
Data Structures and Algorithms 
(CS210A) 

Semester I – 2014-15 

Lecture 8: 
Inventing a new Data Structure with 

• Flexibility of lists for updates 

• Efficiency of arrays for search 
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Important Notice 

 

There are basically two ways of introducing a new/innovative solution of a 
problem. One way is to just explain it without giving any clue as to how the 
person who invented the concept came up with this solution. Another way is 
to start from scratch and take a journey of the route which the inventor might 
have followed to arrive at the solution. This journey goes through various 
hurdles and questions, each hinting towards a better insight into the problem 
if we have patience and open mind. Which of these two ways is better ? 

 

I believe that the second way is better and more effective. The current lecture 
is based on this way. The data structure we shall invent is called a Binary 
Search Tree. This is the most fundamental and versatile data structure. We 
shall realize this fact many times during the course … 
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Doubly Linked List based implementation versus array 
based implementation of “List” 

Operation Time Complexity per 
operation for array based 

implementation 

Time Complexity per 
operation for doubly linked 
list based implementation 

IsEmpty(L) O(1) O(1) 

Search(x,L) O(n) O(n) 

Successor(p,L) O(1) O(1) 

Predecessor(p,L) O(1) O(1) 

CreateEmptyList(L) O(1) O(1) 

Insert(x,p,L) O(n) O(1) 

Delete(p,L) O(n) O(1) 

MakeListEmpty(L) O(1) O(1) 

3 Arrays are very rigid 



Problem 

Maintain a telephone directory  

Operations: 
• Search the phone # of a person with  name x 

 

• Insert a new record (ID no., phone #,…) 
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Array based 
solution 

Linked list based 
solution 

O(n) O(n) 

O(n) O(1) 

Can we achieve the best of the two 
data structure simultaneously ? 

Can we improve it ?  Yes. Keep the array sorted 
according to the ID no. and do 

Binary search for x. 

Log n 

We shall together invent such a novel data structure today  

ID no. 

Log n 



Inventing a new data structure 
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Array 

Head 

Lists 

New Data structure 

Too Rigid for updates 

Lists are flexible, so let us try 
modifying the linked list structure 

to achieve fast search time. 



Restructuring doubly linked list  
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head 

1 2 n/2 n-1 n 
2 5 46 83 96 

head 

46 

head 

n/2 

n/2 -1 n/2 +1 

41 53 

1 2 n-1 n 

2 5 83 96 

2 

1 n/4-1 

25 41 

n/4+1 n/2 -1 

31 

46 

head 

n/2 

n/4 3n/4 

28 67 

53 

n/2 +1 3n/4-1 

65 96 

3n/4+1 n 

73 

Since it is sorted arrangement that 
facilitates efficient searching in an array, so 

let us keep the elements of the list  also 
sorted according to unique ID numbers of 

persons.  

Observation:  
Smaller IDs can now be searched quickly, but for 
larger IDs, we may have to traverse whole list.  

Can we modify the list so that we need 

to traverse at most 
𝒏

𝟐
 nodes of the list in 

the worst case for any search operation ? 

Good. Now can we modify the list so that 

we need to traverse at most 
𝒏

𝟒
+ 𝟏 nodes 

of the list in the worst case for any 
search operation ? 

What structure emerges if you extend this idea further ? Imagine … 



A new data structure emerges 
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head 

2 

28 
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83 



A new data structure emerges 
To analyze it mathematically, remove irrlevant details 
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head 

2 
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Nature is a great source of inspiration 
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leaves 

joints 

root 

 



Nature is a great source of inspiration 
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Nature is a great source of inspiration 
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root 

leaves 

edges Nodes 



Binary Tree: A mathematical model 

Definition: A collection of nodes is said to form a binary tree if 

1.     There is exactly one node with no incoming edge.  

         This node is called the root of the tree.  

2.     Every node other than root node has exactly one incoming edge. 

3.     Each node has at most two outgoing edges.  
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Which of these are 
not binary trees ? 



Binary Tree: some terminologies 

• If there is an edge from node u to node v,  

                 then u is called parent of v ,and v is called child of u.  

• The Height of a Binary tree T is the maximum number of edges from the 
root to any leaf node in the tree T. 

 

parent(y)       =   ?? 

parent(v)       =   ?? 

children(y)    =   ?? 

children(x)    =   ?? 

height(T)       =   ?? 
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p 
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x 

u 

{r} 

{y,q} 

4 

subtree(x) 
subtree(y) 

subtree(v) 



Varieties of Binary trees 
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T’ 

w 

For every node, the number of nodes in 
the subtrees of its two children differ at 

atmost by 1. 

We call it Perfectly balanced 



Height of a perfectly balanced Binary tree 

 𝑯(𝑛) : Height of a perfectly balanced 
binary tree on 𝑛 nodes. 

𝑯(1) =  ? 

 

𝑯(𝑛) =  ? 
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≤ 𝟏 + 𝑯
𝑛
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Height of a perfectly balanced Binary tree 

 𝑯(𝑛) : Height of a perfectly balanced 
binary tree on 𝑛 nodes. 

𝑯(1) =  ? 

 

𝑯(𝑛) =  ? 

             ≤ 𝟏 + 𝟏 + 𝑯
𝑛

4
 

             ≤ 𝟏 + 𝟏 + ⋯ +  𝑯
𝑛

2𝑖  
  

             ≤ 𝐥𝐨𝐠2 𝑛 
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≤ 𝟏 + 𝑯
𝑛

2
 

0 

𝑛 
≤

𝑛

4
 

𝑖 



Implementing a Binary trees 
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v 

left(v) right(v) 

v 

value(v) 



Binary Search Tree (BST) 

 

 

 

 

 

 

 

 

 

 

 

 

Definition: A Binary Tree T storing values is said to be Binary Search Tree if for each node v in T 

• If left(v) <> NULL, then value(v) > value of every node in subtree(left(v)). 

• If right(v)<>NULL, then value(v) < value of every node in subtree(right(v)). 
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Search(T,x) 
Searching in a Binary Search Tree 
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T 

Search(T,33) :  
Searching for 33 in T. 



Search(T,x) 
Searching in a Binary Search Tree 

Search(T,x) 

{       p T; 

         Found FALSE ; 

         while(                     ??                  ) 

         {          if(value(p) = x)                ??              ; 

                     else if (value(p) < x)        ??            ; 

                             else              ??           ; 

         } 

         return p; 

} 

20 

Found= FALSE & p<> NULL 

Found TRUE 

p right(p) 

p left(p) 



Insert(T,x) 
Insertion in a Binary Search Tree 
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T 

Insert(T,50) :  
Inserting 50 into T. 

50 



A question  

 

 
Time complexity of Search(T,x) and Insert(T,x) in a Binary 
Search Tree T =   ?? 
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O(Height(T)) 



Homeworks 

• Write pseudocode for Insert(T,x) operation similar to the 
pseudocode we wrote for Search(T,x). 

 

• Design an algorithm for the following problem: 

 

Given a sorted array A storing n elements,  

build a “perfectly balanced”  BST storing all elements of A  

in O(n) time. 
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Homework 3 

What does the following algorithm accomplish ? 

Traversal(T) 

{       p T; 

         if(p=NULL) return; 

         else{      if(left(p) <> NULL)    Traversal(left(p)); 

                        print(value(p)); 

                        if(right(p) <> NULL)    Traversal(right(p)); 

                 } 

} 
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It prints the elements of binary search tree T in increasing order 
of their values. What is its time complexity ? 

Ponder over this algorithm  for a few minutes to 
know what it is doing. You might like to try it out 

on some example of BST. 



Time complexity of any search and any single insertion in a  
perfectly balanced Binary Search Tree on n nodes 
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T 

O( log n) time 



Time complexity of any search and any single insertion in a  
sqewed Binary Search Tree on n nodes 
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23 
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O(n) time ! 



Our original Problem 

Maintain a telephone directory  

Operations: 
• Search the phone # of a person with  name x 

 

• Insert a new record (ID no., phone #,…) 

 

 

Solution : We may keep perfectly balanced BST. 

Hurdle: What if we insert records in increasing order of ID ? 

 BST will be skewed  

             

                                BST data structure that we invented looks very elegant,  

                                        let us try to find a way to overcome the hurdle. 
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Array based 
solution 

Linked list based 
solution 

O(n) O(n) 

O(n) O(1) 

Log n 
ID no. 

Log n 



• Let us try to find a way of achieving Log 𝒏 search time. 

 

• Perfectly balanced BST achieve Log 𝒏 search time. 

 

• But the definition of Perfectly balanced BST  looks too 
restrictive. 

 

• Let us investigate : How crucial is perfect balance of a BST ? 

28 



How crucial is perfect balance of a BST ? 

 𝑯(1) = 0 

 

𝑯(𝑛) =  ≤ 𝟏 + 𝑯
𝑛

2
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𝑛 

≤
𝑛

2
 ≤

𝑛

2
 

Let us change this recurrence 
slightly. 



How crucial is perfect balance of a BST ? 

 𝑯(1) = 0 

 

𝑯(𝑛) ≤ 𝟏 + 𝑯
3𝑛

4
 

            ≤ 𝟏 + 𝟏 + 𝑯
3

4

2
𝑛  

             ≤ 𝟏 + 𝟏 + ⋯ +  𝑯
3

4

𝑖
𝑛  

  

             ≤ 𝐥𝐨𝐠4/3 𝑛 
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≤
3𝑛

4
 

𝑛 

What lesson did you get 
from this recurrence ?  

Think for a while before 
going further … 

Lesson learnt : 
We may as well work with nearly balanced BST 



Nearly balanced Binary Search Tree 

Terminology:  

size of a binary tree is the number of nodes present in it. 

 

Definition: A binary search tree T is said to be nearly balanced at node v, if  

size(left(v))   ≤
3

4
  size(v) 

                    and 

size(right(v))   ≤
3

4
  size(v) 

 

Definition: A binary search tree T is said to be nearly balanced if  

                     it is nearly balanced at each node. 
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Nearly balanced Binary Search Tree 

 

 

Think of ways of using nearly balanced BST for solving our dictionary problem. 

 

 

You might find the following observations/tools helpful : 

 

• If a node v is perfectly balanced, it requires many insertions till v ceases to 
remain nearly balanced. 

 

• Any arbitrary BST of size 𝑛 can be converted into a perfectly balanced BST in 
O(𝑛) time. 
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Solving our dictionary problem 
Preserving O(log 𝒏) height after each operation 

Each node v in T maintains additional field size(v) which is the number of 
nodes in the subtree(v). 

 

• Keep Search(T,x) operation unchanged. 

 

• Modify Insert(T,x) operation as follows:  

– Carry out normal insert and update the size fields of  nodes traversed. 

– If BST  T is ceases to be  nearly imbalanced at any node v,  

      transform subtree(v) into  perfectly balanced BST. 
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“Perfectly Balancing” subtree at a node v 
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v 

> 
𝟑

𝟒
𝑘 

Size differs by at most 1 𝑘 𝑘 



What can we say about this data structure ? 
 

It is elegant and reasonably simple to implement.  

Yes, there will be huge computation for some insertion operations. 

But the number of such operations will be rare.  

So, at least intuitively, the data structure appears to be efficient. 

Indeed, this data structure achieve the following goals: 

• For any arbitrary sequence of 𝒏  operations, total time will be O(𝒏 log 𝒏). 

• Worst case search time: O(log 𝒏) 

 

You will do programming assignment to verify the validity of the two claims 
mentioned above experimentally. 

                     What about the theoretical analysis to justify these claims ? 
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Keep thinking till we do it in a few weeks . 


