
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 38
• An interesting problem:

shortest path from a source to destination
• Sorting Integers

1

SHORTEST PATHS IN A GRAPH

A fundamental problem

2

Notations and Terminologies

A directed graph 𝑮 = (𝑽, 𝑬)

• 𝝎:𝑬 → 𝑹+

• Represented as Adjacency lists or Adjacency matrix

• 𝒏 = |𝑽| , 𝒎 = |𝑬|

Question: what is a path in 𝑮?

Answer: A sequence 𝒗𝟏, 𝒗𝟐,…, 𝒗𝒌 such that (𝒗𝒊,𝒗𝒊+𝟏) ∈ 𝑬 for all 𝟏 ≤ 𝒊 < 𝒌.

Length of a path 𝑷 = 𝝎(𝒆)𝒆∈𝑷

3

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝒌−𝟏 𝒗𝒌
… 12 3 29

Notations and Terminologies

Definition:

The path ? is called the shortest path from 𝒖 to 𝒗

Definition: Distance from 𝒖 to 𝒗 is the length of the shortest path from 𝒖 to 𝒗.

Notations:

 𝜹(𝒖, 𝒗) : distance from 𝒖 to 𝒗.

 𝑷(𝒖, 𝒗) : The shortest path from 𝒖 to 𝒗.

4

from 𝒖 to 𝒗 of minimum length

Problem Definition

Input: A directed graph 𝑮 = (𝑽, 𝑬) with 𝝎:𝑬 → 𝑹+ and a source vertex 𝒔 ∈ 𝑽

Aim:

• Compute 𝜹(𝒔, 𝒗) for all 𝒗 ∈ 𝑽*𝒔+

• Compute 𝑷(𝒔, 𝒗) for all 𝒗 ∈ 𝑽*𝒔+

5

What if 𝝎(𝒆) = 1 ? Do BFS from 𝒔


Problem Definition

Input: A directed graph 𝑮 = (𝑽, 𝑬) with 𝝎:𝑬 → 𝑹+ and a source vertex 𝒔 ∈ 𝑽

Aim:

• Compute 𝜹(𝒔, 𝒗) for all 𝒗 ∈ 𝑽*𝒔+

• Compute 𝑷(𝒔, 𝒗) for all 𝒗 ∈ 𝑽*𝒔+

First algorithm : by Edsger Dijkstra in 1956

And still the best …

6

I am sure you will be able to re-invent
it yourself if you are asked right

questions  So get ready !

An Example

Answer: vertex 𝒖.

7

𝒔

𝒖

𝒙

𝒚

𝒛

𝒗

3

5

12

10

7
G

Give
reasons.

Can you spot any vertex for
which you are certain about

its distance from 𝒔 ?

An Example

8

𝒔

𝒖

𝒙

𝒚

𝒛

𝒗

3

5

12

10

7
G

> 𝟎

An Example

 Yes, the edge (𝒔, 𝒖) is indeed the shortest path to 𝒖.

9

𝒔

𝒖

𝒙

𝒚

𝒛

𝒗

3

5

12

10

7
G

How to use it to design an
algorithm for shortest paths ?

Does it remind you
something from recent

past ? 

Greedy Strategy.
Right, so what
should be your

next step ?

 To form a smaller instance
of the problem.

But how ?

Pondering over the problem

Idea 1 :

Remove 𝒖 since we have computed distance to 𝒖. & so its job is done.

So now there will be 𝒏 − 𝟏 vertices.

The new graph will preserve those shortest paths from 𝒔 in which 𝒖 is
not present.

But what about those shortest paths from 𝒔 that pass through 𝒖 ?

We lost them with the removal of 𝒖. 

So we can’t afford to remove 𝒖.

How can then we get a smaller instance ?

10

Merging 𝒔 and 𝒖 
But how ?

An Example

11

𝒔

𝒖

𝒙

𝒚

𝒛

𝒗

3

5

12

10

7
G

3

2

8

21

𝒓

𝒕

Let us look carefully around 𝒖 ?

An Example

12

𝒙

𝒚

𝒛

𝒗

5

12

10

7
G’

3

2

8

21

𝒓

𝒕

 +3

+3

 +3

 +3

𝒔

An Example

13

𝒙

𝒚

𝒛

𝒗

5

12

10

7
G’

6

5

11

24

𝒓

𝒕
𝒔

How to compute instance 𝑮′

Let (𝒔,𝒖) be the least weight edge from 𝒔 in 𝑮=(𝑽, 𝑬).

Transform 𝑮 into 𝑮′ as follows.

1. For each edge (𝒖,𝒙)ϵ 𝑬,

 add edge (𝒔,𝒙);

 𝝎(𝒔,𝒙) ??

2. In case of two edges from 𝒔 to any vertex 𝒙, keep only the lighter edge.

3. Remove vertex 𝒖.

Theorem: For each 𝒗 ∈ 𝑽*𝒔, 𝒖+,
𝜹𝑮 𝒔, 𝒗 = 𝜹𝑮′ 𝒔, 𝒗

14

𝝎(𝒔,𝒖) + 𝝎(𝒖,𝒙);

How efficient an algorithm for
shortest paths can you design ?

 an algorithm for distances from 𝒔 with 𝑶(𝒏𝟐) time complexity.

15

(𝑮, 𝒔)

(𝑮′, 𝒔)

Building
𝑮′

O(𝒏) time

𝒏

𝒏 − 𝟏

No. of vertices

Integer sorting

Algorithms for Sorting 𝒏 elements

• Insertion sort:

• Selection sort:

• Bubble sort:

• Merge sort: O(𝒏 log 𝒏)

• Quick sort: worst case O(𝒏𝟐), average case O(𝒏 log 𝒏)

• Heap sort: O(𝒏 log 𝒏)

Question: What is common among these algorithms ?

Answer: All of them use only comparison operation to perform sorting.

Theorem (to be proved in CS345): Every comparison based sorting

algorithm must perform at least O(𝒏 log 𝒏) comparisons in the worst case.

O(𝒏𝟐)

O(𝒏𝟐)

O(𝒏𝟐)

Question: Can we sort in O(𝒏) time ?

The answer depends upon

• the model of computation.

• the domain of input.

word RAM model of computation:
Characteristics

• Word is the basic storage unit of RAM.

• Each input item (number, name) is stored in binary format.

• RAM can be viewed as a huge array of words. Any arbitrary location of
RAM can be accessed in the same time irrespective of the location.

• Data as well as Program reside fully in RAM.

• Each arithmetic or logical operation (+,-,*,/,or, xor,…) involving a constant
number of words takes a constant number of steps by the CPU.

19

Each arithmetic or logical operation (+,-,*,/,or, xor,…) involving O(log n) bits
take a constant number of steps by the CPU, where n is the number of bits of

input instance.

Integer sorting

Counting sort: algorithm for sorting integers

Input: An array A storing 𝒏 integers in the range [0…𝒌 − 𝟏].

Output: Sorted array A.

Running time: O(𝒏 + 𝒌) in word RAM model of computation.

Extra space: O(𝒌)

Motivating example: Indian railways

There are 13 lacs employees.

Aim : To sort them list according to DOB (date of birth)

Observation: There are only 14600 different date of births possible.

Counting sort: algorithm for sorting integers

A

0 1 2 3 4 5 6 7

Count

0 1 2 3 4 5

2 5 3 0 2 3 0 3

2

2 2 4 7 7 8

0 2 3 0 1

Place

0 1 2 3 4 5

B

0 1 2 3 4 5 6 7

3

If A[𝒊]=𝒋,
where should A[𝒊] be

placed in B ?

Final sorted output

Certainly after all those elements in A
which are smaller than 𝒋

Counting sort: algorithm for sorting integers

A

0 1 2 3 4 5 6 7

Count

0 1 2 3 4 5

2 5 3 0 2 3 0 3

2

2 2 4 6 7 8

0 2 3 0 1

Place

0 1 2 3 4 5

B

0 1 2 3 4 5 6 7

0 3

Counting sort: algorithm for sorting integers

A

0 1 2 3 4 5 6 7

Count

0 1 2 3 4 5

2 5 3 0 2 3 0 3

2

1 2 4 6 7 8

0 2 3 0 1

Place

0 1 2 3 4 5

B

0 1 2 3 4 5 6 7

3 0 3

Counting sort: algorithm for sorting integers

Algorithm (A[𝟎...𝒏 − 𝟏], 𝒌)

For 𝒋=0 to 𝒌 − 𝟏 do Count[𝒋] 0;

For 𝒊=0 to 𝒏 − 𝟏 do Count[A[𝒊]] Count[A[𝒊]] +1;

For 𝒋=0 to 𝒌 − 𝟏 do Place[𝒋] Count[𝒋];

For 𝒋=1 to 𝒌 − 𝟏 do Place[𝒋] ? ;

For 𝒊=𝒏 − 𝟏 to 𝟎 do

{ B[?] A[𝒊];

 ? ;

}

return B;

Place[A[𝒊]]-1

Place[A[𝒊]]  Place[A[𝒊]]-1;

Place[𝒋 − 𝟏] + Count[𝒋]

Each arithmetic operations

involves ? bits O(log 𝒏 + log 𝒌)

Counting sort: algorithm for sorting integers

Note: The algorithm performs arithmetic operations involving O(log 𝒏 + log 𝒌) bits.

In word RAM model, it takes O(1) time for such an operation.

Theorem: An array storing 𝒏 integers in the range [𝟎..𝒌 − 𝟏]can be sorted in

O(𝒏+𝒌) time and using total O(𝒏+𝒌) space in word RAM model.

 For 𝒌 = O(𝒏), we get an optimal algorithm for sorting. But what if 𝒌 is large ?

 For 𝒌 = 𝒏𝒕, time and space complexity is O(𝒏𝒕).

 (too bad for 𝒕 > 𝟏 . )

Question:

How to sort 𝒏 integers in the range [𝟎..𝒏𝒕] in O(𝒕𝒏) time and using O(𝒏) space?

Next class

