
Problem description 

Definition (Inversion): Given an array A of size n,  

a pair (i,j), 0≤i<j<n is called an inversion if 

Example: 

 

 
 

Inversions are : 

                             (1,2), (1,4), (1,6),  

                             (3,4),(3,6),  

                             (5,6), (5,7) 

 

AIM: An efficient algorithm to count  the number of inversions in an array A.  
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A 3       15         8       19       9      67     11       27   

0            1            2           3             4         5           6            7 

A[i]>A[j]. 



Counting Inversions in an array 
Problem familiarization 

Trivial-algo(A[0..n-1]) 

{ count  0; 

   For(j=1  to n-1) do 

   {        For( i=0 to j-1 ) 

             {       If (A[i]>A[j])  count  count + 1; 

             } 

   } 

} 

Time complexity:  O(𝒏𝟐) 

Question: What can be the max. no. of inversions in an array A ? 

Answer: 𝒏
𝟐

, which is O(𝒏𝟐). 

Question: Is the algorithm given above optimal ? 

Answer:  No, our aim is not to report all inversions but to report the count. 
22 

Ponder over the divide and 
conquer algorithm for this 

problem. We shall discuss it 
in the next class. 



 

 

 
 

Question: What assertion holds at the end of 𝒊th iteration ? 

Answer: 

               P(𝒊) :  α is a majority element of                …  ? … 

Question: What is P(𝒏) ?  

Answer:  

                 x = α 
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Single scan algorithm 
𝒊 

𝑨 

α is a majority element of {x,…count times…,x} 

This is what we 
required  

As a homework exercise, 
prove assertion P(𝒊) by 

induction on 𝒊. 

{x,…count times…,x, A[𝒊],…,A[𝒏-1]} 


