Data Structures and Algorithms

(CS210A)
Semester | — 2014-15

Lecture 39

Integer sorting : Radix Sort
Search data structure for integers : Hashing

Types of sorting algorithms

In Place Sorting algorithm:
A sorting algorithm which uses only O(1) extra space to sort.

Example: Heap sort, Quick sort.

Stable Sorting algorithm:

A sorting algorithm which preserves the order of equal keys while sorting.
0o 1 2 3 4 5 6 7

Al2|5|/3]0/61/3 79| 4

Alo|2|3)| 34| 5|61[79

Example: Merge sort.

Integer Sorting algorithms

Continued from last class

Counting sort: algorithm for sorting integers

Input: An array A storing n integers in the range [0...k — 1].
Output: Sorted array A.

Running time: O(n + k) in word RAM model of computation.
Extra space: O(n + k)

Count

Place

Counting sort: a visual description

2 |5
o 1
2 | 0
®
BE

P

o

Why did we scan

elements of A in reverse

order (from indexn — 1 to 0)

while placing them in the final
sorted array B ?

Answer:
T To ensure that Counting sort is stable.
t The reason why stability is required will
t become clear soon ©

Counting sort: algorithm for sorting integers

CountSort(A[0...n — 1], k)
For j=0to k — 1 do Count[j]€ 0;
For i=0 to n — 1 do Count[A[i]]€ Count[A[i]] +1;

For j=0 to k — 1 do Place[j]€ Count[j];
For j=1to k — 1 do Place[j]€ Place[j — 1] + Count[j];

Fori=n — 1to0do

{ B[Place[A[i]]-1 1€ Alil;
Place[A[i]] € Place[A[i]]-1;

}

return B;

Counting sort: algorithm for sorting integers

Key points of Counting sort:

* |t performs arithmetic operations involving O(log n + log k) bits
(O(1) time in word RAM).

* Itis astable sorting algorithm.

Theorem: An array storing n integers in the range [0..k — 1]can be sorted in O(n+k) time and
using total O(n+k) space in word RAM model.

=>» For k < n, we get an optimal algorithm for sorting.
=>» For k = n!, time and space complexity is O(n).
(too bad fort > 1.®)

Question:
How to sort 1 integers in the range [0..n!] in O(tn) time and using O(n) space?

Radix Sort

Digits of an integer

507266
No. of digits = 6
value of digit € {0, ..., 9}

1011000101011111

No. of digits = 4
value of digit € {0, ..., 15}

It is up to us how we define digit ?

Radix Sort

Input: An array A storing n integers, where
(i) each integer has exactly d digits.
(ii) each digit has value < k
(iii) k < n.
Output: Sorted array A.
Running time:
O(dn) in word RAM model of computation.
Extra space:
Oo(n + k)
Important points:
* makes use of a count sort.
* Heavily relies on the fact that count sort is a stable sort algorithm.

Demonstration of Radix Sort through example

A §

201|2

138

496

581

237

623

962

829

346

709

550

=00V OO IW|IO—=UIN

925

)

£ o
O 00
Q)| =

0
1
1

92

5

o

2373

96214

1385
3465

oo O| O
NI NN
O WU
O ©O| 00

Demonstration of Radix Sort through example

58 501
49 810
5 5] 012
20 624
23 239
96 258
13 961
34 3465
7 0] 2373
92 1385
6 2 70938
8 2 8299

Demonstration of Radix Sort through example
J

A

AN |00 |O) M [N N <t O |
— [0 M o |~|o 0 o+~ |
olonNN|a|m|m s 0 |w o (o
QU | Vo) 00 |l [v— [o |LIN (ST
—|o|al st |ov |00 | |in jm|in]|o o
O [+ |+~ [N |0 [[V ~[co | |
N[0 (O [O[aNN o) [MmO (N
552_96943_2178
O [~ [— N ||t |0 10 [0 (00 [O) |
— [© [© [~ |an oo 0 o) [Lin | oy
0o oMo M| ©|N A
N (< D N[O [~ |0 [0y [|00
AN (LD (= [O([MO (T (O [LN]| OO | =00
|00 |O |[—|~N|m|a o) OO n
olmoy|om|la|o|N |||
N |~ < Ln| N[O |0 |00 ||~ (o

Demonstration of Radix Sort through example

[e

A ! 2

2012 5810 50 1 2]0(1 2 1385
1385 4961 810 71019 8 2012
4961 5501 012 6]2(3 9 2373
5810 2012 624 [AO2[58> , [3465
2373 2373 239 8|2(9 9 4961

9624 258 2|37 3 550 1

1385 961 113(8 5 5810
8299 3465 3465 314/6 5 6239
3465| [7098] [2373|\[501] [7098
7098 9258 1385 9|6(2 4D 8299
5501 6239 7098 5|8[10 9258
9258 8299 8299 4]19]6 1 9624

an you see where we are exploiting the fa
Countsort is a stable sorting algorithm ?

ct that %

Radix Sort

RadixSort(A[0...n — 1], d, k)
{ Forj=1tod do
Execute CountSort(A,k) with jth digit as the key;

return A;
}
Correctness:
d j - 2 1
A number storedin A =
| |

|

Inductive assertion:]

At the end of jth iteration, array A is sorted according to the last j digits.

zl During the induction step, you will have to use the fact If
that Countsort is a stable sorting algorithm.

Radix Sort

RadixSort(A[0...n — 1], d, k)
{ Forj=1tod do
Execute CountSort(A, k) with jth digit as the key;
return A;
}
Time complexity:
* Asingle execution of CountSort(A,k) runs in O(n + k) time and O(n + k) space.
* Note k < mn,
=>» a single execution of CountSort(A,k) runs in O(n) time.
=>» Time complexity of radix sort = O(dn).
» =>Extra space used = O(n)

Question: How to use Radix sort to sort n integers in range [0..n%] in O(tn) time and O(n)
space ?

Answer: d k Time complexity

2 O(tnlogn) ©® What digit to use ?
n O(tn) @ O

Power of the word RAM model

* Very fast algorithms for sorting integers:
Example: n integers in range [0..n1°] in O(n) time and O(n) space ?

* Lesson:
Do not always go after Merge sort and Quick sort when input is integers.

* Interesting programming exercise (for winter vacation):
Compare Quick sort with Radix sort for sorting long integers.

Data structures for searching

in O(1) time

Motivating Example

Input: agiven set S of 1009 positive integers
Aim: Data structure for searching

Example

{

123, 579236, 1072664, 770832456778, 61784523, 100004503210023, [L9|
762354723763099, 579, 72664,P977083245677001238] 84, 100004503210023,

Data structure ;: Array storing S in sorted order
Searching - Binary search

Can we perform

O(log |5]) time search in O(1) time ?

Problem Description

U:{0,1,...,m — 1} called universe
SCcU,
n = [S|,

n<m

Aim: A data structure for a given set S that can facilitate searching in O(1) time.

A search query: Doesj €S ?
Note: j can be any element from U.

A trivial data structure for O(1) search time

Build a 0-1 array A of size m such that

Alil=1ifi € S.

Ali]=0ifi & S.

Time complexity for searching an element in set S : O(1).

012 3 4

This is a totally Impractical data structure because n << m !
Example: n = few thousands, m = few trillions.

Question:
Can we have a data structure of O(n) size that can answer a search query in O(1) time ?

Answer: Hashing

Hash function, hash value

Hash function:
h is a mapping from U to {0,1, ..., n — 1}
with the following characteristics.

0
1 * Space required for h : a few words.
2 * h(i) computable in O(1) time in word RAM.
h ' Example: h(i) = i mod n
Hash value:

h(i) is called hash value of i for a given hash
function h, and i € U.

Hash Table:
Anarray T[0..n — 1] of

Y

Hash function, hash value, hash table

What should T store?
Ponder over it...
We shall discuss it in the
next class.

Hash function:

h is a mapping from U to {0,1, ..., n — 1}

with the following characteristics.

* Space required for h : a few words.

* h(i) computable in O(1) time in word RAM.

Example: h(i) = i mod n

Hash value:

h(i) is called hash value of i for a given hash
function h, and i € U.

Hash Table:
Anarray T[0..n — 1] of

