
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 8:
Inventing a new Data Structure with

• Flexibility of lists for updates

• Efficiency of arrays for search

1

Important Notice

There are basically two ways of introducing a new/innovative solution of a
problem. One way is to just explain it without giving any clue as to how the
person who invented the concept came up with this solution. Another way is
to start from scratch and take a journey of the route which the inventor might
have followed to arrive at the solution. This journey goes through various
hurdles and questions, each hinting towards a better insight into the problem
if we have patience and open mind. Which of these two ways is better ?

I believe that the second way is better and more effective. The current lecture
is based on this way. The data structure we shall invent is called a Binary
Search Tree. This is the most fundamental and versatile data structure. We
shall realize this fact many times during the course …

2

Doubly Linked List based implementation versus array
based implementation of “List”

Operation Time Complexity per
operation for array based

implementation

Time Complexity per
operation for doubly linked
list based implementation

IsEmpty(L) O(1) O(1)

Search(x,L) O(n) O(n)

Successor(p,L) O(1) O(1)

Predecessor(p,L) O(1) O(1)

CreateEmptyList(L) O(1) O(1)

Insert(x,p,L) O(n) O(1)

Delete(p,L) O(n) O(1)

MakeListEmpty(L) O(1) O(1)

3 Arrays are very rigid

Problem

Maintain a telephone directory

Operations:
• Search the phone # of a person with name x

• Insert a new record (ID no., phone #,…)

4

Array based
solution

Linked list based
solution

O(n) O(n)

O(n) O(1)

Can we achieve the best of the two
data structure simultaneously ?

Can we improve it ? Yes. Keep the array sorted
according to the ID no. and do

Binary search for x.

Log n

We shall together invent such a novel data structure today

ID no.

Log n

Inventing a new data structure

5

Array

Head

Lists

New Data structure

Too Rigid for updates

Lists are flexible, so let us try
modifying the linked list structure

to achieve fast search time.

Restructuring doubly linked list

6

head

1 2 n/2 n-1 n
2 5 46 83 96

head

46

head

n/2

n/2 -1 n/2 +1

41 53

1 2 n-1 n

2 5 83 96

2

1 n/4-1

25 41

n/4+1 n/2 -1

31

46

head

n/2

n/4 3n/4

28 67

53

n/2 +1 3n/4-1

65 96

3n/4+1 n

73

Since it is sorted arrangement that
facilitates efficient searching in an array, so

let us keep the elements of the list also
sorted according to unique ID numbers of

persons.

Observation:
Smaller IDs can now be searched quickly, but for
larger IDs, we may have to traverse whole list. 

Can we modify the list so that we need

to traverse at most
𝒏

𝟐
 nodes of the list in

the worst case for any search operation ?

Good. Now can we modify the list so that

we need to traverse at most
𝒏

𝟒
+ 𝟏 nodes

of the list in the worst case for any
search operation ?

What structure emerges if you extend this idea further ? Imagine …

A new data structure emerges

7

head

2

28

46

67

96 25

5

31 41

35 49

53 48 73

83

A new data structure emerges
To analyze it mathematically, remove irrlevant details

8

head

2

28

46

67

96 25

5

31 41

35 49

53 48 73

83

Nature is a great source of inspiration

9

leaves

joints

root

Nature is a great source of inspiration

10

Nature is a great source of inspiration

11

root

leaves

edges Nodes

Binary Tree: A mathematical model

Definition: A collection of nodes is said to form a binary tree if

1. There is exactly one node with no incoming edge.

 This node is called the root of the tree.

2. Every node other than root node has exactly one incoming edge.

3. Each node has at most two outgoing edges.

12

Which of these are
not binary trees ?

Binary Tree: some terminologies

• If there is an edge from node u to node v,

 then u is called parent of v ,and v is called child of u.

• The Height of a Binary tree T is the maximum number of edges from the
root to any leaf node in the tree T.

parent(y) = ??

parent(v) = ??

children(y) = ??

children(x) = ??

height(T) = ??

13

u

v

z

x

y q

r

p

T

x

u

{r}

{y,q}

4

subtree(x)
subtree(y)

subtree(v)

Varieties of Binary trees

14

skewed

u

v

z

x

y
q

T

p

w

u

v

z

x

y

r

p

T’

w

For every node, the number of nodes in
the subtrees of its two children differ at

atmost by 1.

We call it Perfectly balanced

Height of a perfectly balanced Binary tree

 𝑯(𝑛) : Height of a perfectly balanced
binary tree on 𝑛 nodes.

𝑯(1) = ?

𝑯(𝑛) = ?

15

≤ 𝟏 + 𝑯
𝑛

2

0

𝑛

≤
𝑛

2
 ≤

𝑛

2

Height of a perfectly balanced Binary tree

 𝑯(𝑛) : Height of a perfectly balanced
binary tree on 𝑛 nodes.

𝑯(1) = ?

𝑯(𝑛) = ?

 ≤ 𝟏 + 𝟏 + 𝑯
𝑛

4

 ≤ 𝟏 + 𝟏 + ⋯ + 𝑯
𝑛

2𝑖

 ≤ 𝐥𝐨𝐠2 𝑛

16

≤ 𝟏 + 𝑯
𝑛

2

0

𝑛
≤

𝑛

4

𝑖

Implementing a Binary trees

17

v

left(v) right(v)

v

value(v)

Binary Search Tree (BST)

Definition: A Binary Tree T storing values is said to be Binary Search Tree if for each node v in T

• If left(v) <> NULL, then value(v) > value of every node in subtree(left(v)).

• If right(v)<>NULL, then value(v) < value of every node in subtree(right(v)).

18

head

2

28

46

67

96 25

5

31 41

35 49

53 48 73

83

Search(T,x)
Searching in a Binary Search Tree

19

2

28

46

67

96 25

5

31 41

35 49

53 48 73

83

T

Search(T,33) :
Searching for 33 in T.

Search(T,x)
Searching in a Binary Search Tree

Search(T,x)

{ p T;

 Found FALSE ;

 while(??)

 { if(value(p) = x) ?? ;

 else if (value(p) < x) ?? ;

 else ?? ;

 }

 return p;

}

20

Found= FALSE & p<> NULL

Found TRUE

p right(p)

p left(p)

Insert(T,x)
Insertion in a Binary Search Tree

21

2

28

46

67

96 25

5

31 41

35 49

53 48 73

83

T

Insert(T,50) :
Inserting 50 into T.

50

A question

Time complexity of Search(T,x) and Insert(T,x) in a Binary
Search Tree T = ??

22

O(Height(T))

Homeworks

• Write pseudocode for Insert(T,x) operation similar to the
pseudocode we wrote for Search(T,x).

• Design an algorithm for the following problem:

Given a sorted array A storing n elements,

build a “perfectly balanced” BST storing all elements of A

in O(n) time.

23

Homework 3

What does the following algorithm accomplish ?

Traversal(T)

{ p T;

 if(p=NULL) return;

 else{ if(left(p) <> NULL) Traversal(left(p));

 print(value(p));

 if(right(p) <> NULL) Traversal(right(p));

 }

}

24

It prints the elements of binary search tree T in increasing order
of their values. What is its time complexity ?

Ponder over this algorithm for a few minutes to
know what it is doing. You might like to try it out

on some example of BST.

Time complexity of any search and any single insertion in a
perfectly balanced Binary Search Tree on n nodes

25

2

28

46

67

96 25

5

31 41

35 49

53 48 73

83

T

O(log n) time

Time complexity of any search and any single insertion in a
sqewed Binary Search Tree on n nodes

26

23

T’

39

48

19

11

14

18

O(n) time !

Our original Problem

Maintain a telephone directory

Operations:
• Search the phone # of a person with name x

• Insert a new record (ID no., phone #,…)

Solution : We may keep perfectly balanced BST.

Hurdle: What if we insert records in increasing order of ID ?

 BST will be skewed 

 BST data structure that we invented looks very elegant,

 let us try to find a way to overcome the hurdle.

27

Array based
solution

Linked list based
solution

O(n) O(n)

O(n) O(1)

Log n
ID no.

Log n

• Let us try to find a way of achieving Log 𝒏 search time.

• Perfectly balanced BST achieve Log 𝒏 search time.

• But the definition of Perfectly balanced BST looks too
restrictive.

• Let us investigate : How crucial is perfect balance of a BST ?

28

How crucial is perfect balance of a BST ?

 𝑯(1) = 0

𝑯(𝑛) = ≤ 𝟏 + 𝑯
𝑛

2

29

𝑛

≤
𝑛

2
 ≤

𝑛

2

Let us change this recurrence
slightly.

How crucial is perfect balance of a BST ?

 𝑯(1) = 0

𝑯(𝑛) ≤ 𝟏 + 𝑯
3𝑛

4

 ≤ 𝟏 + 𝟏 + 𝑯
3

4

2
𝑛

 ≤ 𝟏 + 𝟏 + ⋯ + 𝑯
3

4

𝑖
𝑛

 ≤ 𝐥𝐨𝐠4/3 𝑛

30

≤
3𝑛

4

𝑛

What lesson did you get
from this recurrence ?

Think for a while before
going further …

Lesson learnt :
We may as well work with nearly balanced BST

Nearly balanced Binary Search Tree

Terminology:

size of a binary tree is the number of nodes present in it.

Definition: A binary search tree T is said to be nearly balanced at node v, if

size(left(v)) ≤
3

4
 size(v)

 and

size(right(v)) ≤
3

4
 size(v)

Definition: A binary search tree T is said to be nearly balanced if

 it is nearly balanced at each node.

31

Nearly balanced Binary Search Tree

Think of ways of using nearly balanced BST for solving our dictionary problem.

You might find the following observations/tools helpful :

• If a node v is perfectly balanced, it requires many insertions till v ceases to
remain nearly balanced.

• Any arbitrary BST of size 𝑛 can be converted into a perfectly balanced BST in
O(𝑛) time.

32

Solving our dictionary problem
Preserving O(log 𝒏) height after each operation

Each node v in T maintains additional field size(v) which is the number of
nodes in the subtree(v).

• Keep Search(T,x) operation unchanged.

• Modify Insert(T,x) operation as follows:

– Carry out normal insert and update the size fields of nodes traversed.

– If BST T is ceases to be nearly imbalanced at any node v,

 transform subtree(v) into perfectly balanced BST.

33

“Perfectly Balancing” subtree at a node v

34

v

>
𝟑

𝟒
𝑘

Size differs by at most 1 𝑘 𝑘

What can we say about this data structure ?

It is elegant and reasonably simple to implement.

Yes, there will be huge computation for some insertion operations.

But the number of such operations will be rare.

So, at least intuitively, the data structure appears to be efficient.

Indeed, this data structure achieve the following goals:

• For any arbitrary sequence of 𝒏 operations, total time will be O(𝒏 log 𝒏).

• Worst case search time: O(log 𝒏)

You will do programming assignment to verify the validity of the two claims
mentioned above experimentally.

 What about the theoretical analysis to justify these claims ?

35

Keep thinking till we do it in a few weeks .

