
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 37
• A new algorithm design paradigm:

 part IV

1

Greedy strategy

Problems solved till now

1. Job Scheduling Problem

2. Mobile Tower Problem

3. MST

Did you notice
anything commons in

their solutions ?

Ponder over this question before moving ahead

Problem 1
Job scheduling Problem

INPUT:

• A set 𝑱 of 𝒏 jobs {𝒋𝟏, 𝒋𝟐,…, 𝒋𝒏}

• job 𝒋𝒊 is specified by two real numbers

 s(𝒊): start time of job 𝒋𝒊

 f(𝒊): finish time of job 𝒋𝒊

• A single server

Constraints:

• Server can execute at most one job at any moment of time and a job.

• Job 𝒋𝒊, if scheduled, has to be scheduled during[s(𝒊), f(𝒊)] only.

Aim:

To select the largest subset of non-overlapping jobs which can be executed by the server.

3

We could not say anything
about the complete solution

of this problem.

All that we could do was to make

a local observation

Let 𝒙 ∈ 𝑱 be the job with earliest finish time.

Lemma1 : There exists an optimal solution for 𝑱 in which 𝒙 is present.

Let 𝑱′ = 𝑱\Overlap(𝒙)

Equation (i) hints at recursive solution of the problem 

4

𝑱(original instance)

𝑱′ (smaller instance)

Greedy
step

Opt(𝑱)

Opt(𝑱′)

Lemma1 Opt(𝑱)= Opt(𝑱′) + 1 -- (i)

Lemma 1 gives very small information
about the optimal solution 

How to use it to compute this solution ?

Theorem: Opt(𝑱) = Opt(𝑱′) + 1.

• Proof has two parts

 Opt(𝑱) ≥ Opt(𝑱′) + 1

 Opt(𝑱′) ≥ Opt(𝑱) – 1

• Proof for each part is a proof by construction

5

Problem 2
Mobile Tower Problem

Problem statement:

There is a set 𝑯 of 𝒏 houses located along a road.

We want to place mobile towers such that

• Each house is covered by at least one mobile tower.

• The number of mobile towers used is least possible.

6

𝒅 𝒅

We could not say anything
about the complete solution

of this problem.

All that we could do was to make

a local observation

Lemma 2: There is an optimal solution for the problem in which

the leftmost tower is placed at distance 𝒅 to the right of the first house.

Let 𝒙 be the tower located at 𝒅 to the right of the first house.

Let 𝑯′ = 𝑯\ {all houses within distance 𝒅 from 𝒙}

Equation (i) hints at recursive solution of the problem 

𝑯(original instance)

𝑯′(smaller instance)

Greedy
step

Opt(𝑯)

Opt(𝑯′)

Lemma 2

Opt(𝑯)= Opt(𝑯′) + 1

Lemma 1 gives very small information
about the optimal solution 

How to use it to compute this solution ?

What is a greedy strategy ?

A strategy that is

• Based on some local approach

• With the objective to optimize some function.

Note:

Recall that the divide and conquer strategy takes a global approach.

Design of a greedy algorithm

Let A be an instance of an optimization problem.

1. Make a local observation about the solution.

2. Use this observation to express optimal solution of A

 in terms of
– Optimal solution of a smaller instance A’

– Local step

3. This gives a recursive solution.

4. Transform it into iterative one.

𝑱(original solution)

𝑱′(smaller
instance)

Greedy
step

MST

Input: an undirected graph 𝑮=(𝑽,𝑬) with w: 𝑬  ℝ,

Aim: compute a spanning tree (𝑽, 𝑬′), 𝑬′ ⊆ 𝑬 such that w(𝒆)𝒆∈𝑬′ is minimum.

Lemma 3 (proved in the class):

If 𝒆𝟎 ∈ 𝑬is the edge of least weight in 𝑮, then there is a MST 𝑻 containing 𝒆𝟎.

10

How to use this Lemma to
design an algorithm for MST ?

If you have understood a generic way to design a greedy
algorithm, then try to solve the MST problem.

How to compute a MST ?

11

170

33

35
31

41 81

52

42

50

102

50 30
60

70

54

57

49

49

80

78

63
54

53

44

29

64

42

43

How to compute a MST ?

12

170

33

35
31

41 81

52

42

50

102

50 30
60

70

54

57

49

49

80

78

63
54

53

44

29

64

42

43

u
v

How to compute a MST ?

13

170

33

35
31

41 81

52

42

50

102

50 30
60

70

54

57

49

49

80

78

63
54

53
64

42

44

w

43

This is graph 𝑮′

How to compute a MST ?

Let (u,v) be the least weight edge in 𝑮=(𝑽, 𝑬). Transform 𝑮 into 𝑮′ as follows.

• Remove vertices u and v and add a new vertex w

• For each edge (u,x)ϵ 𝑬, add edge (w,x) in 𝑮′.

• For each edge (v,x)ϵ 𝑬, add edge (w,x) in 𝑮′.

• In case of multiple edges between w and x, keep only the lighter weight edge.

Theorem1: W_MST(𝑮) = W_MST(𝑮′) + w(u,v)

Proof: (by construction)

1. W_MST(𝑮) ≤ W_MST(𝑮′) + w(u,v)

2. W_MST(𝑮′) ≤ W_MST(𝑮) - w(u,v)

(Give all details of the proof as a homework)

14

Use Lemma 3

straightforward

Problem 4
Overlapping Intervals

The aim of this problem is to make you realize that

 it is sometime very nontrivial to design a greedy algorithm. In
particular, it is quite challenging to design the smaller instance.

In the end semester exam of the course, no problem of this
level of difficulty will be asked 

Overlapping Intervals

Problem statement:

Given a set A of 𝒏 intervals, compute smallest set B of intervals so that

for every interval I in A\B, there is some interval in B which overlaps/intersects with I.

A

Overlapping Intervals

Problem statement:

Given a set A of 𝒏 intervals, compute smallest set B of intervals so that

for every interval I in A\B, there is some interval in B which overlaps/intersects with I.

A

Not an optimal solution 
an optimal solution  another optimal solution 

Overlapping Intervals

Strategy 1

Interval with maximum length should be there in optimal solution

Intuition:

Selecting such an interval will cover maximum no. of other intervals

There is a counter example 

Overlapping Intervals

Strategy 1

Interval with maximum length should be there in optimal solution

Intuition:

Selecting such an interval will cover maximum no. of other intervals

There is a counter example 

Overlapping Intervals

Strategy 2

Interval that overlaps maximum no. of intervals should be there in optimal solution

Intuition:

Selecting such an interval will cover maximum no. of other intervals

There is a counter example 

Overlapping Intervals

Strategy 2

Interval that overlaps maximum no. of intervals should be there in optimal solution

Not an optimal solution 

Overlapping Intervals

Strategy 2

Interval that overlaps maximum no. of intervals should be there in optimal solution

An optimal solution has size 2.

Think for a while :
After failure of two strategies, how to proceed to design the algorithm.

Overlapping Intervals

Let I* be the interval with earliest finish time.

Let I’ be the interval with maximum finish time overlapping I*.

Lemma1: There is an optimal solution for set A that contains I’.

Proof:(sketch) :

If I* is overlapped by any other interval in the optimal solution, say I^,

I^ will surely overlap all intervals that are overlapped by I’.

 Swapping I^ by I’ will still give an optimal solution.

A I*
I’

Exploit the fact that
I* has earliest finish
time for this claim.

Overlapping Intervals

Question: How to obtain smaller instance A’ using Lemma 1 ?

I’
I* A

Overlapping Intervals

Question: How to obtain smaller instance A’ using Lemma 1 ?

Naive approach : remove from A all intervals which overlap with I’. This is A’.

A

I’
I*

A’
There is a counter example 

Overlapping Intervals

Question: How to obtain smaller instance A’ using Lemma 1 ?

Naive approach : remove from A all intervals which overlap with I’. This is A’.

The problem is that some deleted interval (in this case I’’) could have been used for
intersecting many intervals if it were not deleted. But deleting it from the instance
disallows it to be selected in the solution.

I’
I*

I’’

A

There is a counter example 
A’

Overview of the approach

In order to make sure we do not delete intervals (like I’’ in the previous slide)
if they are essential to be selected to cover many other intervals, we make
some observations and introduce a terminology called Uniquely covered
interval. It turns out that we need to keep I’’ in the smaller instance if there is
an interval there which is uniquely covered by I’’ . Otherwise, we may discard
I’’.

Carefully constructing A’

Question: Among the intervals that overlap I’, which intervals should be kept in A’ ?

I’
I*

I’’ A

Carefully constructing A’

Question: Among the intervals that overlap I’, which intervals should be kept in A’ ?

Observation1: Among the intervals which cross red line,

only the interval with maximum finish time (I’’ in this picture) may be required.

I’’
I*

I’

A

A’

But how to decide whether to keep I’’ or not ?
Convince yourself that this is an important point.

Look at the current example,
 Why is I’’ so crucial ?

Try to formalize your ideas.

Uniquely covered interval

I2 is said to be uniquely covered by I1 if

• I2 is fully covered by I1

• Every interval overlapping I2 is also full covered by I1.

Lemma2 : There is an optimal solution containing I1.

Proof: Surely I2 or some other interval overlapping it must be there in the optimal solution. If
we replace that interval by I1, we still get a solution of the same size and hence an optimal solution.

I2

I1

We are now ready to give description/construction of the smaller instance A’
from A.

• There will be two cases.

• We shall then prove that |Opt(A)| = |Opt(A’)| + 1 for each of these cases.

Important note:

 The reader is advised to full understand Lemma1, Lemma2, Observation1,
and the notion of Uniquely covered interval.

 Also fully internalize the notations I*, I’, and I”.

This will help the reader understand the rest of the solution.

Constructing A’ from A

Constructing A’ from A

I”

A

I’
I*

Constructing A’ from A

I”

I

Case1: There is an interval I ϵ D uniquely covered by I”

A’
I”

I

D E

D E

I’
I* A

We need to take care
of intervals whose
starting point is to
the right of red line
(finish time of I’).

We can partition these
intervals into two sets.

D: those which overlap with I”.
E: those that start after the
end of I” and hence do not

overlap with I”.

Now we shall describe the two
cases for construction of A’.

Constructing A’ from A

If there is an interval I ϵ D uniquely covered by I”, then we define A’ as
follows. Remove all intervals from A which overlap with I’ (this was our usual
way of defining A’ in our wrong solution). Now add I” to this set. This set is
the smaller instance A’ for Case 1.

 We shall now define A’ for Case 2.

Constructing A’ from A

Case2: There is no interval uniquely covered by I”

I”

D E

A’

D E

Constructing A’ from A

If there is no interval in D uniquely covered by I”, then we define A’ as
follows. Remove all intervals from A which overlap with I’ (this was our usual
way of defining A’ in our wrong solution). This set is the smaller instance A’
for Case 2.

Theorem1: |Opt(A)| = |Opt(A’)| + 1

We shall prove this theorem for case 1 as well as
case 2.

Case1: There is an interval I ϵ D uniquely covered by I”

A

I’
I*

I”

I

A’
I”

I

D E

D E

|Opt(A)| ≤ |Opt(A’)| + 1

The optimal solution of A’
takes care of all intervals to

the right of red line ?

What to add to this solution
to take care of intervals to the

left of red line ?

We need to add just I’ to get a
solution for A and we are done.

Case1: There is an interval I ϵ D uniquely covered by I”

A

I’
I*

I”

I

A’
I”

I

D E

D E

|Opt(A’)| ≤ |Opt(A)| -1

Using Lemma1 , it follows that
there is an optimal solution for

A containing I’.

We need to just remove I’ from
this optimal solution for A to get

a solution for A’ and we are done.

But I’ takes care of only intervals to the left of
red line and I”.

So there must be intervals in the optimal
solution to take care of intervals to the right of

I’. So how to get a solution for A’ ?

This finishes the proof of Theorem for Case 1.

We shall now analyze Case2 and prove Theorem for this case as well.

Case2: There is no interval uniquely covered by I”

A

I’
I*

I”

A’

D E

D E

|Opt(A)| ≤ |Opt(A’)| + 1

Consider any optimal solution
for A’. Note that this optimal

solution takes care of D and E. So we just need to take care of intervals
from A which are to the left of the red
line. These are taken care by adding I’

to this solution. We are done.

Case2: There is no interval uniquely covered by I”

A

I’
I*

I”

A’

D E

D E

|Opt(A’)| ≤ |Opt(A)| - 1

Using Lemma1, it follows that
there is an optimal solution

for A containing I’.

If I’’ is not in this optimal solution,
we can see that removing I’ from
this optimal solution gives a valid

solution for A’.
So let us consider the case when I’’ is
present in the optimal solution of A.
The problem is that I’’ is not present
in A’, so we need a substitute of I’’

from A’.

Notice that I’’ can serve the purpose
of overlapping of intervals from D

only. So we should search for
substitute for I’’ from D only. We replace I” by the interval from D which

intersects the violet line and has earliest start
time. See the following slide for its justification.

Let Ϊ be the interval in D which intersects the violet vertical line (has finish time greater than
that of I”) and has earliest start time. It suffices if we can show that every interval of D
overlaps with Ϊ . We proceed as follows. Consider any interval Ǐ in D. There are two cases.

• Finish time of Ǐ is less than that of I”. In other words, Ǐ does not intersects the violet
line. In this case, there must be some other interval in D that overlaps Ǐ and intersects
the violet line (otherwise, Ǐ would be uniquely covered by I”); since start time of Ϊ is less
than this interval, so Ǐ is overlapped by Ϊ as well.

• Finish time of Ǐ is more than I”. In other words, Ǐ does intersect the violet line. Hence Ǐ
overlaps with Ϊ as well since the latter also intersects the violet line.

 Hence if remove I’ and I” from the given optimal solution of A, and add Ϊ to it, we get a
solution for A’. Since optimal solution for A’ has to be smaller or equal in size related to this
solution, we get |Opt(A’)| ≤ |Opt(A)| - 1 for Case 2.

Hence we have proved Theorem1: |Opt(A)| = |Opt(A’)| + 1

Now in order to design the algorithm for our problem based on the greedy strategy, we just
need to determine whether the smaller instance A’ corresponds to Case 1 or Case 2.

How to distinguish between Case1 and Case2 ?

I”

A

I’
I*

How to distinguish between Case1 and Case2 ?

Let

I : the interval in D with earliest finish time.

Mf(I,D) : the finish time of that interval in D that overlaps I and has max. finish time.

If f(I”) > Mf(I,D)

then Case 1 (keep I” in A’)

else Case 2 (there is no need to keep I” in A’)

I”

I

D

I’
I* A

Thanks to Aayush Ojha and Shubham Jain
for correcting me. Earlier I had written start

instead of finish here.
(Feel grateful to teach such bright students)

Algorithm

From the discussion till now,

• We have an algorithm for the problem.

• A polynomial bound on the time complexity is obvious.

A necessary (but not sufficient) condition to score A* in the course is the
following exercise.

Exercise: Provide the most efficient implementation of the algorithm
discussed in the class along with its pseudocode.

Submit handwritten (but very neat) report as a solution of this exercise.

 If someone has an alternate algorithm, he/she has to
provide proof of correctness along with the

pseudocode.

