Data Structures and Algorithms

(CS210A)
Semester | — 2014-15

Lecture 39

Integer sorting : Radix Sort
Search data structure for integers : Hashing




Types of sorting algorithms

In Place Sorting algorithm:
A sorting algorithm which uses only O(1) extra space to sort.

Example: Heap sort, Quick sort.

Stable Sorting algorithm:

A sorting algorithm which preserves the order of equal keys while sorting.
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Example: Merge sort.



Integer Sorting algorithms

Continued from last class



Counting sort: algorithm for sorting integers

Input: An array A storing n integers in the range [0...k — 1].
Output: Sorted array A.

Running time: O(n + k) in word RAM model of computation.
Extra space: O(n + k)
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Counting sort: a visual description
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Why did we scan

elements of A in reverse

order (from indexn — 1 to 0)

while placing them in the final
sorted array B ?

Answer:
T To ensure that Counting sort is stable.
t The reason why stability is required will
t become clear soon ©



Counting sort: algorithm for sorting integers

CountSort(A[0...n — 1], k)
For j=0to k — 1 do Count[j]€ 0;
For i=0 to n — 1 do Count[A[i]]€ Count[A[i]] +1;

For j=0 to k — 1 do Place[j]€ Count[j];
For j=1to k — 1 do Place[j]€ Place[j — 1] + Count[j];

Fori=n — 1to0do

{ B[ Place[A[i]]-1 1€ Alil;
Place[A[i]] € Place[A[i]]-1;

}

return B;



Counting sort: algorithm for sorting integers

Key points of Counting sort:

* |t performs arithmetic operations involving O(log n + log k) bits
(O(1) time in word RAM).

* Itis astable sorting algorithm.

Theorem: An array storing n integers in the range [0..k — 1]can be sorted in O(n+k) time and
using total O(n+k) space in word RAM model.

=>» For k < n, we get an optimal algorithm for sorting.
=>» For k = n!, time and space complexity is O(n).
(too bad fort > 1.®)

Question:
How to sort 1 integers in the range [0..n!] in O(tn) time and using O(n) space?



Radix Sort



Digits of an integer

507266
No. of digits = 6
value of digit € {0, ..., 9}

1011000101011111

No. of digits = 4
value of digit € {0, ..., 15}

It is up to us how we define digit ?



Radix Sort

Input: An array A storing n integers, where
(i) each integer has exactly d digits.
(ii) each digit has value < k
(iii) k < n.
Output: Sorted array A.
Running time:
O(dn) in word RAM model of computation.
Extra space:
Oo(n + k)
Important points:
* makes use of a count sort.
* Heavily relies on the fact that count sort is a stable sort algorithm.



Demonstration of Radix Sort through example
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Demonstration of Radix Sort through example

58 501
49 810
5 5] 012
20 624
23 239
96 258
13 961
34 3465
7 0] 2373
92 1385
6 2 70938
8 2 8299




Demonstration of Radix Sort through example
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Demonstration of Radix Sort through example
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an you see where we are exploiting the fa
Countsort is a stable sorting algorithm ?

ct that %




Radix Sort

RadixSort(A[0...n — 1], d, k)
{ Forj=1tod do
Execute CountSort(A,k) with jth digit as the key;

return A;
}
Correctness:
d j - 2 1
A number storedin A =
| |

|

Inductive assertion: ]

At the end of jth iteration, array A is sorted according to the last j digits.

zl During the induction step, you will have to use the fact If
that Countsort is a stable sorting algorithm.




Radix Sort

RadixSort(A[0...n — 1], d, k)
{ Forj=1tod do
Execute CountSort(A, k) with jth digit as the key;
return A;
}
Time complexity:
* Asingle execution of CountSort(A,k) runs in O(n + k) time and O(n + k) space.
* Note k < mn,
=>» a single execution of CountSort(A,k) runs in O(n) time.
=>» Time complexity of radix sort = O(dn).
» =>Extra space used = O(n)

Question: How to use Radix sort to sort n integers in range [0..n%] in O(tn) time and O(n)
space ?

Answer: d k Time complexity

2 O(tnlogn) ©® What digit to use ?
n O(tn) @ O




Power of the word RAM model

* Very fast algorithms for sorting integers:
Example: n integers in range [0..n1°] in O(n) time and O(n) space ?

* Lesson:
Do not always go after Merge sort and Quick sort when input is integers.

* Interesting programming exercise (for winter vacation):
Compare Quick sort with Radix sort for sorting long integers.



Data structures for searching

in O(1) time



Motivating Example

Input: agiven set S of 1009 positive integers
Aim: Data structure for searching

Example

{

123, 579236, 1072664, 770832456778, 61784523, 100004503210023, [L9|
762354723763099, 579, 72664,P977083245677001238] 84, 100004503210023,

Data structure ;: Array storing S in sorted order
Searching - Binary search

Can we perform

O(log |5]) time search in O(1) time ?




Problem Description

U:{0,1,...,m — 1} called universe
SCcU,
n = [S|,

n<m

Aim: A data structure for a given set S that can facilitate searching in O(1) time.

A search query: Doesj €S ?
Note: j can be any element from U.



A trivial data structure for O(1) search time

Build a 0-1 array A of size m such that

Alil=1ifi € S.

Ali]=0ifi & S.

Time complexity for searching an element in set S : O(1).

012 3 4

This is a totally Impractical data structure because n << m !
Example: n = few thousands, m = few trillions.

Question:
Can we have a data structure of O(n) size that can answer a search query in O(1) time ?

Answer: Hashing



Hash function, hash value

Hash function:
h is a mapping from U to {0,1, ..., n — 1}
with the following characteristics.

0
1 * Space required for h : a few words.
2 *  h(i) computable in O(1) time in word RAM.
h ' Example: h(i) = i mod n
Hash value:

h(i) is called hash value of i for a given hash
function h, and i € U.

Hash Table:
Anarray T[0..n — 1] of




Y

Hash function, hash value, hash table

What should T store?
Ponder over it...
We shall discuss it in the
next class.

Hash function:

h is a mapping from U to {0,1, ..., n — 1}

with the following characteristics.

* Space required for h : a few words.

*  h(i) computable in O(1) time in word RAM.

Example: h(i) = i mod n

Hash value:

h(i) is called hash value of i for a given hash
function h, and i € U.

Hash Table:
Anarray T[0..n — 1] of



