Data Structures and Algorithms
(CS210/CS210A)

Lecture 1:
* An overview and motivation for the course
* some concrete examples.

The website of the course

moodle.cse.iitk.ac.in
W CSE

CS210: Data Structures and Algorithms

(guest login allowed)

] =
2 This course will be taught differently. ;

Those were the 2o /cl2n» moments...

x e
H=08m __ ol
@20 y \
[..
[As an instructor, | shall try my
4mm

best to make this course equally
enjoyable as solving those
physics problems.

Prerequisite of this course

* A good command on Programming in C

— Programs involving arrays
— Recursion
— Linked lists (preferred)

* Fascination for solving Puzzles

Salient features of the course

* Every concept We shall re-invent in the class itself.

* Solving each problem Through discussion in the class.

solution will emerge naturally if we ask
right set of questions
and then try to find their answers.

... so that finally it is a concept/solution derived by you
and not a concept from some scientist/book/teacher.

Isn’t that nice ©

Let us open a desktop/laptop

A processor (CPU)
speed = few GHz
(a few nanoseconds to execute an instruction)

Internal memory (RAM)
size = a few GB (Stores a billion bytes/words)
speed = a few GHz(a few nanoseconds to read a byte/word

External Memory (Hard Disk Drive)
size = a few tera bytes

speed : seek time = miliseconds
transfer rate= around billion bits per second

A simplifying assumption
(for the rest of the lecture)

It takes around a few nanoseconds to execute an instruction.

(This assumption is well supported by the modern day computers)

EFFICIENT ALGORITHMS

What is an algorithm ?

Definition:
A finite sequence of well defined instructions
required to solve a given computational problem.

A prime objective of the course:
Design of efficient algorithms

WHY SHOULD WE CARE FOR
EFFICIENT ALGORITHMS

&

WE HAVE PROCESSORS RUNNING AT GIGAHERTZ?

10

Revisiting problems from ESC101

Problem 1;
Fibonacci numbers

Fibonacci numbers

F(0) = 0;
F(1) = 1;
F(n) = Fn—1) + F(n—2) foralln > 1;

F(n) ~a-b"

An easy exercise : Using induction or otherwise, show that
n—2

F(n) > 2 2

Algorithms you must have implemented for computing F(n) :

* |terative
* recursive

13

Iterative Algorithm for F(n)

IFib(n)

if n=0 return O;
else if n=1 return 1;

else {
a< 0;, b&< 1
For(i=2 to n) do
{ temp < b;
b& a+b;
a< temp;
}
}

return b;

Recursive algorithm for F(n)

Rfib(n)
{ if n=0 return 0O;

else if n=1 return 1;
else return(Rfib(n-1) + Rfib(n-2))

Homework 1

(compulsory)

Write a C program for the following problem:

Input: anumbern

n : long long int (64 bit integer).

Output: F(n) mod 2014

Time Taken

Largest n for Rfib

Largest n for IFib

1 minute

10 minutes

60 minutes

16

Problem 2:
Subset-sum problem

Input: An array A storing n numbers, and a number s

A 12 3 46 | 34 | 19 | 101 | 208 | 120 | 219 | 115 220

Output: Determine if there is a subset of numbers from A whose sum is s.

The fastest existing algorithm till date : 2"/% instructions

e Timeforn =100 At least an year
e Timeforn =120 At least 1000 years

on the fastest existing computer.

Problem 3:
Sorting

Input: An array A storing n numbers.
Output: Sorted A

A fact:

A significant fraction of the code of all the software is for sorting or searching only.

To sort 10 million numbers on the present day computers
* Selection sort will take at least a few hours.

* Merge sort will take only a few seconds.
* Quick sort will take ??7?

How to design efficient algorithm for a problem ?

Design of algorithms and data structures is also
an Art

Requires:

* Creativity

 Hard work

* Practice

* Perseverance (mostimportant)

19

Summary of Algorithms

There are many practically relevant problems for which there does not
exist any efficient algorithm till date ®. (How to deal with them ?)

Efficient algorithms are important for theoretical as well as practical
purposes.

Algorithm design is an art which demands a lot of creativity, intuition, and

perseverance.

More and more applications in real life require efficient algorithms
— Search engines like Google exploits many clever algorithms.

THE DATA STRUCTURES

An Example

Given: a telephone directory storing telephone no. of hundred million persons.
Aim: to answer a sequence of queries of the form
“what is the phone number of a given person ?”.

Solution 1:
Keep the directory in an array.
do sequential search for each query.

Time per query: around 1/10t of a second

Solution 2:
Keep the directory in an array, and sort it according to names,
do binary search for each query.

Time per query: less than 100 nanoseconds

Aim of a data structure ?

To store/organize a given data in the memory of computer so that

each subsequent operation (query/update) can be performed quickly ?

Range-Minima Problem

A Motivating example
to realize the importance of data structures

24

Range-Minima Problem

Given: an array A storing n numbers,
Aim: a data structure to answer a sequence of queries of the following type
Range-minima(i, j) : report the smallest element from A[(],...,A[/]

Let n = one million.
No. of queries = 10 millions

Range-Minima(i, j) = -6

A 3518190-13099-610240274467|

Range-Minima Problem
Applications:

* Computational geometry
e String matching

* As an efficient subroutine in a variety of algorithms

(we shall discuss these problems sometime in this course or the next level
course CS345)

Range-Minima Problem

Solution 1:

Answer each query in a brute force manner using A itself.

Range-minima-trivial(i,))

{ temp < i+1; Time for answering all queries:
min < A[i]; a few hours
While(temp <=) — —

{ if (min > A[temp])
min < A[temp];
temp < temp+1;
}
return min

}

Time taken to answer a query: few milliseconds

Range-Minima Problem

Solution 2:

Compute and store answer for each possible query in a n x n matrix B.
J

Solution 2 is
Theoretically efficient but
practically impossible

Size of B is too large to be
kept in RAM. So we shall
have to keep most of it in the
Hard disk drive. Hence it will
take a few milliseconds per

B[i][j] stores the smallest element from A[i],...,A[/]
Space : roughly n? words.

28

Range-Minima Problem

QUEStiOh: Does there exist a data structure for Range-minima which is

* Compact

(nearly the same size as the input array A)

 Can answer each query efficiently ?

(a few nanoseconds per query)

Homework 2: Ponder over the above question.

(we shall solve it soon)

29

Range-1-Query

Determining if a rectangle has at leastone 1?

e Data structure: a few tables.
* Query time: a few nanoseconds.

o o |o |1 |1 Jo |1 |o
1 (1 Jo |1 Jo |o |2
o |1 fo |o J1 |1 |1
o |o fo |o J1 |o |o
1 |o |1 |o fo |o Jo
0o [1 |0 |1 1
o |o o |o |o |o |1
o |1 |1 |1 [o |o |1

Any idea about
when th"f’ reSL;It in a Conference in
was derived 2015

Data structures to be covered in this

course
Elementary Data Structures
— Array
— List
— Stack
— Queue

Hierarchical Data Structures
— Binary Heap
— Binary Search Trees

Most fascinating and
powerful data structures

Augmented Data Structures

31

Look forward to working with all of you to make this course
enjoyable.

This course will be light in contents (no formulas)
But it will be very demanding too.

In case of any difficulty during the course,
just drop me an email without any delay.
| shall be happy to help ©

