Data Structures and Algorithms
(CS210A)

Lecture 13:

Majority element : an efficient and practical algorithm
word RAM model of computation: further refinements.

Majority element

Definition: Given a multiset S of n elements,
X € §is said to be majority element if it appears more than /2 times in §.

S={a,b,d,z,b,w,b,b,z,b,b, b, b, c}

Majority element

Definition: Given a multiset S of n elements,

X € S is said to be majority element if it appears more than n/2 times in S.
8

S={a,b,d,z,b,w,b,b,z,b,b, b, b, c}

Problem: Given a multiset S of n elements, find the majority element, if any, in S.

Majority element

Trivial algorithms:

Algorithm 1.:

1. Count occurrence of each element

2. If there is any element with count > g , report it.

. . 2\ o
Running time: ©(n%) time

Majority element

Trivial algorithms:

Algorithm 2:

1. Sortthe set S to find its median
2. Let x be the median

3. Count the occurrence of x, and
4

o o . n
return x if its count is more than 5

Running time: O(n log n) time

Critical assumption underlying Algorithm 2 :

—

—

not justified in many real life

This assumption is

applications.

elements of set S can be compared under some total order (=,<,>)

A real life application

Problem:
Given n credit cards, determine if

using minimum no. of operations on cal_

—

—

This machine takes two cards
and determines whether they are

identical or not.

Some observations

Problem: Given a multiset S of n elements,
where the only relation between any two elements is # or =,
find the majority element, if any, in S.

Question: How much time does it take to determine if an element x € S is majority ?

Answer: O(n) time
Observation 1: It is easy to verify whether an element is a majority

Some observations

]
0

|
A
NS

eSS0 0 0 < X
\

QR o 0L o o1

T 1

Majority other
element elements

Observation 2: whenever we cancel a pair of distinct elements from the array,
the majority element of the array remains preserved.

Some observations

1
P
a
a
T
R
P
1
Sy
Sy
a
a
a
a
R
P

The problem
size reduced by
at least half.

Observation 3: If there are m pairs of identical elements, then
majority element is preserved even if we keep one element per pair.

Algorithm for 2-majority element

Repeat
1. Pair up the elements; Take care if the no. of elements is odd

2. Eliminate all pairs of distinct elements;

3. Keep one element per pair of identical elements.

Until only one element is left.
Verify if the last element is a majority element.

Time complexity:
T(n)=cn+c§+cg+... O(n) time

Extra/working space requirement (assuming input is “read only”)
O(n)

Further restrictions on the problem

Restrictions:
e We are allowed to make single scan.

00
 We have very limited extra space. —~

Our current algorithm doesn’t work
for this real life example.

Real life example:
There are 10" numbers stored on hard disk.
RAM can’t provide O(n) extra (working) space in this case.

ALGORITHM FOR 2-MAIJORITY ELEMENT

Single scan and
O(1) extra space

Designing algorithm for 2-majority element
single scan and using O(1) extra space

Question: Should we design algorithm from scratch to meet these constraints ?

Answer: No! We should try to adapt our current algorithm to meet these

constraints.

Question: How crucial is pairing of elements in our current algorithm ?

— —
EI Think over this question If
before going ahead.

13

Designing algorithm for 2-majority element
single scan and using O(1) extra space

| Singecon 2

alb|clcl|lclz|cla|b|lb |c|c|c| c|d]|c

Insightful questions:

* Do we really need to keep more than one element ?

No. Just cancel suitably whenever encounter two distinct elements.
Do we really need to keep multiple copies of an element explicitly ?

No. Just keeping its count will suffice.
Ponder over these insights and make an attempt to design the algorithm

before moving ahead ©

14

Algorithm for 2-majority element
single scan and using O(1) extra space

Algo-2-majority(A)
{ count& 0;
for(i=0ton —1)
{ if(count=0){ x€ Ali];
count< 1;
}

else if(x<> A[i]) count € count-1 ;

else count€ count+1 -

}

Count the occurrences of x in A, and if it is more than /2, then

print(x is 2-majority element) else print(there is no majority element in A)

15

Algorithm for 2-majority element
single scan and using O(1) extra space

Theorem: There is an algorithm that makes just a single scan and uses O(1)
extra space to compute majority element for a given multi-set.

Homework: Algorithm for 3-majority element

Proving correctness of algorithm for 2-
majority element

Optional Home work Exercise
Submit in the next class
“just the Assertion that holds at the end of each iteration”

A problem in Practice sheet 1 (7 January)

Merging two sorted arrays:

Given two sorted arrays A and B storing n elements each,
Design an O(n) time algorithm to output a sorted array C
containing all elements of A and B.

Example:
If A={1,5,17,19} B={4,7,9,13}, then output is

c={1,4,5,7,9,13,17,19}.

A nice programming exercise ?

1

2

3

4

5

6

7

8

i

19

A nice programming exercise ?

1

S

@)

i

>X

<X

20

A nice programming exercise ?

o
-
N
w
I
Ul
(o)}
~
00

Implement Partition()
in O(n) time
using O(1) space?

<X
This procedure is called Partition.

It rearranges the elements so that all elements less than x appear to the left of
x and all elements greater than x appear to the right of x. 21

Word RAM model of computation

Further refinements

22

word RAM : a model of computation

N

Processor

RAM

23

Execution of a instruction

(fetching the operands, arithmetic/logical operation, storing the result back into RAM)

AN

Proce

SS

or

RAM

24

A more realistic RAM

n : input size
Input resides completely in RAM.
Question: How many bits are needed to access an input item from RAM ?

Answer: At least log n.

(k bits can be used to create at most 2% different addresses)

Current-state-of-the-art computers:
 RAM of size 4GB

Hence 32 bits to address any item in RAM.
* Support for 64-bit arithmetic

Ability to perform arithmetic/logical operations on any two 64-bit numbers.

word RAM model of computation:
Characteristics

Word is the basic storage unit of RAM. Word is a collection of few bytes.

Data as well as Program reside fully in RAM.

Each input item (number, name) is stored in binary format.

RAM can be viewed as a huge array of words. Any arbitrary location of
RAM can be accessed in the same time irrespective of the location.

Each arithmetic or logical operation (+,-,*,/,0r, xor,...) involving O(log n) bits
takes a constant number of steps by the CPU,
where n is the number of bits of input instance.

