Data Structures and Algorithms (CS210A)

Lecture 12:

- **Queue** : a new data Structure :
- Finding shortest route in a grid in presence of obstacles

Queue: a new data structure

Data Structure Queue:

- Mathematical Modeling of Queue
- Implementation of Queue using arrays

Stack

A <u>special kind</u> of list where all operations (insertion, deletion, query) take place at <u>one end</u> only, called the **top**.

Behavior of Stack: (LIFO) Last in First out

Queue: a new data structure

A <u>special kind</u> of list based on (FIFO) First in First Out

Operations on a Queue

Query Operations

- IsEmpty(Q): determine if Q is an empty queue.
- Front(Q): returns the element at the front position of the queue. Example: If Q is $a_1, a_2, ..., a_n$, then Front(Q) returns a_1 .

Update Operations

- **CreateEmptyQueue(Q)**: Create an empty queue
- Enqueue(x,Q): insert x at the end of the queue Q
 Example: If Q is a₁, a₂,..., a_n, then after Enqueue(x,Q), queue Q becomes

 $a_1, a_2, ..., a_n, \mathbf{x}$

Dequeue(Q): return element from the front of the queue Q and <u>delete</u> it
 Example: If Q is a₁, a₂,..., a_n, then after Dequeue(Q), queue Q becomes

 a_2 ,..., a_n

How to access *i*th element from the front ?

$$a_1 \bullet \bullet \bullet a_{i-1} a_i \bullet \bullet \bullet a_n$$

• To access *i*th element, we **must** perform **dequeue** (hence <u>delete</u>) the first i - 1 elements from the queue.

Implementation of Queue using array

Assumption: At any moment of time, the number of elements in queue is n. Keep an array of **Q** size **n**, and two variables front and rear.

- front: the position of the **first** element of the queue in the array. ۲
- **rear**: the position of the **last** element of the queue in the array. ۲

```
Enqueue(x,Q)
       rear \leftarrow rear+1;
   Q[rear] \leftarrow x
}
Dequeue(Q)
{
          x \leftarrow \mathbf{Q}[\text{front}];
    front \leftarrow front+1;
    return x;}
```


Implementation of **Queue** using array

Implementation of **Queue** using array

Shortest route in a grid with obstacles

Shortest route in a grid

From a cell in the grid, we can move to any of its <u>neighboring</u> cell in one <u>step</u>. **Problem:** From <u>top left corner</u>, find shortest route to each cell <u>avoiding</u> obstacles. **Input** : a Boolean matrix *G* representing the grid such that

G[i, j] = 0 if (i, j) is an obstacle, and 1 otherwise.

Realizing the nontriviality of the problem

Shortest route in a grid nontriviality of the problem

Definition: Distance of a cell **c** from another cell **c'**

is the length (number of steps) of the shortest route between c and c'.

We shall design algorithm for computing distance of each cell from the start-cell.

As an exercise, you should extend it to a data structure for retrieving shortest route.

Get inspiration from nature

Shortest route in a grid

nontriviality of the problem

15

propagation of a ripple from the start cell

ripple reaches cells at distance 1 in step 1

ripple reaches cells at distance 2 in step 2

ripple reaches cells at distance 3 in step 3

ripple reaches cells at distance 8 in step 8

ripple reaches cells at distance 9 in step 9

ripple reaches cells at distance 10 in step 10

ripple reaches cells at distance 11 in step 11

ripple reaches cells at distance 12 in step 12

ripple reaches cells at distance 13 in step 13

ripple reaches cells at distance 14 in step 14

ripple reaches cells at distance 15 in step 15

Think for a few more minutes with a free mind \bigcirc .

Step 2: Designing algorithm for distances in grid

(using an insight into propagation of ripple)

A snapshot of ripple after *i* steps

A snapshot of ripple after *i* steps

 L_i : the cells of the grid at distance i from the starting cell.

A snapshot of the ripple after i + 1 steps

Distance from the start cell

It is worth spending some time on this matrix. Does the matrix give some idea to answer the question ?

Observation: Each cell of L_{i+1} is a neighbor of a cell in L_i .

But every neighbor of L_i may be a cell of L_{i-1} or L_{i+1} .

So the algorithm should be:

Initialize the distance of all cells except start cell as ∞

First compute **L**₁.

...

```
Then using L_1 compute L_2
```

```
Then using L_2 compute L_3
```


Algorithm to compute L_{i+1} if we know L_i

```
Compute-next-layer(G, L<sub>i</sub>)
{
  CreateEmptyList(L<sub>i+1</sub>);
  For each cell c in L<sub>i</sub>
        For each neighbor b of c which is <u>not</u> an obstacle
              if (Distance[b] = ∞)
        {
                      Insert(b, L_{i+1});
               {
                      Distance[b] \leftarrow i + 1;
               }
       }
  return L<sub>i+1</sub>;
}
```


The algorithm is not elegant because of

• So many temporary lists that get created.

Towards an elegant algorithm ...

Key points we observed:

- We can compute cells at distance i + 1 if we know all cells up to distance i.
- Therefore, we need a mechanism to enumerate the cells in <u>non-decreasing</u> order of <u>distances</u> from the start cell.

Keep a queue Q

Spend some time to see how seamlessly the queue ensured

the requirement of visiting cells of the grid in non-decreasing order of distance.

An elegant algorithm

(to compute distance to all cells in the grid)

```
Distance-to-all-cells(G, c<sub>0</sub>)
  CreateEmptyQueue(Q);
  Distance(\mathbf{c}_0) \leftarrow 0;
  Enqueue(c<sub>0</sub>,Q);
  While(
              Not IsEmptyQueue(Q)
             c \leftarrow Dequeue(Q);
  {
            For each neighbor b of c which is not an obstacle
                    if (Distance(b) = \infty)
            {
                            Distance(b) ←
                                                    Distance(c) +1
                                                                         ;
                            Enqueue(b, Q);
                                                 ;
            }
  }
```

Proof of correctness of algorithm

Question: What is to be proved ? Answer: At the end of the algorithm, Distance[c]= the distance of cell c from the starting cell in the grid.

Question: How to prove ? Answer: By the principle of mathematical induction on the distance from the starting cell.

Inductive assertion:

P(<mark>i</mark>):

The algorithm correctly computes distance to all cells at distance *i* from the starting cell.

As an exercise, try to prove **P(***i***)** by induction on *i*.