
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 39
• Integer sorting :

• Search data structure for integers :

1

Radix Sort

Hashing

Types of sorting algorithms

In Place Sorting algorithm:

A sorting algorithm which uses only O(1) extra space to sort.

Example: Heap sort, Quick sort.

Stable Sorting algorithm:

A sorting algorithm which preserves the order of equal keys while sorting.

Example: Merge sort.

2

A

0 1 2 3 4 5 6 7

2 5 3 0 6.1 3 7.9 4

A

0 1 2 3 4 5 6 7

0 2 3 3 4 5 6.1 7.9

Integer Sorting algorithms

Continued from last class

Counting sort: algorithm for sorting integers

Input: An array A storing 𝒏 integers in the range [0…𝒌 − 𝟏].

Output: Sorted array A.

Running time: O(𝒏 + 𝒌) in word RAM model of computation.

Extra space: O(𝒏 + 𝒌)

Counting sort: a visual description

A

0 1 2 3 4 5 6 7

Count

0 1 2 3 4 5

2 5 3 0 2 3 0 3

2

2 2 4 7 7 8

0 2 3 0 1

Place

0 1 2 3 4 5

B

0 1 2 3 4 5 6 7

3 0

We could have used Count
array only to output the
elements of A in sorted

order. Why did we compute
Place and B ?

Why did we scan
elements of A in reverse

order (from index 𝒏 − 𝟏 to 𝟎)
while placing them in the final

sorted array B ?

6 1 Answer:
The input might be an array of records and
the aim to sort these records according
to some integer field.

Answer:
To ensure that Counting sort is stable.
The reason why stability is required will
become clear soon

Counting sort: algorithm for sorting integers

CountSort(A[𝟎...𝒏 − 𝟏], 𝒌)

For 𝒋=0 to 𝒌 − 𝟏 do Count[𝒋] 0;

For 𝒊=0 to 𝒏 − 𝟏 do Count[A[𝒊]] Count[A[𝒊]] +1;

For 𝒋=0 to 𝒌 − 𝟏 do Place[𝒋] Count[𝒋];

For 𝒋=1 to 𝒌 − 𝟏 do Place[𝒋] Place[𝒋 − 𝟏] + Count[𝒋];

For 𝒊=𝒏 − 𝟏 to 𝟎 do

{ B[??] A[𝒊];

 Place[A[𝒊]] Place[A[𝒊]]-1;

}

return B;

Place[A[𝒊]]-1

Counting sort: algorithm for sorting integers

Key points of Counting sort:

• It performs arithmetic operations involving O(log 𝒏 + log 𝒌) bits

 (O(1) time in word RAM).

• It is a stable sorting algorithm.

Theorem: An array storing 𝒏 integers in the range [𝟎..𝒌 − 𝟏]can be sorted in O(𝒏+𝒌) time and
using total O(𝒏+𝒌) space in word RAM model.

 For 𝒌 ≤ 𝒏, we get an optimal algorithm for sorting.

 For 𝒌 = 𝒏𝒕, time and space complexity is O(𝒏𝒕).

 (too bad for 𝒕 > 𝟏 .)

Question:

How to sort 𝒏 integers in the range [𝟎..𝒏𝒕] in O(𝒕𝒏) time and using O(𝒏) space?

Radix Sort

Digits of an integer

507266

No. of digits = ?

value of digit = ?

1011000101011111

No. of digits = 16

value of digit ∈ {0,1}

It is up to us how we define digit ?

∈ {0, … , 9}

6

4

∈ {0, … , 15}

Radix Sort

Input: An array A storing 𝒏 integers, where

 (i) each integer has exactly 𝒅 digits.

 (ii) each digit has value < 𝒌

 (iii) 𝒌 < 𝒏.

Output: Sorted array A.

Running time:

 O(𝒅𝒏) in word RAM model of computation.

Extra space:

 O(𝒏 + 𝒌)

Important points:

• makes use of a count sort.

• Heavily relies on the fact that count sort is a stable sort algorithm.

2 0 1 2
1 3 8 5
4 9 6 1
5 8 1 0
2 3 7 3
6 2 3 9
9 6 2 4
8 2 9 9
3 4 6 5
7 0 9 8
5 5 0 1
9 2 5 8

5 8 1 0
4 9 6 1
5 5 0 1
2 0 1 2
2 3 7 3
9 6 2 4
1 3 8 5
3 4 6 5
7 0 9 8
9 2 5 8
6 2 3 9
8 2 9 9

Demonstration of Radix Sort through example

A

𝒅 =4
 𝒏 =12
𝒌 =10

2 0 1 2
1 3 8 5
4 9 6 1
5 8 1 0
2 3 7 3
6 2 3 9
9 6 2 4
8 2 9 9
3 4 6 5
7 0 9 8
5 5 0 1
9 2 5 8

5 8 1 0
4 9 6 1
5 5 0 1
2 0 1 2
2 3 7 3
9 6 2 4
1 3 8 5
3 4 6 5
7 0 9 8
9 2 5 8
6 2 3 9
8 2 9 9

5 5 0 1
5 8 1 0
2 0 1 2
9 6 2 4
6 2 3 9
9 2 5 8
4 9 6 1
3 4 6 5
2 3 7 3
1 3 8 5
7 0 9 8
8 2 9 9

Demonstration of Radix Sort through example

A

2 0 1 2
1 3 8 5
4 9 6 1
5 8 1 0
2 3 7 3
6 2 3 9
9 6 2 4
8 2 9 9
3 4 6 5
7 0 9 8
5 5 0 1
9 2 5 8

5 8 1 0
4 9 6 1
5 5 0 1
2 0 1 2
2 3 7 3
9 6 2 4
1 3 8 5
3 4 6 5
7 0 9 8
9 2 5 8
6 2 3 9
8 2 9 9

5 5 0 1
5 8 1 0
2 0 1 2
9 6 2 4
6 2 3 9
9 2 5 8
4 9 6 1
3 4 6 5
2 3 7 3
1 3 8 5
7 0 9 8
8 2 9 9

2 0 1 2
7 0 9 8
6 2 3 9
9 2 5 8
8 2 9 9
2 3 7 3
1 3 8 5
3 4 6 5
5 5 0 1
9 6 2 4
5 8 1 0
4 9 6 1

Demonstration of Radix Sort through example

A

2 0 1 2
1 3 8 5
4 9 6 1
5 8 1 0
2 3 7 3
6 2 3 9
9 6 2 4
8 2 9 9
3 4 6 5
7 0 9 8
5 5 0 1
9 2 5 8

5 8 1 0
4 9 6 1
5 5 0 1
2 0 1 2
2 3 7 3
9 6 2 4
1 3 8 5
3 4 6 5
7 0 9 8
9 2 5 8
6 2 3 9
8 2 9 9

5 5 0 1
5 8 1 0
2 0 1 2
9 6 2 4
6 2 3 9
9 2 5 8
4 9 6 1
3 4 6 5
2 3 7 3
1 3 8 5
7 0 9 8
8 2 9 9

2 0 1 2
7 0 9 8
6 2 3 9
9 2 5 8
8 2 9 9
2 3 7 3
1 3 8 5
3 4 6 5
5 5 0 1
9 6 2 4
5 8 1 0
4 9 6 1

1 3 8 5
2 0 1 2
2 3 7 3
3 4 6 5
4 9 6 1
5 5 0 1
5 8 1 0
6 2 3 9
7 0 9 8
8 2 9 9
9 2 5 8
9 6 2 4

Demonstration of Radix Sort through example

A

Can you see where we are exploiting the fact that
Countsort is a stable sorting algorithm ?

Radix Sort

𝒋

RadixSort(A[𝟎...𝒏 − 𝟏], 𝒅, 𝒌)

{ For 𝒋=1 to 𝒅 do

 Execute CountSort(A,𝒌) …

 return A;

}

Correctness:

Inductive assertion:

At the end of 𝒋th iteration, …

𝒋

𝒅 … 𝟐 𝟏

A number stored in A

During the induction step, you will have to use the fact
that Countsort is a stable sorting algorithm.

array A is sorted according to the last 𝒋 digits.

with 𝒋th digit as the key;

Radix Sort
RadixSort(A[𝟎...𝒏 − 𝟏], 𝒅, 𝒌)

{ For 𝒋=1 to 𝒅 do

 Execute CountSort(A,𝒌) with 𝒋th digit as the key;

 return A;

}

Time complexity:

• A single execution of CountSort(A,𝒌) runs in O(𝒏 + 𝒌) time and O(𝒏 + 𝒌) space.

• Note 𝒌 < 𝒏,

 a single execution of CountSort(A,𝒌) runs in O(𝒏) time.

 Time complexity of radix sort = O(𝒅𝒏).

• Extra space used = ?

Question: How to use Radix sort to sort 𝒏 integers in range [𝟎..𝒏𝒕] in O(𝒕𝒏) time and O(𝒏)
space ?

Answer:
RadixSort(A[𝟎...𝒏 − 𝟏], 𝒕, 𝒏)

O(𝒏)

𝒅 𝒌 Time complexity

𝒕 log 𝒏 𝟐 O(𝒕𝒏 log 𝒏)

O(𝒕𝒏) 𝒏 𝒕

What digit to use ?
𝟏 bit

log 𝒏 bits

Power of the word RAM model

• Very fast algorithms for sorting integers:

 Example: 𝒏 integers in range [𝟎..𝒏𝟏𝟎] in O(𝒏) time and O(𝒏) space ?

• Lesson:

 Do not always go after Merge sort and Quick sort when input is integers.

• Interesting programming exercise (for winter vacation):

 Compare Quick sort with Radix sort for sorting long integers.

Data structures for searching

in O(1) time

Motivating Example

Input: a given set 𝑺 of 1009 positive integers

Aim: Data structure for searching

Example

{

123, 579236, 1072664, 770832456778, 61784523, 100004503210023, 19 ,

762354723763099, 579, 72664, 977083245677001238, 84, 100004503210023,

 …

}

Data structure : ?

Searching : ?

Array storing 𝑺 in sorted order

Binary search

O(log |𝑺|) time
Can we perform

search in O(𝟏) time ?

Problem Description

𝑼 : {0,1, … , 𝒎 − 𝟏} called universe

𝑺 ⊆ 𝑼,

 𝒏 = 𝑺 ,

Aim: A data structure for a given set 𝑺 that can facilitate searching in O(1) time.

A search query: Does 𝒋 ∈ 𝑺 ?

Note: 𝒋 can be any element from 𝑼.

𝒏 ≪ 𝒎

A trivial data structure for O(1) search time

Build a 0-1 array A of size 𝒎 such that

A[𝒊] = 1 if 𝒊 ∈ 𝑺.

A[𝒊] = 0 if 𝒊 ∉ 𝑺.

Time complexity for searching an element in set 𝑺 : O(1).

 This is a totally Impractical data structure because 𝒏 ≪ 𝒎 !

 Example: 𝒏 = few thousands, 𝒎 = few trillions.

Question:

Can we have a data structure of O(𝒏) size that can answer a search query in O(1) time ?

Answer: Hashing

0 0 1 0 0 … 0 1 0 … 0 0 1

0 1 2 3 4 … … 𝒎-1

A

Hash function, hash value, hash table

 Hash function:

𝒉 is a mapping from 𝑼 to {0,1, … , 𝒏 − 𝟏}

with the following characteristics.

• Space required for 𝒉 : a few words.

• 𝒉(𝒊) computable in O(1) time in word RAM.

Example: 𝒉(𝒊) = 𝒊 mod 𝒏

Hash value:

𝒉(𝒊) is called hash value of 𝒊 for a given hash
function 𝒉, and 𝒊 ∈ 𝑼.

Hash Table:

An array 𝑻[0 … 𝒏 − 𝟏] of …

0
1
2
.
.
.
.
.
.
.
.
.
.
.

𝒎 − 𝟏

0
1
.
.

𝒏 − 𝟏

𝒉

Hash function, hash value, hash table

 Hash function:

𝒉 is a mapping from 𝑼 to {0,1, … , 𝒏 − 𝟏}

with the following characteristics.

• Space required for 𝒉 : a few words.

• 𝒉(𝒊) computable in O(1) time in word RAM.

Example: 𝒉(𝒊) = 𝒊 mod 𝒏

Hash value:

𝒉(𝒊) is called hash value of 𝒊 for a given hash
function 𝒉, and 𝒊 ∈ 𝑼.

Hash Table:

An array 𝑻[0 … 𝒏 − 𝟏] of …

0
1
2
.
.
.
.
.
.
.
.
.
.
.

𝒎 − 𝟏

0
1
.
.
.
.
.

𝒏 − 𝟏

𝒉

𝑻

What should 𝑻 store?
Ponder over it…

We shall discuss it in the
next class.

