
Data Structures and Algorithms 
(CS210A) 

 

Lecture 12: 
• Queue : a new data Structure :  

• Finding shortest route in a grid in presence of obstacles  
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Queue: a new data structure 

Data Structure Queue: 

 

• Mathematical Modeling of Queue 

 

• Implementation of Queue using arrays   
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Stack 

A special kind of list where all operations (insertion, deletion, query)  

take place at one end only, called the top.  

 

 

 

 

 

 

 

 

Behavior of Stack:     

              Last in 
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𝑎1 

𝑎𝑛−1 

𝑎𝑛 top 

First out 

(LIFO) 
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Queue: a new data structure 

A special kind of list based on  

First in 

𝑎2 𝑎1 𝑎𝑛 

front rear 

First Out 

(FIFO) 



Operations on a Queue 

Query Operations 
• IsEmpty(Q):   

• Front(Q):   

      Example: If Q is 𝑎1, 𝑎2, …, 𝑎𝑛 , then Front(Q) returns   ??         . 

Update Operations 
• CreateEmptyQueue(Q): 

• Enqueue(x,Q):  

      Example:  If Q is 𝑎1, 𝑎2,…, 𝑎𝑛,  then after Enqueue(x,Q), queue Q becomes   

                                                                ??         

• Dequeue(Q):  

      Example: If Q is 𝑎1, 𝑎2,…, 𝑎𝑛,  then after Dequeue(Q), queue Q becomes  

                                                                   ??  
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𝑎1, 𝑎2 ,…, 𝑎𝑛, 𝐱 

𝑎2 ,…, 𝑎𝑛 

𝑎1 

determine if Q is an empty queue. 

returns the element at the front position of the queue. 

Create an empty queue 

insert x at the end of the queue Q 

return element from the front of the queue Q and delete it 
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How to access 𝒊th element from the front ? 

 

 

 

 

 
• To access 𝑖th element, we must perform  

       dequeue (hence delete) the first  𝑖 − 1 elements from the queue. 

𝑎𝑖−1 𝑎1 𝑎𝑛 𝑎𝑖 

An Important point you must remember for 
every data structure 

You can define any new operation only in 
terms of the primitive operations of the data 

structures defined during its modeling. 



Implementation of Queue using array 

Assumption: At any moment of time, the number of elements in queue is n. 

Keep an array of Q size n, and two variables front and rear. 

• front:  the position of the first element of the queue in the array. 

• rear:   the position of the last element of the queue in the array. 

 

Enqueue(x,Q) 

{       rear  rear+1;   

    Q[rear]x  

} 

Dequeue(Q) 

{           x Q[front]; 

     front front+1; 

     return x;} 
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b d x y 

front rear 

u 

rear front 

There is a serious 
problem ! 



Implementation of Queue using array 
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t 

rear 

u h k 

front 

v 

How to perform 
Enqueue(t,Q) ? How to perform 
Enqueue(x,Q) ? 

x 



Implementation of Queue using array 

Enqueue(x,Q) 

{      rear  rear+1;    

   Q[rear]x  

} 

 

Dequeue(Q) 

{           x Q[front]; 

     front front+1; 

     return x; 

} 

IsEmpty(Q) 

{                ??                    } 
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(rear+1) mod n ; 

(front+1) mod n ; 

Do it as an exercise  



Shortest route in a grid with obstacles 
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Shortest route in a grid 
 From a cell in the grid, we can move to any of its neighboring cell in one step. 

Problem: From top left corner, find shortest route to each cell avoiding  obstacles. 

Input : a Boolean matrix 𝑮 representing the grid such that  

𝑮[𝒊, 𝒋] = 0 if (𝒊, 𝒋) is an obstacle, and 1 otherwise. 
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obstacles 



Step 1: 
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Realizing  

the nontriviality of the problem 
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Shortest route in a grid 
nontriviality of the problem  

 

 

 

 

 

 
Definition:  Distance of a cell c from another cell c’  

                      is the length (number of steps) of the shortest route between c and c’. 

We shall design algorithm for computing distance of each cell from the start-cell. 

     As an exercise, you should extend it to a data structure for retrieving shortest route. 

Don’t proceed to the 
next slide until you are 
convinced about the 

non-triviality and beauty 
of this problem  



Get inspiration from nature 

 

14 

The ripples travels along  the shortest route ? 



Shortest route in a grid 
nontriviality of the problem  
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Create a ripple at the start cell and trace 
the path it takes to  

How to find the shortest route to      in the grid ? 



propagation of a ripple from the start cell 
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ripple reaches cells at distance 1 in step 1 
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ripple reaches cells at distance 2 in step 2 
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ripple reaches cells at distance 3 in step 3 

19 



ripple reaches cells at distance 8 in step 8 
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ripple reaches cells at distance 9 in step 9 
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ripple reaches cells at distance 10 in step 10 
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ripple reaches cells at distance 11 in step 11 
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ripple reaches cells at distance 12 in step 12 
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ripple reaches cells at distance 13 in step 13 
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ripple reaches cells at distance 14 in step 14 
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ripple reaches cells at distance 15 in step 15 

 

 

 

 

 

 

 

 

 

 

 

 

Think for a few more minutes with a free mind . 
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The route taken by 
ripple is indeed the 

shortest. 

Did you get some 
insight into the 

problem from the 
animation ? 



Step 2:  
Designing algorithm for distances in grid 

(using  an insight into propagation of ripple) 
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A snapshot of ripple after 𝒊 steps 
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A snapshot of ripple after 𝒊 steps 

 

 

 

 

 

 

 

 

 

 

 

 

𝑳𝒊 : the cells of the grid at distance 𝒊 from the starting cell.  
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𝑳𝒊  



A snapshot of the ripple after 𝒊 + 𝟏 steps 

 

 

 

 

 

 

 

 

 

 

 

Observation: Each cell of 𝑳𝒊+𝟏 is a neighbor of a cell in 𝑳𝒊.  
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𝑳𝒊  𝑳𝒊+𝟏  

All the hardwork on the animation was done just to 
make you realize this important Observation.  If you 

have got it, feel free to erase the animation from your 
mind . 



 

 

 

 

 

 

 

 

 

 

 

Observation: Each cell of 𝑳𝒊+𝟏 is a neighbor of a cell in 𝑳𝒊.  

But every neighbor of 𝑳𝒊 may be a cell of       ? 

 

Distance from the start cell 

32 

0   1   2     3   4   5    6    7   8   9   10  11 12 13       27 28 29 30 

1   2   3     4   5         7    8   9   10 11 12  13 14       26 27 28 29 

2   3   4     5        15             10 11 12                         25 26 27 28 

3   4   5    6         14 13  12 11 12 13                         24 25 26 27 

4   5   6                                      13 14                         23 24 25 26 

5   6    7                                     14   15                        22 23 24 25 
6   7    8                                     15  16  17 18 19 20  21 22 23 24 

7   8    9                                     16  17 18       20  21 22 23 24  25 
8   9    10                                   17 18                                           26 

9   10  11                                   18 19                                           27 

10 11  12 13 14  15 16 17 18 19  20                        35 36        28 
                                         17 18 19  20 21                        34  35       29 

24 23  22 21 20  19 18 19 20 21  22       30  31 32 33 34       30 

25       23 22 21  20  19 20 21 22 23       29             34 35       31 
26       24                         21 22 23 24        28            33 34       32 

27       25                         22 23 24 25  26 27            32 33       33 

28  27 26 27  26 25 24 23  24 25 26 27 28  29  30 31 32 33 34 

How can we 
generate 𝑳𝒊+𝟏 

from 𝑳𝒊 ? 

𝑳𝒊−𝟏 or 𝑳𝒊+𝟏. 

It is worth spending some time on this matrix.  
Does the matrix give some idea to answer the question ? 



How can we generate 𝑳𝒊+𝟏 from 𝑳𝒊 ? 
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How can we generate 𝑳𝒊+𝟏 from 𝑳𝒊 ? 
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𝑳𝒊 𝑳𝒊−𝟏 𝑳𝒊+𝟏 



How can we generate 𝑳𝒊+𝟏 from 𝑳𝒊 ? 
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𝑳𝒊 𝑳𝒊−𝟏 𝑳𝒊+𝟏 

Suppose all cells of 𝑳𝒊−𝟏 get visited first. 
 
 



How can we generate 𝑳𝒊+𝟏 from 𝑳𝒊 ? 
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𝑳𝒊 𝑳𝒊−𝟏 𝑳𝒊+𝟏 

Suppose all cells of 𝑳𝒊−𝟏 get visited first. 
Then all cells of 𝑳𝒊 are visited, and 

 



How can we generate 𝑳𝒊+𝟏 from 𝑳𝒊 ? 
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𝑳𝒊 𝑳𝒊−𝟏 𝑳𝒊+𝟏 
So by the time all cells 

of 𝑳𝒊 are visited, if a cell 
neighboring to a cell of 
𝑳𝒊 is unvisited, it must 

be a cell of 𝑳𝒊+𝟏. 
  

Suppose all cells of 𝑳𝒊−𝟏 get visited first. 
Then all cells of 𝑳𝒊 are visited, and 

then all cells of 𝑳𝒊+𝟏 are visited. 



How can we generate 𝑳𝒊+𝟏 from 𝑳𝒊 ? 

So the algorithm should be: 

Initialize the distance of all cells except start cell as ∞ 

First compute 𝑳𝟏. 

Then using 𝑳𝟏 compute 𝑳𝟐 

Then using 𝑳𝟐 compute 𝑳𝟑 

… 
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𝑳𝒊 𝑳𝒊−𝟏 𝑳𝒊+𝟏 



Algorithm to compute 𝑳𝒊+𝟏 if we know 𝑳𝒊 

Compute-next-layer(G, 𝑳𝒊) 

{ 

    CreateEmptyList(𝑳𝒊+𝟏); 

    For each cell c in 𝑳𝒊  

           For each neighbor b of c which is not an obstacle 

           {        if (Distance[b] = ∞) 

                    {         Insert(b, 𝑳𝒊+𝟏);                           

                              Distance[b] 𝒊 + 𝟏 ; 

                    } 

          } 

    return 𝑳𝒊+𝟏; 

} 
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The first (not so elegant) algorithm  
(to compute distance to all cells in the grid) 

 

 

 

Distance-to-all-cells(G, 𝐜0) 

{    𝑳𝟎  {𝐜0}; 

     For(𝒊 = 0 to  ?? ) 

                     𝑳𝒊+𝟏  Compute-next-layer(G, 𝑳𝒊); 

} 

 

The algorithm is not elegant because of 

• So many temporary lists that get created.  
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It can be as high as 
O(𝒏𝟐) 



Towards an elegant algorithm … 

Key points we observed: 
 

• We can compute cells at distance 𝑖 + 1 if   … 

 

• Therefore, we need a mechanism  

      to enumerate the cells in 
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How to design such 
a mechanism ?  

we know all cells up to distance 𝑖. 

non-decreasing order of distances from the start cell. 



Keep a queue Q 

 

 

 

 

 

 

 

 

 

 

 

Spend some time to see how seamlessly the queue ensured  

the requirement of visiting cells of the grid in non-decreasing order of distance. 
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𝑳𝒊 

Q 

𝑳𝒊+𝟏 



An elegant algorithm  
(to compute distance to all cells in the grid) 

Distance-to-all-cells(G, 𝐜0) 

    CreateEmptyQueue(Q); 

    Distance(𝐜0)  0; 

    Enqueue(𝐜0,Q); 

    While(                          ??                   ) 

    {              c Dequeue(Q); 

                   For each neighbor b of c which is not an obstacle 

                   {          if (Distance(b) = ∞)                         

                                    {    Distance(b)                         ??            ;                           

                                                            ??         ; 

                                    } 

                   } 

    } 
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Not IsEmptyQueue(Q)  

Distance(c) +1 

Enqueue(b, Q); 



Proof of correctness of algorithm 

Question: What is to be proved ? 

Answer: At the end of the algorithm, 

Distance[c]= the distance of cell c from the starting cell in the grid. 

 

Question: How to prove ? 

Answer: By the principle of mathematical induction on  

                the distance from the starting cell. 

 

Inductive assertion: 

P(𝒊):  

The algorithm correctly computes distance to all cells at distance 𝒊 from the starting cell. 

                                 As an exercise, try to prove P(𝒊) by induction on 𝒊. 
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