
Data Structures and Algorithms
(CS210A)

Lecture 13:
• Majority element : an efficient and practical algorithm

• word RAM model of computation: further refinements.

1

Majority element

Definition: Given a multiset 𝑺 of 𝒏 elements,

𝒙 ∈ 𝑺 is said to be majority element if it appears more than 𝒏/𝟐 times in 𝑺.

 𝑺 = {𝒂, 𝒃, 𝒅, 𝒛, 𝒃, 𝒘, 𝒃, 𝒃, 𝒛, 𝒃, 𝒃, 𝒃, 𝒃, 𝒄}

2

Majority element

Definition: Given a multiset 𝑺 of 𝒏 elements,

𝒙 ∈ 𝑺 is said to be majority element if it appears more than 𝒏/𝟐 times in 𝑺.

 𝑺 = {𝒂, 𝒃, 𝒅, 𝒛, 𝒃, 𝒘, 𝒃, 𝒃, 𝒛, 𝒃, 𝒃, 𝒃, 𝒃, 𝒄}

Problem: Given a multiset 𝑺 of 𝒏 elements, find the majority element, if any, in 𝑺.

3

𝟖

Majority element
Trivial algorithms:

Algorithm 1:
1. Count occurrence of each element

2. If there is any element with count >
𝒏

𝟐
 , report it.

Running time: ?

4

O(𝒏𝟐) time

Majority element
Trivial algorithms:

Algorithm 2:

1. Sort the set 𝑺 to find its median

2. Let 𝒙 be the median

3. Count the occurrence of 𝒙, and

4. return 𝒙 if its count is more than
𝒏

𝟐

Running time: ?

Critical assumption underlying Algorithm 2 :

 elements of set 𝑺 can be compared under some total order (=,<,>)

5

O(𝒏 𝐥𝐨𝐠 𝒏) time

This assumption is
not justified in many real life

applications.

A real life application

6

Card-matching machine

Problem:
Given 𝒏 credit cards, determine if there is any majority card
using minimum no. of operations on card matching machine.

This machine takes two cards
and determines whether they are

identical or not.

Slots for inserting any two cards

Some observations

Problem: Given a multiset 𝑺 of 𝒏 elements,

where the only relation between any two elements is ≠ or = ,

find the majority element, if any, in 𝑺.

Question: How much time does it take to determine if an element 𝒙 ∈ 𝑺 is majority ?

Answer: O(𝒏) time

Observation 1: It is easy to verify whether an element is a majority

7

Some observations

Observation 2: whenever we cancel a pair of distinct elements from the array,

the majority element of the array remains preserved.

8

α

α

α

α

α

x

y

w

v

Majority
element

other
elements

>
𝒏

𝟐

<
𝒏

𝟐

Some observations

Observation 3: If there are 𝒎 pairs of identical elements, then

majority element is preserved even if we keep one element per pair.
9

𝒂 𝒃 𝒄 𝒄 𝒄 𝒛 𝒄 𝒂 𝒃 𝒃 𝒄 𝒄 𝒄 𝒄 𝒅 𝒄

𝒄 𝒄 𝒃 𝒃 𝒄 𝒄 𝒄 𝒄

𝒄 𝒃 𝒄 𝒄
The problem

size reduced by
at least half.

Algorithm for 2-majority element

Repeat

1. Pair up the elements;

2. Eliminate all pairs of distinct elements;

3. Keep one element per pair of identical elements.

Until only one element is left.

Verify if the last element is a majority element.

Time complexity:

T(𝒏) = c 𝒏 + c
𝒏

𝟐
 + c

𝒏

𝟒
 + …

Extra/working space requirement (assuming input is “read only”)

O(𝒏)

10

Take care if the no. of elements is odd

O(𝒏) time

Further restrictions on the problem

Restrictions:

• We are allowed to make single scan.

• We have very limited extra space.

Real life example:

There are 1012 numbers stored on hard disk.

RAM can’t provide O(𝒏) extra (working) space in this case.

11

Our current algorithm doesn’t work
for this real life example.

ALGORITHM FOR 2-MAJORITY ELEMENT

• Single scan and

• O(𝟏) extra space

12

Designing algorithm for 2-majority element
single scan and using O(𝟏) extra space

Question: Should we design algorithm from scratch to meet these constraints ?

Answer: No! We should try to adapt our current algorithm to meet these
constraints.

Question: How crucial is pairing of elements in our current algorithm ?

13

Think over this question
before going ahead.

Designing algorithm for 2-majority element
single scan and using O(𝟏) extra space

Insightful questions:

• Do we really need to keep more than one element ?

• Do we really need to keep multiple copies of an element explicitly ?

Ponder over these insights and make an attempt to design the algorithm

before moving ahead 

 14

𝒂 𝒃 𝒄 𝒄 𝒄 𝒛 𝒄 𝒂 𝒃 𝒃 𝒄 𝒄 𝒄 𝒄 𝒅 𝒄

Single scan

No. Just cancel suitably whenever encounter two distinct elements.

No. Just keeping its count will suffice.

Algorithm for 2-majority element
single scan and using O(𝟏) extra space

Algo-2-majority(A)

{ count 0;

 for(𝑖 = 0 to 𝑛 − 1)

 { if (count=0){ ? ;

 ? ;

 }

 else if(x<> A[𝑖]) ? ;

 else ? ;

 }

 Count the occurrences of x in A, and if it is more than 𝑛/2, then

 print(x is 2-majority element) else print(there is no majority element in A)

}

15

x A[𝑖];

count 1;

count  count - 1

count count + 1

Algorithm for 2-majority element
single scan and using O(𝟏) extra space

Theorem: There is an algorithm that makes just a single scan and uses O(𝟏)
extra space to compute majority element for a given multi-set.

Homework: Algorithm for 3-majority element

16

Proving correctness of algorithm for 2-
majority element

Optional Home work Exercise

Submit in the next class

“just the Assertion that holds at the end of each iteration”

17

A problem in Practice sheet 1 (7 January)

Merging two sorted arrays:
Given two sorted arrays A and B storing 𝒏 elements each,

Design an O(𝒏) time algorithm to output a sorted array C

containing all elements of A and B.

Example:

 If A={1,5,17,19} B={4,7,9,13}, then output is

 C={1,4,5,7,9,13,17,19}.

18

 0 1 2 3 4 5 6 7 8

A nice programming exercise ?

19

x

 0 1 2 3 4 5 6 7 8

A nice programming exercise ?

20

x
<x

>x

 0 1 2 3 4 5 6 7 8

A nice programming exercise ?

This procedure is called Partition.

It rearranges the elements so that all elements less than x appear to the left of
x and all elements greater than x appear to the right of x. 21

 0 1 2 3 4 5 6 7 8

<x >x

Implement Partition()
in O(𝑛) time

using O(1) space?

Word RAM model of computation

Further refinements

22

word RAM : a model of computation

23

RAM

Processor

Data

Program

Execution of a instruction
(fetching the operands, arithmetic/logical operation, storing the result back into RAM)

24

RAM

Processor

A more realistic RAM

𝒏 : input size

Input resides completely in RAM.

Question: How many bits are needed to access an input item from RAM ?

Answer: At least log 𝒏.

 (k bits can be used to create at most 𝟐𝒌 different addresses)

Current-state-of-the-art computers:

• RAM of size 4GB

 Hence 32 bits to address any item in RAM.

• Support for 64-bit arithmetic

 Ability to perform arithmetic/logical operations on any two 64-bit numbers.

 25

word RAM model of computation:
Characteristics

• Word is the basic storage unit of RAM. Word is a collection of few bytes.

• Data as well as Program reside fully in RAM.

• Each input item (number, name) is stored in binary format.

• RAM can be viewed as a huge array of words. Any arbitrary location of
RAM can be accessed in the same time irrespective of the location.

• Each arithmetic or logical operation (+,-,*,/,or, xor,…) involving a constant
number of words takes a constant number of steps by the CPU.

26

Each arithmetic or logical operation (+,-,*,/,or, xor,…) involving O(log 𝒏) bits
takes a constant number of steps by the CPU,

where 𝒏 is the number of bits of input instance.

