Data Structures and Algorithms

(CS210A)
Semester | — 2014-15

Lecture 38
* An interesting problem:
shortest path from a source to destination
* Sorting Integers

SHORTEST PATHS IN A GRAPH

A fundamental problem

Notations and Terminologies

A directed graph G = (V, E)

« w:E->R"

* Represented as Adjacency lists or Adjacency matrix

* n=|V| , m=]|E]|

Question: what is a path in G?

Answer: A sequence V4, Vy,..., V| such that (v;,v;,1) € Eforall1 <i < k.

Length of a path P =}, ,cp w(e)

Notations and Terminologies

Definition:
The path from u to v of minimum length is called the shortest path from u to v

Definition: Distance from u to v is the length of the shortest path from u to v.

Notations:
o6 (u,v) : distance from u to v.
P(u,v) : The shortest path from u to v.

Problem Definition

Input: A directed graph G = (V, E) with w: E - R™ and a source vertex s € V

Aim:
- Compute 8(s, v) forall v € V\{s}
. Compute P(s,v) forall v € V\{s}
E Do BFS from s E
©
O

Problem Definition

Input: A directed graph G = (V, E) with w: E - R™ and a source vertex s € V

Aim:
- Compute 8(s, v) forall v € V\{s}
. Compute P(s,v) forall v € V\{s}

First algorithm : by Edsger Dijkstra in 1956
And still the best ...

— —
| am sure you will be able to re-invent
it yourself if you are asked right

questions © So get ready !

—

Answer: vertex u.

An Example

Can you spot any vertex for
which you are certain about
its distance from s ?

L

Give
reasons.

X

v

An Example

An Example

——

How to use it to design an
algorithm for shortest paths ?

To form a smaller instance
of the problem.
But how ?

Pondering over the problem

Idea 1:
Remove u since we have computed distance to u. & so its job is done.

So now there will be n — 1 vertices.

The new graph will preserve those shortest paths from s in which u is
not present.

But what about those shortest paths from s that pass through u ?
We lost them with the removal of u. ®

So we can’t afford to remove wu.
How can then we get a smallerinstance ?

Merging s and u © %
But how ?

An Example

Let us look carefully around u ?

O 11

An Example

12

An Example

13

How to compute instance G’

Let (s,u) be the least weight edge from s in G=(V, E).
Transform G into G’ as follows.
1. For each edge (u,x)e E,
add edge (s,x);
w(s,x)< w(s,u) + w(u,x);
2. In case of two edges from s to any vertex x, keep only the lighter edge.

3. Remove vertex u.

Theorem: For each v € V\{s, u},
Oq(s,v) =64(s,v)

How efficient an algorithm for
shortest paths can you design ?

O 14

No. of vertices

e)

O(n) time Building

= an algorithm for distances from s with O(n?) time complexity.

15

Integer sorting

Algorithms for Sorting n elements

* Insertion sort: o(n?)
« Selection sort: o(n?)
* Bubble sort: o(n?)
 Merge sort: O(n log n)

 Quick sort: worst case O(n?), average case O(n log n)

 Heap sort: O(n log n)

Question: What is common among these algorithms ?
Answer: All of them use only comparison operation to perform sorting.

Theorem (to be proved in CS345): Every comparison based sorting
algorithm must perform at least O(n log n) comparisons in the worst case.

Question: Can we sort in O(n) time ?

The answer depends upon

* the model of computation.

* the domain of input.

word RAM model of computation:
Characteristics

Word is the basic storage unit of RAM.

Each input item (number, name) is stored in binary format.

RAM can be viewed as a huge array of words. Any arbitrary location of
RAM can be accessed in the same time irrespective of the location.

Data as well as Program reside fully in RAM.

Each arithmetic or logical operation (+,-,*,/,0r, xor,...) involving O(log n) bits
take a constant number of steps by the CPU, where n is the number of bits of
input instance.

Integer sorting

Counting sort: algorithm for sorting integers

Input: An array A storing n integers in the range [0...k — 1].
Output: Sorted array A.

Running time: O(n + k) in word RAM model of computation.
Extra space: O(k)

Motivating example: Indian railways

There are 13 lacs employees.
Aim : To sort them list according to DOB (date of birth)
Observation: There are only 14600 different date of births possible.

Counting sort: algorithm for sorting integers

If A[i]=/,
where should A[i] be
placed in B ?

Count

Certainly after all those elementsin A
@ 4 = which are smaller than j

Place 2 2 | 4 7 7 8

Final sorted output

Counting sort: algorithm for sorting integers

Count| 202|301

=
N

N
S
| w
~
(0 ¢)

©
Place |_2

o |- €&

Counting sort: algorithm for sorting integers

Count

Place 1 2 | 4

Counting sort: algorithm for sorting integers

Algorithm (A[0...n — 1], k)
For j=0to k — 1 do Count[j]€ 0;
For i=0 to n — 1 do Count[A[i]]€ Count[A[i]] +1;

For j=0 to k — 1 do Place[j]€ Count[j];
For j=1to k — 1 do Place[j]€ Place[j — 1] + Count[j] ;

Fori=n — 1to0do
{ B[Place[A[i]]-1 1€ Alil;

Place[A[i]] € Place[A[i]]-1; — —
} Each arithmetic operations

B-
return B; involves O(log n + log k) bits

Counting sort: algorithm for sorting integers

Note: The algorithm performs arithmetic operations involving O(log n + log k) bits.
In word RAM model, it takes O(1) time for such an operation.

Theorem: An array storing n integers in the range [0..k — 1]can be sorted in
O(n+k) time and using total O(n+k) space in word RAM model.

=>» For k = O(n), we get an optimal algorithm for sorting. But what if k is large ?
=>» For k = n!, time and space complexity is O(n?).
(too bad fort > 1.®)

Question:
How to sort 1 integers in the range [0..n'] in O(tn) time and using O(n) space?

Next class

