
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 40
• Search data structure for integers :

• Quick sort : some facts

• Miscellaneous problems

1

Hashing

Data structures for searching

in O(1) time

Problem Description

𝑼 : {0,1, … , 𝒎 − 𝟏} called universe

𝑺 ⊆ 𝑼,

 𝒏 = 𝑺 ,

A search query: Given any 𝒋 ∈ 𝑼, is 𝒋 present in 𝑺 ?

Aim: A data structure for a given set 𝑺

 that can facilitate search in O(𝟏) time in word RAM model.

𝒏 ≪ 𝒎

A trivial data structure for O(1) search time

Build a 0-1 array A of size 𝒎 such that

A[𝒊] = 1 if 𝒊 ∈ 𝑺.

A[𝒊] = 0 if 𝒊 ∉ 𝑺.

Time complexity for searching an element in set 𝑺 : O(1).

 This is a totally Impractical data structure because 𝒏 ≪ 𝒎 !

 Example: 𝒏 = few thousands, 𝒎 = few trillions.

Question:

Can we have a data structure of O(𝒏) size that can answer a search query in O(1) time ?

Answer: Hashing

0 0 1 0 0 … 0 1 0 … 0 0 1

0 1 2 3 4 … … 𝒎-1

A

Hash function, hash value, hash table

 Hash function:

𝒉 is a mapping from 𝑼 to {0,1, … , 𝒏 − 𝟏}

with the following characteristics.

• Space required for 𝒉 : a few words.

• 𝒉(𝒊) computable in O(1) time in word RAM.

Example: 𝒉(𝒊) = 𝒊 mod 𝒏

Hash value:

𝒉(𝒊) is called hash value of 𝒊 for a given hash
function 𝒉, and 𝒊 ∈ 𝑼.

Hash Table:

An array 𝑻[0 … 𝒏 − 𝟏]

0
1
2
.
.
.
.
.
.
.
.
.
.
.

𝒎 − 𝟏

0
1
.
.

𝒏 − 𝟏

𝒉

Hash function, hash value, hash table

 Hash function:

𝒉 is a mapping from 𝑼 to {0,1, … , 𝒏 − 𝟏}

with the following characteristics.

• Space required for 𝒉 : a few words.

• 𝒉(𝒊) computable in O(1) time in word RAM.

Example: 𝒉(𝒊) = 𝒊 mod 𝒏

Hash value:

𝒉(𝒊) is called hash value of 𝒊 for a given hash
function 𝒉, and 𝒊 ∈ 𝑼.

Hash Table:

An array 𝑻[0 … 𝒏 − 𝟏]

0
1
2
.
.
.
.
.
.
.
.
.
.
.

𝒎 − 𝟏

0
1
.
.
.
.
.

𝒏 − 𝟏

𝒉

𝑻

Hash function, hash value, hash table

 Hash function:

𝒉 is a mapping from 𝑼 to {0,1, … , 𝒏 − 𝟏}

with the following characteristics.

• Space required for 𝒉 : a few words.

• 𝒉(𝒊) computable in O(1) time in word RAM.

Example: 𝒉(𝒊) = 𝒊 mod 𝒏

Hash value:

𝒉(𝒊) is called hash value of 𝒊 for a given hash
function 𝒉, and 𝒊 ∈ 𝑼.

Hash Table:

An array 𝑻[0 … 𝒏 − 𝟏]

0
1
2
.
.
.
.
.
.
.
.
.
.
.

𝒎 − 𝟏

0
1
.
.
.
.
.

𝒏 − 𝟏

𝒉

𝑻

𝑺

of pointers storing 𝑺.

Hash function, hash value, hash table

Question:

How to use (𝒉,𝑻) for searching an element 𝒊 ∈ 𝑼?

Answer:

𝒌 𝒉(𝒊);

Search element 𝒊 in the list 𝑻[𝒌].

Time complexity for searching:

O(length of the longest list in 𝑻).

0
1
2
.
.
.
.
.
.
.
.
.
.
.

𝒎 − 𝟏

0
1
.
.
.
.
.

𝒏 − 𝟏

𝒉

𝑻

𝑺

Efficiency of Hashing depends upon hash function

A hash function 𝒉 is good if it can evenly distributes 𝑺.

Aim: To search for a good hash function for a given set 𝑺.

 There can not be any hash function 𝒉 which is good for every 𝑺.

Bad news

Hash function, hash value, hash table

For every 𝒉, there exists a subset of
𝒎

𝒏
 elements from 𝑼 which are hashed to same value under 𝒉.

So we can always construct a subset 𝑺 for which all elements have same hash value

 All elements of this set 𝑺 are present in a single list of the hah table 𝑻 associated with 𝒉.

 O(𝒏) worst case search time.

0
1
2
.
.
.
.
.
.
.
.
.
.
.

𝒎 − 𝟏

0
1
.
.

𝒏 − 𝟏

𝒉

Hashing: Practice

Designed in 1953 by as a heuristic

Practice:

• The function 𝒉(𝒊) = 𝒊 mod 𝒏 works very well

• Hashing is preferred to BST most of the times.

Reason: ?

 Average search time is O(𝟏).

Question: Can we achieve worst case O(𝟏) search time using hashing ?

Yes

 [FKS] Fredman, Komlos, Szemeredy, Journal of ACM, volume 31, 1984

𝑺 is usually a uniformly random subset of 𝑼.
1953

1984

Though no hash function is good for every 𝑺.
There are quite large number of hash function which

will be good for any given fixed 𝑺. [FKS] find such hash
functions in an elegant manner.

Hashing: theory

𝑼 : {0,1, … , 𝒎 − 𝟏}

𝑺 ⊆ 𝑼,

 𝒏 = 𝑺 ,

Theorem [FKS]: A hash table and hash function can be computed in O(𝒏) time for a given 𝑺
s.t.

Space : ?

Query time: ?

Ingredients :

• elementary knowledge of prime numbers.

• The algorithms use simple randomization.

(We shall discuss such an algorithm in CS345.)

How
complicated
would it be ?

O(𝒏)

worst case O(𝟏)

Quick Sort

Facts
(invented by Tony Hoare in 1960)

Quick sort versus Merge Sort
Lecture 27

Realization from Programming assignment 4 (part 1):

Reasons :

• Overhead of Copying in merging ?

• Technical (cache)
14

Merge Sort Quick Sort

Average case comparisons

Worst case comparisons

𝒏 𝐥𝐨𝐠𝟐 𝒏

𝒏 𝐥𝐨𝐠𝟐 𝒏 𝒏(𝒏 − 𝟏)

1.39 𝒏 𝐥𝐨𝐠𝟐 𝒏

No. of times Merge sort
outperformed Quick sort

𝒏 = 𝟏𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 ≥ 𝟏𝟎𝟎𝟎𝟎

𝟎. 𝟏% 𝟎. 𝟎𝟐% 𝟎%

No one even tried to find out

What makes Quick sort popular ?

Inference:

The chances of deviation from average case decreases as 𝒏 increases.

 The reliability of quick sort increases as 𝒏 increases.

No. of times run time exceeds average by 100 1000 𝟏𝟎𝟒 𝟏𝟎𝟓 𝟏𝟎𝟔

𝟏𝟎% 190 49 22 10 3

𝟐𝟎% 28 17 12 3 0

𝟓𝟎% 2 1 1 0 0

𝟏𝟎𝟎% 0 0 0 0 0

No. of repetitions = 𝟏𝟎𝟎𝟎

Can this behavior of Quick sort
be explained theoretically ?

What makes Quick sort popular ?

Theorem [Colin McDiarmid, 1991]:

Prob. the run time exceeds average by 𝒙% =

Prob. run time is double the average for 𝒏 = 𝟏𝟎𝟔 is ?

Prob. any (INTEL/AMD/ …) CPU failure in 720 hours is ?

Refer to the following paper (at least read the abstract):

Title: Cycles, Cells and Platters: An Empirical Analysis of Hardware Failures on a Million Consumer PCs

Authors: Edmund B. Nightingale, John R. Douceur, Vince Orgovan

Available at : research.microsoft.com/pubs/144888/eurosys84-nightingale.pdf

or just google the title

𝒏−
𝒙

𝟏𝟎𝟎 𝐥𝐧 𝐥𝐧 𝒏

𝟏𝟎−𝟏𝟓

𝟎. 𝟎𝟓

Isn’t it amazing
that we still don’t
rely upon Quick

sort!

But a serious problem with Quick sort.

• Distribution sensitive

• Can be fooled easily
– sort in increasing order

– Sort in decreasing order

Solution:

 Select pivot element randomly uniformly in each call

This is randomized quick sort.

Miscellaneous problems

Problem 1

Input:

Given an array A storing 𝒏 numbers,

there is an 𝒊 < 𝒏 (unknown) s.t.

A[𝟎] < A[𝟏] < …< A[𝒊]

Aim:

 To search efficiently

Answer : O(log 𝒏) is possible

> A[𝒊 + 𝟏] >… >A[𝒏 − 𝟏]

Problem 2

Input:

Given an array A storing 𝒏 numbers,

there is an 𝒊 < 𝒏 (unknown) s.t.

A[𝟎] ≤ A[𝟏] ≤ …≤ A[𝒊]

Aim:

 To search efficiently

Answer : No algorithm can search A in better than O(𝒏) time in worst case.

≥ A[𝒊 + 𝟏] ≥… ≥ A[𝒏 − 𝟏]

Problem 3

Input:

Given an array A storing 𝒏 numbers,

there are 𝒊 < 𝒋 < 𝒏 (unknown) s.t.

A[𝟎]< A[𝟏]< …< A[𝒊]

Aim:

 To search efficiently

Answer : No algorithm can search A in better than O(𝒏) time in worst case.

> A[𝒊 + 𝟏] >… >A[𝒋] < A[𝒋 + 𝟏] <… <A[𝒏 − 𝟏]

We shall find inspiring answers to
these problems and many more in

the last class of this course. So
don’t miss it …

