
Data Structures and Algorithms 
(CS210A) 

Semester I – 2014-15 

Lecture 36 
• A new algorithm design paradigm: 

                                                          part III                 
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Greedy strategy 



Continuing Problem from last class 
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Minimum spanning tree 



Minimum Spanning Tree (MST) 
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Minimum Spanning Tree (MST) 
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Problem Description 

 

Input: an undirected graph 𝑮=(𝑽,𝑬) with w: 𝑬  ℝ,  

Aim: compute a spanning tree (𝑽, 𝑬′), 𝑬′ ⊆ 𝑬 such that   w(𝒆)𝒆∈𝑬′   is minimum.  

  

 

Lemma  (proved in last class):  

If 𝒆𝟎 ∈ 𝑬is the edge of least weight in 𝑮, then there is a MST 𝑻 containing 𝒆𝟎. 

 

 

 

 

5 

How to use this Lemma  to 
design an algorithm for MST ? 

Homework: 
Try once more to answer this 

question . 



A useful lesson for design of a graph algorithm 

 

 

If you have a complicated algorithm for a graph problem, … 

 

 search for some graph theoretic property  

 

to design simpler and more efficient algorithm  
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Two graph theoretic properties of MST 

 

 

• Cut property 

 

• Cycle property 
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Every algorithm till date is based on 
one of these properties! 



Cut Property 
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Cut Property 

Definition: For any subset 𝑨⊆ 𝑽, such that ∅≠ 𝑨 ≠ 𝑽,  

cut(𝑨,𝑨 ) = { (𝑢,𝑣) ϵ 𝑬 | 𝑢 ϵ 𝑨 and 𝑣 ϵ 𝑨    or 𝑣 ϵ 𝑨 and 𝑢 ϵ 𝑨  } 

 

 

 

 

 

 

 

 

 

Cut-property: The least weight edge of a cut(𝑨,𝑨 ) must be in MST. 
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Pursuing greedy strategy 
to minimize weight of MST, 
what can we say about the 

edges of cut(𝑨, 𝑨 ) ? 



Proof of cut-property 
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Proof of cut-property 

Let 𝑻 be the MST, and (u,v) ∉ 𝑻. 

 

 

 

 

 

 

 

 

 

Question: What happens if we remove (x,y) from 𝑻, and add (u,v) to 𝑻. 
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Proof of cut-property 

Let 𝑻 be the MST, and (u,v) ∉ 𝑻. 

 

 

 

 

 

 

 

 

 

Question: What happens if we remove (x,y) from 𝑻, and add (u,v) to 𝑻. 
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We get a spanning tree 𝑻′ with weight < weight(𝑻) 
A contradiction ! 



Cycle Property 
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Cycle Property 
 

Let 𝑪 be any cycle in 𝑮. 

 

 

 

 

 

 

 

Cycle-property:  

Maximum weight edge of any cycle 𝑪 can not be present in MST. 
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Pursuing greedy strategy 
to minimize weight of MST, 
what can we say about the 

edges of cycle 𝑪 ? 



Proof of Cycle property 

 

 

 

 

 

Let 𝑻 be the MST, and (u,v) ϵ 𝑻. 
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Proof of Cycle property 

 

 

 

 

 

Let 𝑻 be the MST, and (u,v) ϵ 𝑻. 
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Proof of Cycle property 

 

 

 

 

 

Let 𝑻 be the MST, and (u,v) ϵ 𝑻. 
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Swapping (u,v) with (f,s), 
we get a spanning tree 𝑻′ 
with weight < weight(𝑻) 

A contradiction ! 
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Algorithms based on cut Property 
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How to use cut property to compute a MST ? 

 

 

 

 

 

 

 

 

 

 

 

19 

170 

33 

35 
31 

41 81 

52 

42 

50 

102 

50 30 
60 

70 

54 

57 

49 

49 

80 

78 

63 
24 

53 

44 

29 

64 

42 

43 

u 

v 
70 



How to use cut property to compute a MST ? 
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How to use cut property to compute a MST ? 
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How to use cut property to compute a MST ? 
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How to use cut property to compute a MST ? 
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How to use cut property to compute a MST ? 
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An Algorithm based on cut property   
 

Algorithm (Input: graph 𝑮 =(𝑽,𝑬) with weights on edges) 

𝑻 ∅; 

𝑨 {u}; 

While (         ??    ) do  

         {       Compute the least weight edge from cut(𝑨,𝑨 ); 

                  Let this edge be (x,y), with  xϵ 𝑨, yϵ 𝑨 ; 

                  𝑻 𝑻∪ {(x, y)}; 

                  𝑨  𝑨 ∪{y}; 

        } 

Return 𝑻; 

Number of iterations of the While loop :  ?? 

Time spent in one iteration of While loop: ?? 

 Running time of the algorithm: O(𝒎𝒏) 
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𝒏 − 𝟏 

O(𝒎) 

𝑨 <> 𝑽 



Algorithm based on cycle Property 

26 



An Algorithm based on cycle property   
Description 

Algorithm (Input: graph 𝑮 =(𝑽,𝑬) with weights on edges) 

While (              ??           ) do  

         {       Compute any cycle 𝑪; 

                  Let (u,v) be the maximum weight edge of the cycle 𝑪; 

                  Remove (u,v) from 𝑬; 

         } 

Return 𝑬; 

 

 

Number of iterations of the While loop :  ?? 
 

Time spent in one iteration of While loop: ?? 

 Running time of the algorithm: O(𝒎𝒏) 
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𝑬 has any cycle 

𝒎− 𝒏 + 𝟏 

O(𝒏) 



Problem 3 

Mobile towers on a road 
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Mobile towers on a road 
 

 

 

 

 

 

 

 

 

 

A mobile tower can cover any cell phone within radius 𝒅. 
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Mobile tower 
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Mobile towers on a road 
 

 

 

 

 

 

 

 

Problem statement:  

There are 𝒏 houses located along a road. 

We want to place mobile towers such that 

• Each house is covered by at least one mobile tower. 

• The number of mobile towers used is least possible.  

30 
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Mobile towers on a road 
 

 

 

 

 

 

 

Strategy 1: 

Place tower at first house,  

Remove all houses covered by this tower. 

Proceed to the next uncovered house … 
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Mobile towers on a road 
 

 

 

 

 

 

 

Strategy 2: 

Place tower at distance 𝒅 to the right of the first house;  

Remove all houses covered by this tower; 

Proceed to the next uncovered house along the road… 

Lemma: There is an optimal solution for the problem in which  

the leftmost tower is placed at distance 𝒅 to the right of the first house 
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𝒅 𝒅 

𝒅 𝒅 

can we say anything 
about the optimal 

solution ?  



Problem 4 

Overlapping Intervals 
If you have started feeling that design of greedy algorithm is 

easy, this problem is going to prove you wrong ...  
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Overlapping Intervals 

Problem statement:  

Given a set A of 𝒏 intervals, compute smallest set B of intervals so that  

for every interval I in A\B, there is some interval in B which overlaps/intersects with I.  
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Overlapping Intervals 

Problem statement:  

Given a set A of 𝒏 intervals, compute smallest set B of intervals so that  

for every interval I in A\B, there is some interval in B which overlaps/intersects with I.  
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A difficult problem  
We shall solve it in 
 one full lecture. 

Not an optimal solution  
an optimal solution  another optimal solution  



Homework … 

 
 

Ponder over the following questions before coming for the next class 

 

 

• Use cycle property and/or cut property to design a new algorithm for MST 

 

• Use some data structure to improve the running time of the algorithms discussed in 
this class to O(𝒎 𝐥𝐨𝐠 𝒏) 

36 


