Data Structures and Algorithms

(CS210A)
Semester | — 2014-15

Lecture 40
* Search data structure for integers : Hashing
* Quick sort : some facts
e Miscellaneous problems

Data structures for searching

in O(1) time

Problem Description

U:{0,1,.., m— 1} called universe
SCU,
n=[S], n<m

A search query: Given any j € U, is j presentin § ?

Aim: A data structure for a given set S
that can facilitate search in O(1) time in[word RAM]modeI.

A trivial data structure for O(1) search time

Build a 0-1 array A of size m such that

Alil=1ifi € S.

Ali]=0ifi & S.

Time complexity for searching an element in set S : O(1).

012 3 4

This is a totally Impractical data structure because n << m !
Example: n = few thousands, m = few trillions.

Question:
Can we have a data structure of O(n) size that can answer a search query in O(1) time ?

Answer: Hashing

Y

Hash function, hash value

)

Hash function:

h is a mapping from U to {0,1, ..., n — 1}

with the following characteristics.

* Space required for h : a few words.

* h(i) computable in O(1) time in word RAM.

Example: h(i) = i mod n

Hash value:

h(i) is called hash value of i for a given hash
function h, and i € U.

Hash Table:
Anarray T[0..n — 1]

Hash function, hash value, hash table

Hash function:
h is a mapping from U to {0,1, ..., n — 1}
with the following characteristics.

0
1 T * Space required for h : a few words.
2 0 * h(i) computable in O(1) time in word RAM.

Example: h(i) = i mod n

Hash value:

h(i) is called hash value of i for a given hash
function h, and i € U.

Hash Table:
Anarray T[0..n — 1]

Hash function, hash value, hash table

Hash function:

h is a mapping from U to {0,1, ..., n — 1}

with the following characteristics.

* Space required for h : a few words.

* h(i) computable in O(1) time in word RAM.

Example: h(i) = i mod n

Hash value:

h(i) is called hash value of i for a given hash
function h, and i € U.

Hash Table:
An array T[0 ...n — 1] of pointers storing S.

Hash function, hash value, hash table

Question:

How to use (h,T) for searching an element i € U?

Answer:
k € h(i);
Search element i in the list T[k].

Time complexity for searching:
O(length of the longest list in T').

Efficiency of Hashing depends upon hash function

A hash function h is good if it can evenly distributes S.

Aim: To search for a good hash function for a given set S.

Bad news

There can not be any hash function h which is good for every S.

Hash function, hash value, hash table

For every h, there exists a subset of [%] elements from U which are hashed to same value under h.

So we can always construct a subset S for which all elements have same hash value
=>» All elements of this set S are present in a single list of the hah table T associated with h.
=» 0O(n) worst case search time.

Practice:

* The function h(i) =

Hashing: Practice

Designed in 1953 by as a heuristic

i mod n works very well

* Hashing is preferred to BST most of the times.

Reason: S is usually a uniformly random subset of U.

=» Average search time is O(1).

Question: Can we achieve worst case O(1) search time using hashing ?

Yes

1953

N

[FKS] Fredman, Komlos, Szemeredy, Journal of ACM, volume 31, 1984 1984

-

U

Though no hash function is good for every §.
There are quite large number of hash function which
will be good for any given fixed S. [FKS] find such hash
functions in an elegant manner.

>

J

Hashing: theory

U:{01,.. m—1}
Scu,
n =S|,

Theorem [FKS]: A hash table and hash function can be computed in O(n) time for a given S
s.t.

Space: O(n)
Query time: Worst case O(1)

How
complicated

Ingredients : would it be ?
* elementary knowledge of prime numbers. O
* The algorithms use simple randomization. @)

(We shall discuss such an algorithm in CS345.7

Quick Sort

Facts
(invented by Tony Hoare in 1960)

Quick sort versus Merge Sort
Lecture 27

Average case comparisons

nlog, n 1.39nlog, n

Worst case comparisons nlog, n n(n—1)

Realization from Programming assignment 4 (part 1):

No. of times Merge sort 0.1% 0.02% 0%
outperformed Quick sort

Reasons :

Overhead of Copying in merging ? No one even tried to find out ®
Technical (cache)

14

What makes Quick sort popular ?

No. of repetitions = 1000

10% 3
20% 28 17 12 3 0
50% 2 1 1 0 0
100% 0 0 0 0 0

Inference:
The chances of deviation from average case decreases as n increases.
=>» The reliability of quick sort increases as n increases.

Can this behavior of Quick sort
be explained theoretically ?

0O

What makes Quick sort popular ?

Theorem [Colin McDiarmid, 1991]:

X

Prob. the run time exceeds average by x% = n~ 1oo™In™
> 4 ™
_15 Isn’t it amazing
Prob. run time is double the average forn = 10° is 10 that we still don’t
Prob. any (INTEL/AMDY/ ...) CPU failure in 720 hours is | 0.05 rely ;’gﬁ?@gm*
- | Y,

Refer to the following paper (at least read the abstract):
Title: Cycles, Cells and Platters: An Empirical Analysis of Hardware Failures on a Million Consumer PCs
Authors: Edmund B. Nightingale, John R. Douceur, Vince Orgovan
Available at : research.microsoft.com/pubs/144888/eurosys84-nightingale.pdf
or just google the title

But a serious problem with Quick sort.

» Distribution sensitive ®
* (Can be fooled easily

— sortinincreasing order
— Sort in decreasing order

Solution:
Select pivot element randomly uniformly in each call

This is randomized quick sort.

Miscellaneous problems

Problem 1

Input:

Given an array A storing n numbers,

there is an i < n (unknown) s.t.

A0] <A[1] <..<A[i] >A[i+1]>..>An—1]

Aim:
To search efficiently

Answer : O(log n) is possible

Problem 2

Input:

Given an array A storing n numbers,

there is an i < n (unknown) s.t.

A0l =< A[l] < ..<A[i] =A[i +1]>..=A[n — 1]

Aim:
To search efficiently

Answer : No algorithm can search A in better than O(n) time in worst case.

Problem 3

Input:
Given an array A storing n numbers,

there are i < j < n (unknown) s.t.
A[0]< A[1]< ..< A[i] > Ali + 1] >.. >A[j] <A[j +1] <.. <A[n — 1]

Aim:
To search efficiently

Answer : No algorithm can search A in better than O(n) time in worst case.

r—a H
We shall find inspiring answers to
these problems and many more in
the last class of this course. So
don’t miss it © ...

