Data Structures and Algorithms (CS210A) Semester I – 2014-15

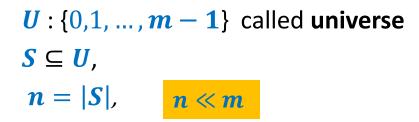
Lecture 40

- Search data structure for integers : Hashing
- Quick sort : some facts
- Miscellaneous problems

Data structures for searching

in O(1) time

Problem Description



A search query: Given any $j \in U$, is j present in S?

Aim: A data structure for a <u>given</u> set *S* that can facilitate search in O(1) time in word RAM model.

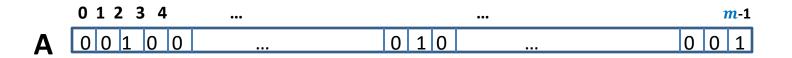
A trivial data structure for O(1) search time

Build a 0-1 array **A** of size **m** such that

A[i] = 1 if $i \in S$.

A[i] = 0 if $i \notin S$.

Time complexity for searching an element in set S: O(1).



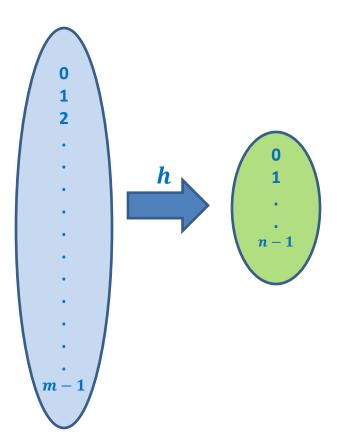
This is a totally Impractical data structure because $n \ll m$! Example: n = few thousands, m = few trillions.

Question:

Can we have a data structure of O(n) size that can answer a search query in O(1) time?

Answer: Hashing

Hash function, hash value



Hash function:

h is a mapping from **U** to $\{0, 1, ..., n - 1\}$ with the following characteristics.

- **Space** required for *h* : a few **words**.
- *h*(*i*) computable in O(1) time in word RAM.

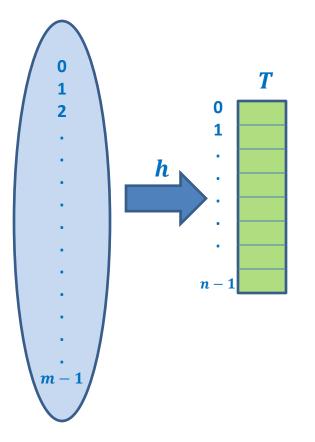
Example: $h(i) = i \mod n$

Hash value:

h(i) is called hash value of i for a given hash function h, and $i \in U$.

Hash Table:

An array $T[0 \dots n - 1]$



Hash function:

h is a mapping from **U** to $\{0, 1, ..., n - 1\}$ with the following characteristics.

- **Space** required for *h* : a few **words**.
- *h*(*i*) computable in O(1) time in word RAM.

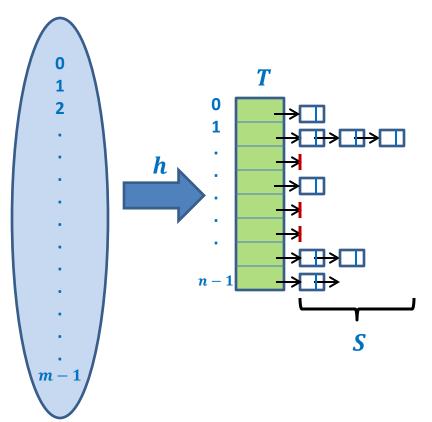
Example: $h(i) = i \mod n$

Hash value:

h(i) is called hash value of i for a given hash function h, and $i \in U$.

Hash Table:

An array $T[0 \dots n - 1]$



Hash function:

h is a mapping from **U** to $\{0, 1, ..., n - 1\}$ with the following characteristics.

- **Space** required for *h* : a few **words**.
- h(i) computable in **O(1) time** in word RAM.

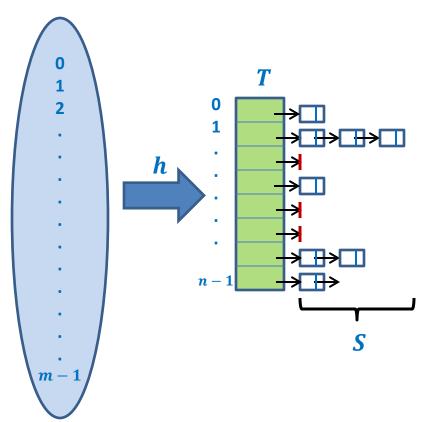
Example: $h(i) = i \mod n$

Hash value:

h(i) is called hash value of i for a given hash function h, and $i \in U$.

Hash Table:

An array $T[0 \dots n - 1]$ of pointers storing **S**.



Question:

How to use (h,T) for searching an element $i \in U$? **Answer:** $k \leftarrow h(i)$; Search element i in the list T[k].

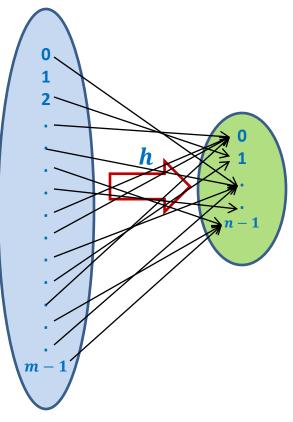
Time complexity for searching: O(length of the **longest** list in **T**).

Efficiency of Hashing depends upon hash function

A hash function *h* is <u>good</u> if it can **evenly** distributes *S*.

Aim: To search for a good hash function for a given set *S*.

There **can not be** any hash function **h** which is good for **every** *S***.**



For every h, there exists a subset of $\left[\frac{m}{n}\right]$ elements from U which are hashed to same value under h. So we can always construct a subset S for which all elements have same hash value

- \rightarrow All elements of this set S are present in a single list of the hah table T associated with h.
- \rightarrow O(n) worst case search time.

Hashing: Practice

Designed in 1953 by as a heuristic

1953

1984

Practice:

- The function h(i) = i mod n works very well
- **Hashing** is preferred to BST most of the times.

Reason: *S* is usually a **uniformly random** subset of *U*.

 \rightarrow Average search time is O(1).

Question: Can we achieve worst case O(1) search time using hashing ?

Yes

[FKS] Fredman, Komlos, Szemeredy, Journal of ACM, volume 31, 1984

Though no hash function is good for **every** *S***.** There are quite large number of hash function which will be good for any **given** fixed *S***.** [**FKS**] find such hash functions in an elegant manner.

Hashing: theory

```
U: \{0, 1, \dots, m-1\}

S \subseteq U,

n = |S|,
```

Theorem [FKS]: A hash table and hash function can be computed in **O**(*n*) **time** for a **given** *S* s.t.

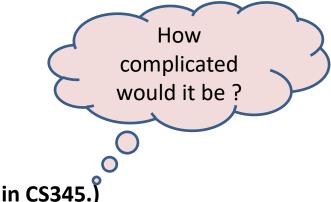
```
Space: O(n)
```

```
Query time: worst case O(1)
```

Ingredients:

- elementary knowledge of prime numbers.
- The algorithms use **simple randomization**.

(We shall discuss such an algorithm in CS345.)



Quick Sort

Facts

(invented by Tony Hoare in 1960)

Quick sort versus Merge Sort Lecture 27

	Merge Sort	Quick Sort
Average case comparisons	n log ₂ n	1.39 <i>n</i> log ₂ <i>n</i>
Worst case comparisons	n log ₂ n	n(n-1)

Realization from Programming assignment 4 (part 1):

	<i>n</i> = 100	<i>n</i> = 1000	$n \ge 10000$
No. of times Merge sort outperformed Quick sort	0 . 1 %	0 . 02 %	0%

Reasons:

- Overhead of **Copying** in merging **?**
- Technical (cache)

No one even tried to find out \mathfrak{S}

What makes Quick sort popular ?

No. of repetitions = **1000**

No. of times run time exceeds average by	100	1000	10 ⁴	10 ⁵	10 ⁶
10 %	190	49	22	10	3
20%	28	17	12	3	0
50%	2	1	1	0	0
100%	0	0	0	0	0

Inference:

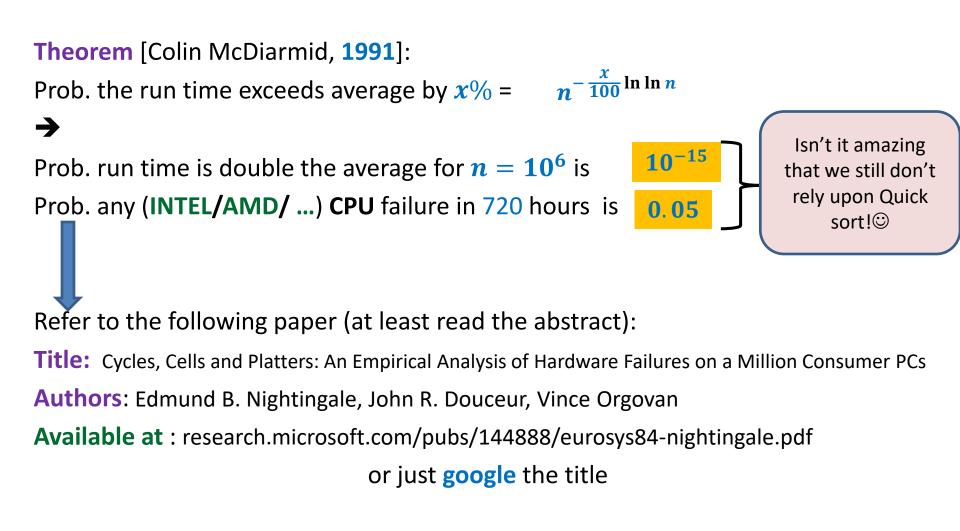
The chances of deviation from average case decreases as *n* increases.

 \rightarrow The *reliability* of quick sort increases as n increases.

Can this behavior of Quick sort be explained **theoretically**?

0

What makes **Quick sort popular**?



But a serious problem with Quick sort.

- Distribution sensitive 😕
- Can be fooled easily
 - sort in increasing order
 - Sort in decreasing order

Solution:

Select pivot element randomly uniformly in each call

This is randomized quick sort.

Miscellaneous problems

Problem 1

Input:

Given an array A storing n numbers, there is an i < n (unknown) s.t. A[0] < A[1] < ... < A[i] > A[i + 1] > ... > A[n - 1]

Aim:

To search efficiently

Answer : O(log n) is possible

Problem 2

Input:

Given an array A storing *n* numbers, there is an i < n (unknown) s.t. $A[0] \le A[1] \le ... \le A[i] \ge A[i + 1] \ge ... \ge A[n - 1]$

Aim:

To search efficiently

Answer : No algorithm can search A in better than O(n) time in worst case.

Problem 3

Input:

Given an array A storing n numbers, there are i < j < n (unknown) s.t. A[0] < A[1] < ... < A[i] > A[i + 1] > ... > A[j] < A[j + 1] < ... < A[n - 1]

Aim:

To search efficiently

Answer : No algorithm can search A in better than O(n) time in worst case.

