
Data Structures and Algorithms 
(CS210A) 

Semester I – 2014-15 

Lecture 37 
• A new algorithm design paradigm: 

                                                          part IV                 
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Greedy strategy 



Problems solved till now 
 

 

1. Job Scheduling Problem 

 

2. Mobile Tower Problem 

 

3. MST 
 

 

 

 

Did you notice 
anything commons in 

their solutions ? 

Ponder over this question before moving ahead 



Problem 1 
Job scheduling Problem  

INPUT:  

• A set 𝑱 of 𝒏 jobs {𝒋𝟏, 𝒋𝟐,…,  𝒋𝒏}  

• job 𝒋𝒊 is specified by two real numbers 

 s(𝒊): start time of job 𝒋𝒊 

 f(𝒊): finish time of job 𝒋𝒊 

• A single server  

 

Constraints:   

• Server can execute at most one job at any moment of time and a job. 

• Job 𝒋𝒊, if scheduled, has to be scheduled during[s(𝒊), f(𝒊)] only. 

Aim:  

To select the largest subset of non-overlapping jobs which can be executed by the server. 
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We could not say anything  
about the  complete solution 

of this problem. 



All that we could do was to make  

a local observation 

Let 𝒙 ∈ 𝑱 be the job with earliest finish time. 

Lemma1 :  There exists an optimal solution for 𝑱 in which 𝒙 is present. 

 

Let 𝑱′ = 𝑱\Overlap(𝒙) 

 

 

 

 

 

 

 

 

 

Equation (i) hints at recursive solution of the problem  
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𝑱(original instance) 

𝑱′ (smaller instance) 

Greedy 
step 

Opt(𝑱) 

Opt(𝑱′) 

Lemma1 Opt(𝑱)= Opt(𝑱′) + 1       -- (i) 

Lemma 1 gives very small information 
about the optimal solution  

How to use it to compute this solution ? 



Theorem:  Opt(𝑱) = Opt(𝑱′) + 1.  

 

 

• Proof has two parts  

 Opt(𝑱) ≥ Opt(𝑱′) + 1 

 Opt(𝑱′) ≥ Opt(𝑱) – 1 

 

•  Proof for each part is a proof by construction 
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Problem 2 
Mobile Tower Problem  

 

 

 

 

 

 

 

Problem statement:  

There is a set 𝑯 of 𝒏 houses located along a road. 

We want to place mobile towers such that 

• Each house is covered by at least one mobile tower. 

• The number of mobile towers used is least possible.  
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𝒅 𝒅 

We could not say anything  
about the  complete solution 

of this problem. 



All that we could do was to make  

a local observation 

Lemma 2: There is an optimal solution for the problem in which  

the leftmost tower is placed at distance 𝒅 to the right of the first house. 

 

Let 𝒙 be the tower located at 𝒅 to the right of the first house. 

Let 𝑯′ = 𝑯\ {all houses within distance 𝒅 from 𝒙} 

 

 

 

 

 

 

 

Equation (i) hints at recursive solution of the problem  

𝑯(original instance) 

𝑯′(smaller instance) 

Greedy 
step 

Opt(𝑯) 

Opt(𝑯′) 

Lemma 2 

Opt(𝑯)= Opt(𝑯′) + 1 

Lemma 1 gives very small information 
about the optimal solution  

How to use it to compute this solution ? 



What is a greedy strategy ? 

A strategy that is 

 

• Based on some local approach 

 

• With the objective to optimize some function.  

 

Note: 

Recall that the divide and conquer strategy takes a global approach. 

 

 



Design of a greedy algorithm 

Let A be an instance of an optimization problem. 

 

1. Make a local observation about the solution. 

 

2. Use this observation to express optimal solution of A  

        in terms of 
– Optimal solution of a smaller instance A’ 

– Local step 

 

 

 

3. This gives a recursive solution.  

4. Transform it into iterative one.  

𝑱(original solution) 

𝑱′(smaller 
instance) 

Greedy 
step 



MST 

 

Input: an undirected graph 𝑮=(𝑽,𝑬) with w: 𝑬  ℝ,  

Aim: compute a spanning tree (𝑽, 𝑬′), 𝑬′ ⊆ 𝑬 such that   w(𝒆)𝒆∈𝑬′   is minimum.  

  

 

Lemma 3 (proved in the class):  

If 𝒆𝟎 ∈ 𝑬is the edge of least weight in 𝑮, then there is a MST 𝑻 containing 𝒆𝟎. 
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How to use this Lemma  to 
design an algorithm for MST ? 

If you have understood a generic way to design a greedy 
algorithm,  then try to solve the MST problem.  



How to compute a MST ? 
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How to compute a MST ? 
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How to compute a MST ? 
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This is graph 𝑮′ 



How to compute a MST ? 

Let (u,v) be the least weight edge in 𝑮=(𝑽, 𝑬).  Transform 𝑮 into 𝑮′ as follows. 

• Remove vertices u and v and add a new vertex w 

• For each edge (u,x)ϵ 𝑬,  add edge (w,x) in 𝑮′. 

• For each edge (v,x)ϵ 𝑬,  add edge (w,x) in 𝑮′. 

• In case of multiple edges between w and  x, keep only the lighter weight edge. 

 

Theorem1:   W_MST(𝑮)  = W_MST(𝑮′) + w(u,v) 

Proof: (by construction) 

 

1. W_MST(𝑮)  ≤ W_MST(𝑮′) + w(u,v) 

  

2. W_MST(𝑮′) ≤ W_MST(𝑮)  - w(u,v) 

(Give all details of the proof as a homework) 
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Use Lemma 3 

straightforward 



Problem 4 
Overlapping Intervals 

The aim of this problem is to make you realize that 

 it is sometime very nontrivial to design a greedy algorithm. In 
particular, it is quite challenging to design the smaller instance. 

In the end semester exam of the course, no problem of this 
level of difficulty will be asked  



Overlapping Intervals 

Problem statement:  

Given a set A of 𝒏 intervals, compute smallest set B of intervals so that  

for every interval I in A\B, there is some interval in B which overlaps/intersects with I.  

 

 

 

 

 

 

 

 

 

A 



Overlapping Intervals 

Problem statement:  

Given a set A of 𝒏 intervals, compute smallest set B of intervals so that  

for every interval I in A\B, there is some interval in B which overlaps/intersects with I.  

 

 

 

 

 

 

 

 

 

A 

Not an optimal solution  
an optimal solution  another optimal solution  



Overlapping Intervals 

Strategy 1  

Interval with maximum length should be there in optimal solution 

 

 

 

 

 

 

 

 

Intuition:  

Selecting such an interval will cover maximum no.  of other intervals 

 

 

 

 

 

 

There is a counter example  



Overlapping Intervals 

Strategy 1  

Interval with maximum length should be there in optimal solution 

 

 

 

 

 

 

 

 

Intuition:  

Selecting such an interval will cover maximum no.  of other intervals 

 

 

 

 

 

 

There is a counter example  



Overlapping Intervals 

Strategy 2  

Interval that overlaps maximum no. of intervals should be there in optimal solution 

 

 

 

 

 

 

 

 

Intuition:  

Selecting such an interval will cover maximum no.  of other intervals 

 

 

 

 

 

 

There is a counter example  



Overlapping Intervals 

Strategy 2  

Interval that overlaps maximum no. of intervals should be there in optimal solution 

 

 

 

 

 

 

 

 

Not an optimal solution  



Overlapping Intervals 

Strategy 2  

Interval that overlaps maximum no. of intervals should be there in optimal solution 

 

 

 

 

 

 

 

 

An optimal solution has size 2. 

Think for a while :  
After failure of two strategies, how to proceed to design the algorithm. 



Overlapping Intervals 

Let I* be the interval with earliest finish time. 

Let I’ be the interval with maximum finish time overlapping I*. 

 

 

 

 

 

 

 

 

Lemma1: There is an optimal solution for set A that contains I’. 

Proof:(sketch) : 

If I* is overlapped by any other interval in the optimal solution, say I^,  

I^ will surely overlap all intervals that are overlapped by I’. 

 Swapping I^ by I’ will still give an optimal solution. 

A I* 
I’ 

Exploit the fact that 
I* has earliest finish 
time for this claim. 



Overlapping Intervals 

Question: How to obtain smaller instance A’ using Lemma 1 ?  

 

 

 

 

 

 

 

 

 

I’ 
I* A 



Overlapping Intervals 

Question: How to obtain smaller instance A’ using Lemma 1 ?  

Naive approach : remove from A all intervals which overlap with I’.  This is A’.  

 

 

 

 

 

 

 

 

 

A 

I’ 
I* 

A’ 
There is a counter example  



Overlapping Intervals 

Question: How to obtain smaller instance A’ using Lemma 1 ?  

Naive approach : remove from A all intervals which overlap with I’.  This is A’. 

 

 

 

 

 

 

 

 

 

The problem is that some deleted interval (in this case I’’) could have been used for 
intersecting many intervals if it were not deleted. But deleting it from the instance 
disallows it to be selected in the solution.  

 

 

 

I’ 
I* 

I’’ 

A 

There is a counter example  
A’ 



Overview of the approach 

 

 

In order to make sure we do not delete intervals (like I’’ in the previous slide) 
if they are essential to be selected to cover many other intervals, we make 
some observations and introduce a terminology called Uniquely covered 
interval. It turns out that we need to keep I’’ in the smaller instance if there is 
an interval there which is uniquely covered by I’’ . Otherwise, we may discard 
I’’.  



Carefully constructing A’ 

Question: Among the intervals that overlap I’, which intervals should be kept in A’ ? 

 

 

 

  

 

 

 

 

 

 

 

I’ 
I* 

I’’ A 



Carefully constructing A’ 

Question: Among the intervals that overlap I’, which intervals should be kept in A’ ? 

 

 

 

  

 

 

 

 

 

 

Observation1:  Among the intervals which cross red line,  

only the interval with maximum finish time (I’’ in this picture) may be required. 

 

 

I’’ 
I* 

I’ 

A 

A’ 

But how to decide whether to  keep I’’ or not ? 
Convince yourself that this is an important point. 

Look at the current example,   
 Why  is I’’ so crucial ? 

Try to formalize your ideas. 



Uniquely covered interval 

 

 

 

 

 

 

 

I2 is said to be uniquely covered by I1 if  

• I2 is fully covered by I1 

• Every interval overlapping I2 is also full covered by I1. 

Lemma2 : There is an optimal solution containing I1. 

Proof: Surely I2 or some other interval overlapping it must be there in the optimal solution. If 
we replace that interval by I1, we still get a solution of the same size and hence an optimal solution. 

 

I2 

I1 



 

We are now ready to give description/construction of the smaller instance A’ 
from A.  

• There will be two cases.  

• We shall then prove that |Opt(A)| =  |Opt(A’)| + 1 for each of these cases. 

 

Important note:  

 The reader is advised to full understand Lemma1, Lemma2, Observation1, 
and the notion of Uniquely covered interval.  

 Also fully internalize the notations I*, I’, and I”.  

 

This will help the reader understand the rest of the solution. 



Constructing A’ from A 
 



Constructing A’ from A  
 

I” 

A 

I’ 
I* 



Constructing A’ from A  
 

I” 

I 

Case1: There is an interval I ϵ D uniquely covered by I” 

A’ 
I” 

I 

D E 

D E 

I’ 
I* A 

We need to take care 
of intervals whose 
starting point is to 
the right of red line 
(finish time of I’). 

We can partition these 
intervals into two sets. 

D: those which overlap with I”. 
E: those that start after the 
end of I” and hence do not 

overlap with I”. 

Now we shall describe the two 
cases for construction of A’. 



Constructing A’ from A  
 

 

 

 

If there is an interval I ϵ D  uniquely covered by I”, then we define A’ as 
follows. Remove all intervals from A which overlap with I’ (this was our usual 
way of defining A’ in our wrong solution). Now add I” to this set. This set is 
the smaller instance A’  for Case 1. 

 

                             We shall now define A’ for Case 2. 

 



Constructing A’ from A 
 
 

Case2: There is no interval uniquely covered by I” 

I” 

D E 

A’ 

D E 



Constructing A’ from A  
 

 

 

 

If there is no interval in D  uniquely covered by I”, then we define A’ as 
follows. Remove all intervals from A which overlap with I’ (this was our usual 
way of defining A’ in our wrong solution). This set is the smaller instance A’  
for Case 2. 

 

 



Theorem1:  |Opt(A)| =  |Opt(A’)| + 1 
 

We shall prove this theorem for case 1 as well as 
case 2. 



Case1: There is an interval I ϵ D uniquely covered by I” 

 

 

A 

I’ 
I* 

I” 

I 

A’ 
I” 

I 

D E 

D E 

|Opt(A)| ≤  |Opt(A’)| + 1 

The optimal solution of A’ 
takes care of all intervals to 

the right of red line ? 

What to add to this solution 
to take care of intervals  to the 

left of red line  ?  

We need to add just  I’  to get a 
solution for A and we are done. 



Case1: There is an interval I ϵ D uniquely covered by I” 

 

 

A 

I’ 
I* 

I” 

I 

A’ 
I” 

I 

D E 

D E 

|Opt(A’)| ≤  |Opt(A)| -1  

Using Lemma1 , it follows that 
there is an optimal solution for 

A containing I’. 

We need to just remove I’  from 
this optimal solution for A to get 

a solution for A’ and we are done. 

But I’ takes care of only intervals to the left of 
red line and  I”. 

So there must be intervals in the optimal 
solution to take care of intervals to the right of  

I’. So how to get a solution for A’ ? 



 

 

 
This finishes the proof of Theorem for Case 1. 

We shall now analyze Case2 and prove Theorem for this case as well. 



Case2: There is no interval uniquely covered by I” 

 

 

A 

I’ 
I* 

I” 

A’ 

D E 

D E 

|Opt(A)| ≤  |Opt(A’)| + 1 

Consider any optimal solution 
for A’. Note that this optimal 

solution takes care of D and E. So we just need to take care of intervals 
from A which are to the left of  the red 
line. These are taken care by adding I’ 

to this solution. We are done. 



Case2: There is no interval uniquely covered by I” 

 

 

A 

I’ 
I* 

I” 

A’ 

D E 

D E 

|Opt(A’)| ≤  |Opt(A)| - 1 

Using Lemma1,  it follows that 
there is an optimal solution 

for A containing I’.  

If I’’ is not in this optimal solution, 
we can see that removing I’ from 
this optimal solution gives a valid 

solution for A’.  
So let us consider the case when I’’ is 
present in the optimal solution of A.  
The problem is that I’’ is not present 
in A’, so we need a substitute of I’’ 

from A’.  

Notice that I’’ can serve the purpose 
of overlapping of intervals from D 

only. So we should search for 
substitute for I’’ from D only.  We replace  I” by the interval from D which 

intersects the violet line and has earliest start 
time. See the following slide for its justification. 



Let Ϊ be the interval in D which intersects the violet vertical line (has finish time greater than 
that of I”) and has earliest start time. It suffices if we can show that every interval of D 
overlaps with Ϊ . We proceed as follows. Consider any interval Ǐ in D. There are two cases. 

• Finish time of Ǐ is less than that of I”.  In other words, Ǐ does not intersects the violet 
line. In this case, there must be some other interval in D that overlaps Ǐ and intersects 
the violet line (otherwise, Ǐ would be uniquely covered by I”); since start time of Ϊ is less 
than this interval, so Ǐ is overlapped by Ϊ as well. 

• Finish time of Ǐ is more than I”. In other words, Ǐ does intersect the violet line. Hence Ǐ 
overlaps with Ϊ as well since the latter also intersects the violet line. 

 Hence if remove I’ and I” from the given optimal solution of A, and add Ϊ to it, we get a 
solution for A’. Since optimal solution for A’ has to be smaller or equal in size related to this 
solution, we get |Opt(A’)| ≤  |Opt(A)| - 1 for Case 2. 

 

Hence we have proved Theorem1:  |Opt(A)| =  |Opt(A’)| + 1 

Now in order to design the algorithm for our problem based on the greedy strategy, we just 
need to determine whether  the smaller instance A’ corresponds to  Case 1 or Case 2. 

                             



How to distinguish between Case1 and Case2 ? 
 

 
I” 

A 

I’ 
I* 



How to distinguish between Case1 and Case2 ? 
 

 

 

 

 

 

 

Let  

I : the interval in D with earliest finish time. 

Mf(I,D) : the finish time of that interval in D that overlaps I and has max. finish time.  

If f(I”) > Mf(I,D)  

then  Case 1  (keep I” in A’)  

else   Case 2  (there is no need to keep I” in A’) 

I” 

I 

D 

I’ 
I* A 

Thanks to Aayush Ojha and Shubham Jain 
for correcting me. Earlier I had written start 

instead of finish here. 
(Feel grateful to teach such bright students) 



Algorithm 
 

From the discussion till now, 

• We have an algorithm for the problem. 

• A polynomial bound on the time complexity is obvious. 

 

A necessary (but not sufficient) condition to score  A* in the course is the 
following exercise. 

 

Exercise: Provide the most efficient implementation of the algorithm 
discussed in the class along with its pseudocode. 

 

Submit handwritten (but very neat) report as a solution of this exercise. 

 

 If someone has an alternate algorithm, he/she has to 
provide proof of correctness along with the 

pseudocode. 


