
Data Structures and Algorithms
(CS210A)

Lecture 12:
• Queue : a new data Structure :

• Finding shortest route in a grid in presence of obstacles

1

Queue: a new data structure

Data Structure Queue:

• Mathematical Modeling of Queue

• Implementation of Queue using arrays

2

Stack

A special kind of list where all operations (insertion, deletion, query)

take place at one end only, called the top.

Behavior of Stack:

 Last in

3

𝑎1

𝑎𝑛−1

𝑎𝑛 top

First out

(LIFO)

4

Queue: a new data structure

A special kind of list based on

First in

𝑎2 𝑎1 𝑎𝑛

front rear

First Out

(FIFO)

Operations on a Queue

Query Operations
• IsEmpty(Q):

• Front(Q):

 Example: If Q is 𝑎1, 𝑎2, …, 𝑎𝑛 , then Front(Q) returns ?? .

Update Operations
• CreateEmptyQueue(Q):

• Enqueue(x,Q):

 Example: If Q is 𝑎1, 𝑎2,…, 𝑎𝑛, then after Enqueue(x,Q), queue Q becomes

 ??

• Dequeue(Q):

 Example: If Q is 𝑎1, 𝑎2,…, 𝑎𝑛, then after Dequeue(Q), queue Q becomes

 ??

5

𝑎1, 𝑎2 ,…, 𝑎𝑛, 𝐱

𝑎2 ,…, 𝑎𝑛

𝑎1

determine if Q is an empty queue.

returns the element at the front position of the queue.

Create an empty queue

insert x at the end of the queue Q

return element from the front of the queue Q and delete it

6

How to access 𝒊th element from the front ?

• To access 𝑖th element, we must perform

 dequeue (hence delete) the first 𝑖 − 1 elements from the queue.

𝑎𝑖−1 𝑎1 𝑎𝑛 𝑎𝑖

An Important point you must remember for
every data structure

You can define any new operation only in
terms of the primitive operations of the data

structures defined during its modeling.

Implementation of Queue using array

Assumption: At any moment of time, the number of elements in queue is n.

Keep an array of Q size n, and two variables front and rear.

• front: the position of the first element of the queue in the array.

• rear: the position of the last element of the queue in the array.

Enqueue(x,Q)

{ rear  rear+1;

 Q[rear]x

}

Dequeue(Q)

{ x Q[front];

 front front+1;

 return x;}

7

b d x y

front rear

u

rear front

There is a serious
problem !

Implementation of Queue using array

8

t

rear

u h k

front

v

How to perform
Enqueue(t,Q) ? How to perform
Enqueue(x,Q) ?

x

Implementation of Queue using array

Enqueue(x,Q)

{ rear  rear+1;

 Q[rear]x

}

Dequeue(Q)

{ x Q[front];

 front front+1;

 return x;

}

IsEmpty(Q)

{ ?? }

9

(rear+1) mod n ;

(front+1) mod n ;

Do it as an exercise

Shortest route in a grid with obstacles

10

Shortest route in a grid
 From a cell in the grid, we can move to any of its neighboring cell in one step.

Problem: From top left corner, find shortest route to each cell avoiding obstacles.

Input : a Boolean matrix 𝑮 representing the grid such that

𝑮[𝒊, 𝒋] = 0 if (𝒊, 𝒋) is an obstacle, and 1 otherwise.

11
obstacles

Step 1:

12

Realizing

the nontriviality of the problem

13

Shortest route in a grid
nontriviality of the problem

Definition: Distance of a cell c from another cell c’

 is the length (number of steps) of the shortest route between c and c’.

We shall design algorithm for computing distance of each cell from the start-cell.

 As an exercise, you should extend it to a data structure for retrieving shortest route.

Don’t proceed to the
next slide until you are
convinced about the

non-triviality and beauty
of this problem 

Get inspiration from nature

14

The ripples travels along the shortest route ?

Shortest route in a grid
nontriviality of the problem

15

Create a ripple at the start cell and trace
the path it takes to

How to find the shortest route to in the grid ?

propagation of a ripple from the start cell

16

ripple reaches cells at distance 1 in step 1

17

ripple reaches cells at distance 2 in step 2

18

ripple reaches cells at distance 3 in step 3

19

ripple reaches cells at distance 8 in step 8

20

ripple reaches cells at distance 9 in step 9

21

ripple reaches cells at distance 10 in step 10

22

ripple reaches cells at distance 11 in step 11

23

ripple reaches cells at distance 12 in step 12

24

ripple reaches cells at distance 13 in step 13

25

ripple reaches cells at distance 14 in step 14

26

ripple reaches cells at distance 15 in step 15

Think for a few more minutes with a free mind .

 27

The route taken by
ripple is indeed the

shortest.

Did you get some
insight into the

problem from the
animation ?

Step 2:
Designing algorithm for distances in grid

(using an insight into propagation of ripple)

28

A snapshot of ripple after 𝒊 steps

29

A snapshot of ripple after 𝒊 steps

𝑳𝒊 : the cells of the grid at distance 𝒊 from the starting cell.
30

𝑳𝒊

A snapshot of the ripple after 𝒊 + 𝟏 steps

Observation: Each cell of 𝑳𝒊+𝟏 is a neighbor of a cell in 𝑳𝒊.

31

𝑳𝒊 𝑳𝒊+𝟏

All the hardwork on the animation was done just to
make you realize this important Observation. If you

have got it, feel free to erase the animation from your
mind .

Observation: Each cell of 𝑳𝒊+𝟏 is a neighbor of a cell in 𝑳𝒊.

But every neighbor of 𝑳𝒊 may be a cell of ?

Distance from the start cell

32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 27 28 29 30

1 2 3 4 5 7 8 9 10 11 12 13 14 26 27 28 29

2 3 4 5 15 10 11 12 25 26 27 28

3 4 5 6 14 13 12 11 12 13 24 25 26 27

4 5 6 13 14 23 24 25 26

5 6 7 14 15 22 23 24 25
6 7 8 15 16 17 18 19 20 21 22 23 24

7 8 9 16 17 18 20 21 22 23 24 25
8 9 10 17 18 26

9 10 11 18 19 27

10 11 12 13 14 15 16 17 18 19 20 35 36 28
 17 18 19 20 21 34 35 29

24 23 22 21 20 19 18 19 20 21 22 30 31 32 33 34 30

25 23 22 21 20 19 20 21 22 23 29 34 35 31
26 24 21 22 23 24 28 33 34 32

27 25 22 23 24 25 26 27 32 33 33

28 27 26 27 26 25 24 23 24 25 26 27 28 29 30 31 32 33 34

How can we
generate 𝑳𝒊+𝟏

from 𝑳𝒊 ?

𝑳𝒊−𝟏 or 𝑳𝒊+𝟏.

It is worth spending some time on this matrix.
Does the matrix give some idea to answer the question ?

How can we generate 𝑳𝒊+𝟏 from 𝑳𝒊 ?

33

How can we generate 𝑳𝒊+𝟏 from 𝑳𝒊 ?

34

𝑳𝒊 𝑳𝒊−𝟏 𝑳𝒊+𝟏

How can we generate 𝑳𝒊+𝟏 from 𝑳𝒊 ?

35

𝑳𝒊 𝑳𝒊−𝟏 𝑳𝒊+𝟏

Suppose all cells of 𝑳𝒊−𝟏 get visited first.

How can we generate 𝑳𝒊+𝟏 from 𝑳𝒊 ?

36

𝑳𝒊 𝑳𝒊−𝟏 𝑳𝒊+𝟏

Suppose all cells of 𝑳𝒊−𝟏 get visited first.
Then all cells of 𝑳𝒊 are visited, and

How can we generate 𝑳𝒊+𝟏 from 𝑳𝒊 ?

37

𝑳𝒊 𝑳𝒊−𝟏 𝑳𝒊+𝟏
So by the time all cells

of 𝑳𝒊 are visited, if a cell
neighboring to a cell of
𝑳𝒊 is unvisited, it must

be a cell of 𝑳𝒊+𝟏.


Suppose all cells of 𝑳𝒊−𝟏 get visited first.
Then all cells of 𝑳𝒊 are visited, and

then all cells of 𝑳𝒊+𝟏 are visited.

How can we generate 𝑳𝒊+𝟏 from 𝑳𝒊 ?

So the algorithm should be:

Initialize the distance of all cells except start cell as ∞

First compute 𝑳𝟏.

Then using 𝑳𝟏 compute 𝑳𝟐

Then using 𝑳𝟐 compute 𝑳𝟑

…

38

𝑳𝒊 𝑳𝒊−𝟏 𝑳𝒊+𝟏

Algorithm to compute 𝑳𝒊+𝟏 if we know 𝑳𝒊

Compute-next-layer(G, 𝑳𝒊)

{

 CreateEmptyList(𝑳𝒊+𝟏);

 For each cell c in 𝑳𝒊

 For each neighbor b of c which is not an obstacle

 { if (Distance[b] = ∞)

 { Insert(b, 𝑳𝒊+𝟏);

 Distance[b] 𝒊 + 𝟏 ;

 }

 }

 return 𝑳𝒊+𝟏;

}

39

The first (not so elegant) algorithm
(to compute distance to all cells in the grid)

Distance-to-all-cells(G, 𝐜0)

{ 𝑳𝟎  {𝐜0};

 For(𝒊 = 0 to ??)

 𝑳𝒊+𝟏  Compute-next-layer(G, 𝑳𝒊);

}

The algorithm is not elegant because of

• So many temporary lists that get created.

40

It can be as high as
O(𝒏𝟐)

Towards an elegant algorithm …

Key points we observed:

• We can compute cells at distance 𝑖 + 1 if …

• Therefore, we need a mechanism

 to enumerate the cells in

41

How to design such
a mechanism ?

we know all cells up to distance 𝑖.

non-decreasing order of distances from the start cell.

Keep a queue Q

Spend some time to see how seamlessly the queue ensured

the requirement of visiting cells of the grid in non-decreasing order of distance.
42

𝑳𝒊

Q

𝑳𝒊+𝟏

An elegant algorithm
(to compute distance to all cells in the grid)

Distance-to-all-cells(G, 𝐜0)

 CreateEmptyQueue(Q);

 Distance(𝐜0)  0;

 Enqueue(𝐜0,Q);

 While(??)

 { c Dequeue(Q);

 For each neighbor b of c which is not an obstacle

 { if (Distance(b) = ∞)

 { Distance(b)  ?? ;

 ?? ;

 }

 }

 }
43

Not IsEmptyQueue(Q)

Distance(c) +1

Enqueue(b, Q);

Proof of correctness of algorithm

Question: What is to be proved ?

Answer: At the end of the algorithm,

Distance[c]= the distance of cell c from the starting cell in the grid.

Question: How to prove ?

Answer: By the principle of mathematical induction on

 the distance from the starting cell.

Inductive assertion:

P(𝒊):

The algorithm correctly computes distance to all cells at distance 𝒊 from the starting cell.

 As an exercise, try to prove P(𝒊) by induction on 𝒊.

44

