
Data Structures and Algorithms 
(CS210A) 

Semester I – 2014-15 

Lecture 38 
• An interesting problem:  

shortest path from a source to destination 
• Sorting Integers 
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SHORTEST PATHS IN A GRAPH 

A fundamental problem 
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Notations and Terminologies 
 

A directed graph 𝑮 = (𝑽, 𝑬) 

• 𝝎:𝑬 → 𝑹+  

• Represented as Adjacency lists or Adjacency matrix 

• 𝒏 = |𝑽|      ,       𝒎 = |𝑬|  

Question: what is a path in 𝑮?  

Answer: A sequence 𝒗𝟏, 𝒗𝟐,…, 𝒗𝒌 such that (𝒗𝒊,𝒗𝒊+𝟏) ∈ 𝑬 for all 𝟏 ≤ 𝒊 < 𝒌. 

 

 

 

 

 

Length of a path 𝑷 =  𝝎(𝒆)𝒆∈𝑷  
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𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝒌−𝟏 𝒗𝒌 
… 12 3 29 



Notations and Terminologies 
 

 

 

Definition:  

The path                            ?                                is called the shortest path from 𝒖 to 𝒗  

 

Definition: Distance from 𝒖 to 𝒗 is the length of the shortest path from 𝒖 to 𝒗. 

 

Notations: 

  𝜹(𝒖, 𝒗) : distance from 𝒖 to  𝒗. 

 𝑷(𝒖, 𝒗) : The shortest path from  𝒖 to  𝒗. 
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from 𝒖 to 𝒗 of minimum length 



Problem Definition 

Input: A directed graph 𝑮 = (𝑽, 𝑬) with 𝝎:𝑬 → 𝑹+ and a source vertex 𝒔 ∈ 𝑽 

 

 

Aim:  

•  Compute 𝜹(𝒔, 𝒗) for all  𝒗 ∈ 𝑽\*𝒔+ 

•  Compute 𝑷(𝒔, 𝒗) for all  𝒗 ∈ 𝑽\*𝒔+ 
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What if 𝝎(𝒆) = 1 ? Do BFS from 𝒔  
 



Problem Definition 

Input: A directed graph 𝑮 = (𝑽, 𝑬) with 𝝎:𝑬 → 𝑹+ and a source vertex 𝒔 ∈ 𝑽 

 

 

Aim:  

•  Compute 𝜹(𝒔, 𝒗) for all  𝒗 ∈ 𝑽\*𝒔+ 

•  Compute 𝑷(𝒔, 𝒗) for all  𝒗 ∈ 𝑽\*𝒔+ 

 

First algorithm : by Edsger Dijkstra  in 1956 

And still the best … 
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I am sure you will be able to re-invent 
it yourself if you are asked right 

questions   So get ready ! 



An Example 
 

 

 

 

 

 
 

 

 

 

Answer: vertex 𝒖. 
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Give 
reasons. 

Can you spot any vertex for 
which you are certain about 

its distance from 𝒔 ? 



An Example 
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An Example 
 

 

 

 

 

 

 

 

 

 
 Yes, the edge (𝒔, 𝒖) is indeed the shortest path to 𝒖. 
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How to use it to design an 
algorithm for shortest paths  ? 

Does it remind you 
something from recent 

past ?  

Greedy Strategy.  
Right, so what 
should be your 

next step ? 

 To form a smaller instance 
of the problem.  

But how ? 



Pondering over the problem 
 

Idea 1 :  

Remove 𝒖 since we have computed distance to 𝒖. & so its job is done. 

 

So now there will be 𝒏 − 𝟏 vertices. 

The new graph will preserve those shortest paths from 𝒔 in which 𝒖 is 
not present. 

But what about those shortest paths from 𝒔 that pass through 𝒖 ? 

We lost them with the removal of 𝒖.  

 

So we can’t afford to remove 𝒖.  

How can then we get a smaller instance ?  
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Merging 𝒔  and 𝒖  
But how ? 



An Example 
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Let us look carefully around 𝒖 ? 



An Example 
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An Example 
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How to compute instance 𝑮′ 
 

Let (𝒔,𝒖) be the least weight edge from 𝒔 in 𝑮=(𝑽, 𝑬).   

Transform 𝑮 into 𝑮′ as follows. 

1.  For each edge (𝒖,𝒙)ϵ 𝑬,   

                         add edge (𝒔,𝒙); 

                          𝝎(𝒔,𝒙) ?? 

2. In case of two edges from 𝒔 to any vertex 𝒙, keep only the lighter edge. 

3. Remove vertex 𝒖. 

 

Theorem:   For each 𝒗 ∈ 𝑽\*𝒔, 𝒖+,  
𝜹𝑮 𝒔, 𝒗 = 𝜹𝑮′ 𝒔, 𝒗  
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𝝎(𝒔,𝒖) + 𝝎(𝒖,𝒙); 

How efficient an algorithm for 
shortest paths can you design ? 



 

 

 

 

 

 

 

 

 

 

 

 an algorithm for distances from 𝒔 with 𝑶(𝒏𝟐) time complexity. 
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(𝑮, 𝒔) 

(𝑮′, 𝒔) 

Building 
𝑮′  

O(𝒏) time 

𝒏 

𝒏 − 𝟏 

No. of vertices 



Integer sorting 



Algorithms for Sorting 𝒏 elements 

• Insertion sort: 

• Selection sort:            

• Bubble sort:                

• Merge sort:                O(𝒏 log 𝒏) 

• Quick sort:  worst case O(𝒏𝟐), average case O(𝒏 log 𝒏) 

• Heap sort:                  O(𝒏 log 𝒏) 

 

Question: What is common among these algorithms ? 

Answer:   All of them use only comparison operation to perform sorting. 

 

Theorem (to be proved in CS345): Every comparison based sorting 

algorithm must perform at least O(𝒏 log 𝒏) comparisons in the worst case. 

 

 

O(𝒏𝟐) 

O(𝒏𝟐) 

O(𝒏𝟐) 



Question: Can we sort in O(𝒏) time ? 

 
 

The answer depends upon  

 

• the model of computation.  

 

• the domain of input. 

 

 



word RAM model of computation: 
Characteristics 

• Word is the basic storage unit of RAM.  

 

• Each input item (number, name) is stored in binary format. 

 

• RAM can be viewed as a huge array of words. Any arbitrary location of 
RAM can be accessed in the same time irrespective of the location. 

 

• Data as well as Program reside fully  in RAM.  

 

• Each arithmetic or logical operation (+,-,*,/,or, xor,…) involving a constant 
number of words takes a constant number of steps by the CPU.  
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Each arithmetic or logical operation (+,-,*,/,or, xor,…) involving  O( log n)  bits 
take  a constant number of steps by the CPU, where n is the number of bits of 

input instance. 



Integer sorting 



Counting sort: algorithm for sorting integers 

 

Input: An array A storing 𝒏 integers in the range [0…𝒌 − 𝟏]. 

Output: Sorted array A. 

Running time: O(𝒏 + 𝒌) in word RAM model of computation. 

Extra space: O(𝒌)  

 

Motivating example: Indian railways 

 

There are 13 lacs employees. 

Aim : To sort them list according to DOB (date of birth) 

Observation: There are only 14600 different date of births possible. 

 

 



Counting sort: algorithm for sorting integers 

 

 
A 

0         1           2         3         4          5         6         7 

Count 

0         1           2         3         4          5  

2      5       3       0      2       3       0      3 

2   

2       2      4       7       7       8 

0 2 3 0 1 

Place 

0         1           2         3         4          5  

B 

0         1           2         3         4          5         6         7 
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If A[𝒊]=𝒋,  
where should A[𝒊] be 

placed in B ? 

Final sorted output 

Certainly after all those elements in A 
which are smaller than 𝒋 



Counting sort: algorithm for sorting integers 

 

 
A 

0         1           2         3         4          5         6         7 

Count 

0         1           2         3         4          5  

2      5       3       0      2       3       0      3 

2   

2       2      4       6       7       8 

0 2 3 0 1 

Place 

0         1           2         3         4          5  

B 

0         1           2         3         4          5         6         7 

0 3 



Counting sort: algorithm for sorting integers 

 

 
A 

0         1           2         3         4          5         6         7 

Count 

0         1           2         3         4          5  

2      5       3       0      2       3       0      3 

2   

1       2      4       6       7       8 

0 2 3 0 1 

Place 

0         1           2         3         4          5  

B 

0         1           2         3         4          5         6         7 

3 0 3 



Counting sort: algorithm for sorting integers 

Algorithm (A[𝟎...𝒏 − 𝟏], 𝒌) 

For 𝒋=0 to 𝒌 − 𝟏 do  Count[𝒋] 0; 

For 𝒊=0 to 𝒏 − 𝟏 do Count[  A[𝒊]  ] Count[  A[𝒊] ] +1; 

 

For 𝒋=0 to 𝒌 − 𝟏 do Place[𝒋] Count[𝒋]; 

For 𝒋=1 to 𝒌 − 𝟏 do Place[𝒋]                ?                            ; 

 

For 𝒊=𝒏 − 𝟏 to 𝟎 do 

{         B[            ?              ] A[𝒊]; 

                         ?                                     ; 

}  

return B; 

Place[A[𝒊]]-1 

Place[A[𝒊]]  Place[A[𝒊]]-1; 

Place[𝒋 − 𝟏] + Count[𝒋] 

Each arithmetic operations  
 

involves                  ?             bits O(log 𝒏 + log 𝒌) 



Counting sort: algorithm for sorting integers 

 
Note: The algorithm performs arithmetic operations involving O(log 𝒏 + log 𝒌) bits.  

In word RAM model, it takes O(1) time for such an operation. 

  

Theorem: An array storing 𝒏 integers in the range [𝟎..𝒌 − 𝟏]can be sorted in  

O(𝒏+𝒌) time and using total O(𝒏+𝒌) space in word RAM model. 

 

 For 𝒌 = O(𝒏), we get an optimal algorithm for sorting. But what if 𝒌 is large ? 

 For 𝒌 =  𝒏𝒕, time and space complexity is O(𝒏𝒕). 

                                              (too bad for 𝒕 > 𝟏 . )  

   

Question:  

How to sort 𝒏 integers in the range [𝟎..𝒏𝒕] in O(𝒕𝒏) time and using O(𝒏) space? 

Next class 


