
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 7:
Data structures:
• Modeling versus Implementation
• Abstract data type “List” and its implementation
Proof of correctness of algorithm: Examples

1

Data Structure

Definition: A collection of data elements arranged and
connected in a way which can facilitate efficient executions of a
(possibly long) sequence of operations.

2

Two steps process for designing
a Data Structure

Step 1: Mathematical Modeling
A Formal description of the possible operations of a data structure. Operations can be
classified into two categories:

Query Operations: Retrieving some information from the data structure

Update operations: Making a change in the data structure

Step 2: Implementation
Explore the ways of organizing the data that facilitates performing each operation
efficiently using the existing tools available.

3

Outcome of Mathematical Modeling: an Abstract Data Type

Since we don’t specify here the way
how each operation of the data
structure will be implemented

4

5

Mathematical Modeling of a List

What is common in the following examples ?
• List of Roll numbers passing a course.

• List of Criminal cases pending in High Court.

• List of Rooms reserved in a hotel.

• List of Students getting award in IITK convocation 2015.

Inference: List is a sequence of elements.

 L: 𝑎1, 𝑎2, …, 𝑎𝑖−1, 𝑎𝑖, 𝑎𝑖+1, …, 𝑎𝑛

 ith element of list L

Query Operations on a List

• IsEmpty(L):

• Search(x,L):

• Successor(p,L):

 return the element of list L which succeeds/follows the element at location p.

 Example:

 If L is 𝑎1, 𝑎2, …, 𝑎𝑖−1, 𝑎𝑖, 𝑎𝑖+1, …, 𝑎𝑛 and p is location of element 𝑎𝑖,

 then Successor(p,L) returns ?? .

• Predecessor(p,L):

 Return the element of list L which precedes (appears before) the element at

 location p.

Other possible operations:

• First(L):

• Enumerate(L):

6

𝑎𝑖+1

The type of this parameter
will depend on the implementation

determine if L is an empty list.

determine if x appears in list L.

return the first element of list L.

Enumerate/print all elements of list L in the order they appear.

Update Operations on a List

• CreateEmptyList(L):

• Insert(x,p,L):

 Example: If L is 𝑎1, …, 𝑎𝑖−1, 𝑎𝑖, 𝑎𝑖+1, …, 𝑎𝑛 and p is location of element 𝑎𝑖,

 then after Insert(x,p,L), L becomes

 ??

• Delete(p,L): Delete element at location p in L

 Example: If L is 𝑎1, …, 𝑎𝑖−1, 𝑎𝑖, 𝑎𝑖+1, …, 𝑎𝑛 and p is location of element 𝑎𝑖,

 then after Delete(p,L), L becomes

 ??

• MakeListEmpty(L): Make the List L empty.

7

𝑎1, …, 𝑎𝑖−1, 𝐱, 𝑎𝑖, 𝑎𝑖+1 ,…, 𝑎𝑛

𝑎1, …, 𝑎𝑖−1, 𝑎𝑖+1 ,…, 𝑎𝑛

Insert x at a given location p in list L.

Create an empty list.

8

Array based Implementation

• RAM allows O(1) time to access any
memory location.

• Array is a contiguous chunk of
memory kept in RAM.

• For an array A[] storing n words,

 the address of element A[i] =

 “start address of array A” + i

9

RAM

Array A

This feature supports O(1)
time to access A[i] for any i

Array based Implementation

• Store the elements of List in array A such that A[i] denotes (i+1)th
element of the list at each stage (since index starts from 0).

 (Assumption: The maximum size of list is known in advance.)

• Keep a integer variable Length to denote the number of elements in the
list at each stage.

Example: If at any moment of time List is 3,5,1,8,0,2,40,27,44,67, then the array A
looks like:

Question: How to describe location of an element of the list ?

Answer: by the corresponding array index. Location of 5th element of List is 4.

10

3 5 1 8 0 2 40 27 44 67 A Length = 10

Time Complexity of each List operation using
Array based implementation

Operation Time Complexity per operation

IsEmpty(L)

Search(x,L)

Successor(i,L)

Predecessor(i,L)

CreateEmptyList(L)

Insert(x,i,L)

Delete(i,L)

MakeListEmpty(L)

11

O(1)

O(n)

O(1)

O(1)

O(1)

O(1)

O(n)

O(n)

Homework: Write C Function for each
operation with matching complexity.

All elements from A[i] to A[n-1] have to be shifted to the right by one place.

All elements from A[i+1] to A[n-1] have to be shifted to the left by one place.

Arrays are very rigid

n: number of elements
in list at present

Link based Implementation:

12

Value

node

Head

Address of next (or right) node

Singly Linked List

Address of previous (left) node

Doubly Linked List

Doubly Linked List based Implementation

• Keep a doubly linked list where elements appear in the order we follow
while traversing the list.

• The location of an element is the address of the node containing it.

Example: List 3,9,1 appears as

13

3 1 9

Head

How to perform Insert(x,p,L) ?

14

3 1 9

Head p

x

How is it done actually ?

How to perform Insert(x,p,L) ?

Insert(x,p,L){
q new(node);

q.value x;

temp p.left;

q.right  p;

p.left q;

q.left  temp;

temp.right q;

}

15

3 1 9

Head p

Lists are very flexible

O(1) time
q

x

temp

Homework: How to perform Delete(x,p,L) ?

How to perform successor(p,L) ?

Successor(p,L){
q p.right;

return q.value;

}

16

3 1 9

Head p

p.right

Time Complexity of each List operation using
Doubly Linked List based implementation

Operation Time Complexity per
operation

IsEmpty(L)

Search(x,L)

Successor(p,L)

Predecessor(p,L)

CreateEmptyList(L)

Insert(x,p,L)

Delete(p,L)

MakeListEmpty(L)

17

O(1)

O(n)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

Homework: Write C Function for each
operation with matching complexity.

It takes O(1) time if we
implement it by setting the

head pointer of list to
NULL. However, if one has
to free the memory used

by the list, then it will
require traversal of the

entire list and hence O(n)
time. You might learn

more about it in Operating
System course.

Doubly Linked List based implementation versus array
based implementation of “List”

Operation Time Complexity per
operation for array based

implementation

Time Complexity per
operation for doubly linked
list based implementation

IsEmpty(L) O(1) O(1)

Search(x,L) O(n) O(n)

Successor(p,L) O(1) O(1)

Predecessor(p,L) O(1) O(1)

CreateEmptyList(L) O(1) O(1)

Insert(x,p,L) O(n) O(1)

Delete(p,L) O(n) O(1)

MakeListEmpty(L) O(1) O(1)

18

19

Problem

Maintain a telephone directory

Operations:
• Search the phone # of a person with name x

• Insert a new record (name, phone #,…)

20

Array based
solution

Linked list based
solution

O(n) O(n)

O(n) O(1)

Can we achieve the best of the two
data structure simultaneously ?

Can we improve it ? Think over it … Yes. Keep the array sorted
according to the names and do

Binary search for x.

Log n

We shall together invent such a novel data structure in the next class

Important Advice

In this lecture, it was assumed that the students have a basic
knowledge of records and singly linked lists from ESC101. In case,
you lack this basic knowledge, you are advised to revise the basic
concepts of pointers, records in C from ESC101. This will also be
helpful for some programming assignment in future as well.

In case you need some assistance in these fundamentals, send
email to TA Mr. Piyush Bhardwaj (piyushb@cse.iitk.ac.in)

21

mailto:piyushb@cse.iitk.ac.in

PROOF OF CORRECTNESS OF
ALGORITHMS

22

GCD
 GCD(𝑎,𝑏) // 𝑎 ≥ 𝑏

{

 while (𝑏 <> 0)

 { 𝑡  𝑏;

 𝑏  𝑎 mod 𝑏 ;

 𝑎  𝑡

 }

 return 𝑎;

}

Lemma (Euclid):

 If 𝑛 ≥ 𝑚 > 0, then

 gcd(𝑛,𝑚) = gcd(𝑚,𝑛 mod 𝑚)

Proof of correctness of GCD(𝑎,𝑏) :

Let 𝑎𝑖 : the value of variable 𝑎 after 𝑖th iteration.

 𝑏𝑖 : the value of variable 𝑏 after 𝑖th iteration.

Assertion 𝑃(𝑖) :

Theorem : 𝑃(𝑖) holds for each iteration 𝑖 ≥ 0.

Proof: (By induction on 𝑖).

Base case: (𝑖 = 0) hold trivially.

Induction step:

(Assume 𝑃(𝑗) holds, show that 𝑃(𝑗 + 1) holds too)

𝑃(𝑗)  ?

(𝑗 + 1) iteration  ?

Using Euclid’s Lemma and (2),

gcd(𝑎𝑗, 𝑏𝑗) = gcd(𝑎𝑗+1, 𝑏𝑗+1) ------(3).

Using (1) and (3),assertion 𝑃(𝑗 + 1) holds too.

23

gcd(𝑎𝑖, 𝑏𝑖) = gcd(𝑎,𝑏)

gcd(𝑎𝑗, 𝑏𝑗) = gcd(𝑎,𝑏). ----(1)

𝑎𝑗+1= 𝑏𝑗 and 𝑏𝑗+1= 𝑎𝑗 mod 𝑏𝑗 ---(2)

Sum of first 𝒏 positive integers

Sum(𝑛) // 𝑛 is a positive integers ≥ 1

{ 𝑠𝑢𝑚  0;

 𝑖 1;

 while (𝑖 ≤ 𝑛)

 { 𝑠𝑢𝑚  𝑠𝑢𝑚 + 𝑖;

 𝑖  𝑖 + 1;

 }

 return 𝑠𝑢𝑚;

}

Homework:

Write a formal proof to show that Sum(𝑛) returns the sum of first 𝑛 positive
integers ?

24

