Data Structures and Algorithms

(CS210A)

Semester I - 2014-15

Lecture 36

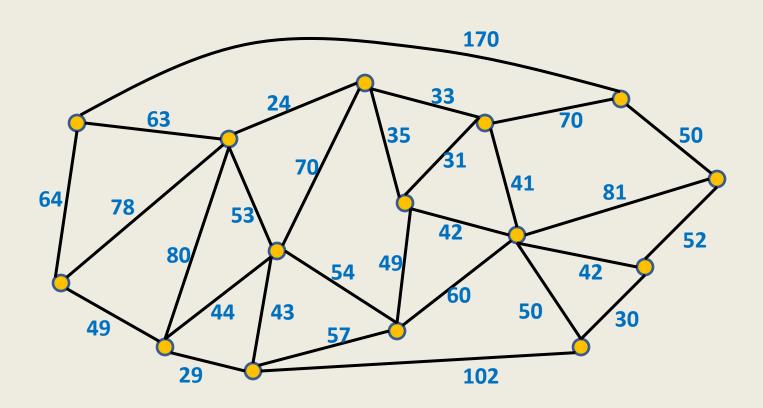
A new algorithm design paradigm: Greedy strategy

part III

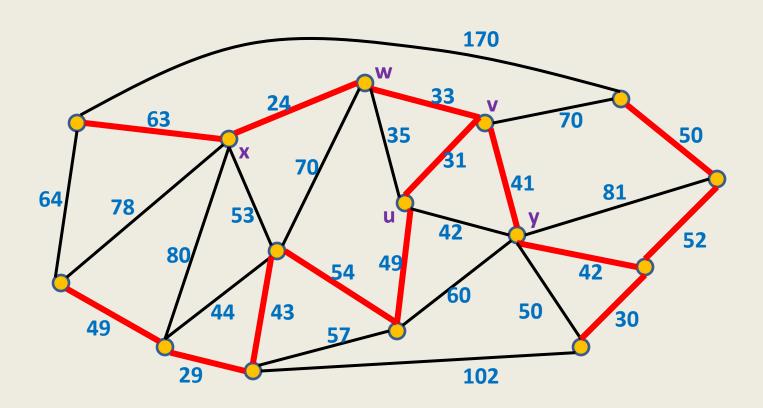
Continuing Problem from last class

Minimum spanning tree

Minimum Spanning Tree (MST)



Minimum Spanning Tree (MST)



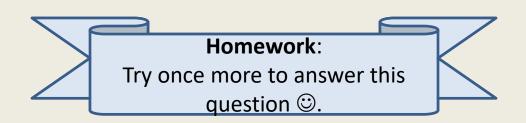
Problem Description

Input: an undirected graph G = (V, E) with $w : E \rightarrow \mathbb{R}$,

Aim: compute a spanning tree (V, E'), $E' \subseteq E$ such that $\sum_{e \in E'} \mathbf{w}(e)$ is minimum.

Lemma (proved in last class):

If $e_0 \in E$ is the edge of **least weight** in G, then there is a **MST** T containing e_0 .



A useful lesson for design of a graph algorithm

If you have a complicated algorithm for a graph problem, ...

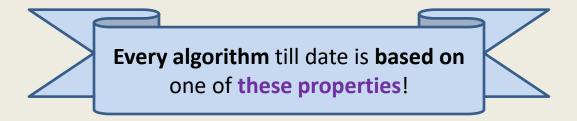
> search for some graph theoretic property

to design simpler and more efficient algorithm

Two graph theoretic properties of MST

Cut property

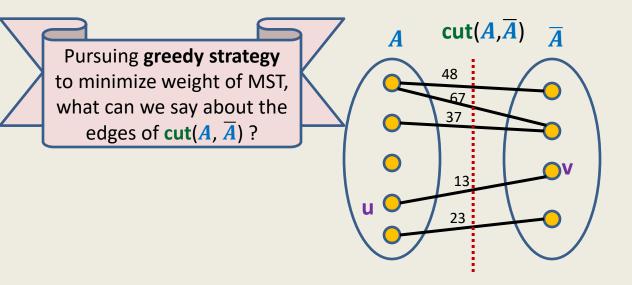
Cycle property



Cut Property

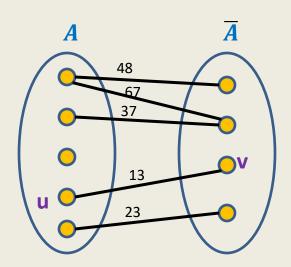
Cut Property

Definition: For any subset $A \subseteq V$, such that $\emptyset \neq A \neq V$, $\operatorname{cut}(A, \overline{A}) = \{ (u, v) \in E \mid u \in A \text{ and } v \in \overline{A} \text{ or } v \in A \text{ and } u \in \overline{A} \}$



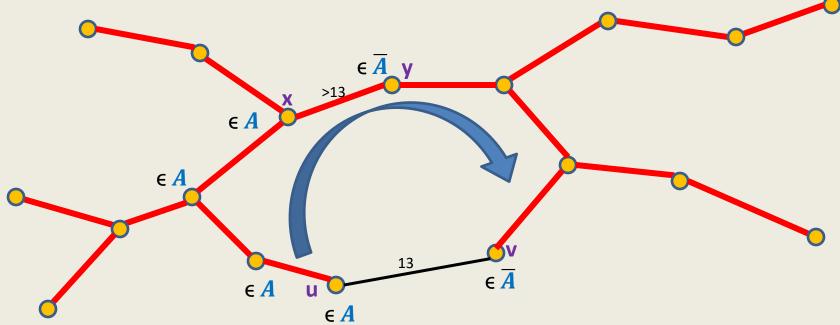
Cut-property: The least weight edge of a cut(A,\overline{A}) must be in MST.

Proof of cut-property



Proof of cut-property

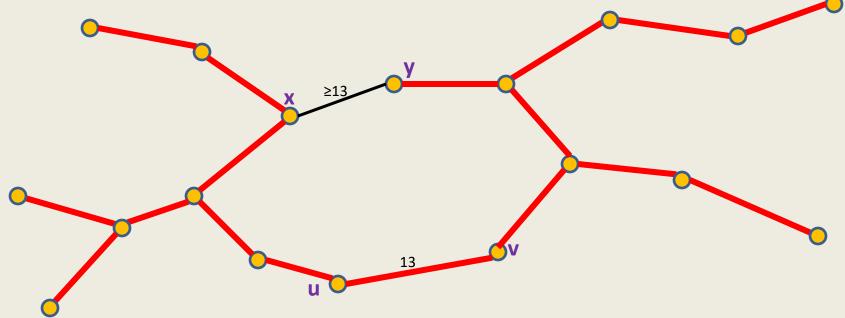
Let T be the MST, and $(u,v) \notin T$.



Question: What happens if we remove (x,y) from T, and add (u,v) to T.

Proof of cut-property

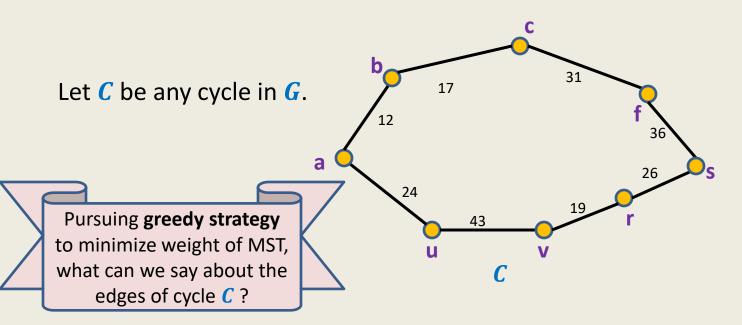
Let T be the MST, and $(u,v) \notin T$.



Question: What happens if we remove (x,y) from T, and add (u,v) to T.

Cycle Property

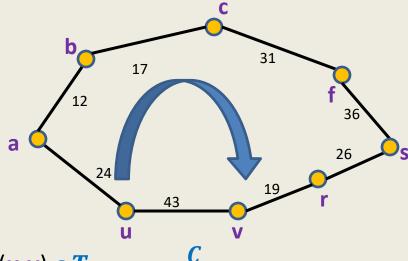
Cycle Property



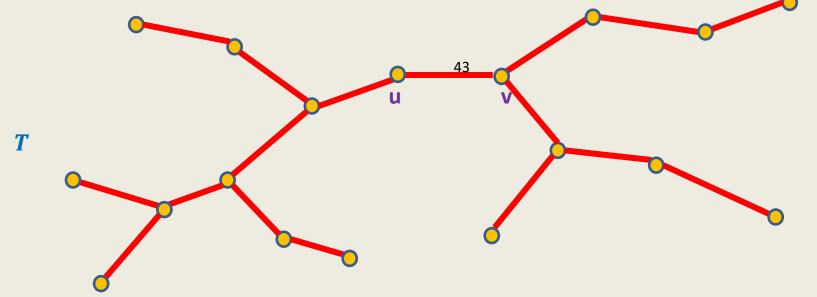
Cycle-property:

Maximum weight edge of any cycle C can not be present in MST.

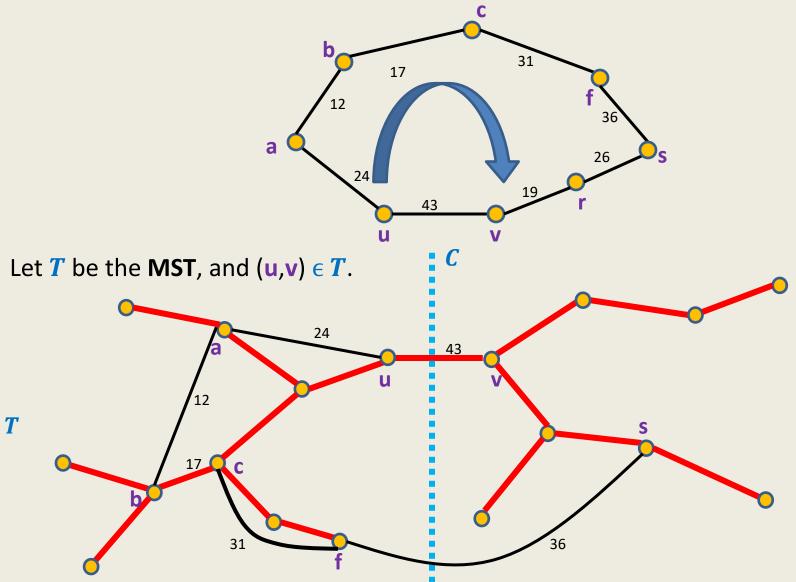
Proof of Cycle property



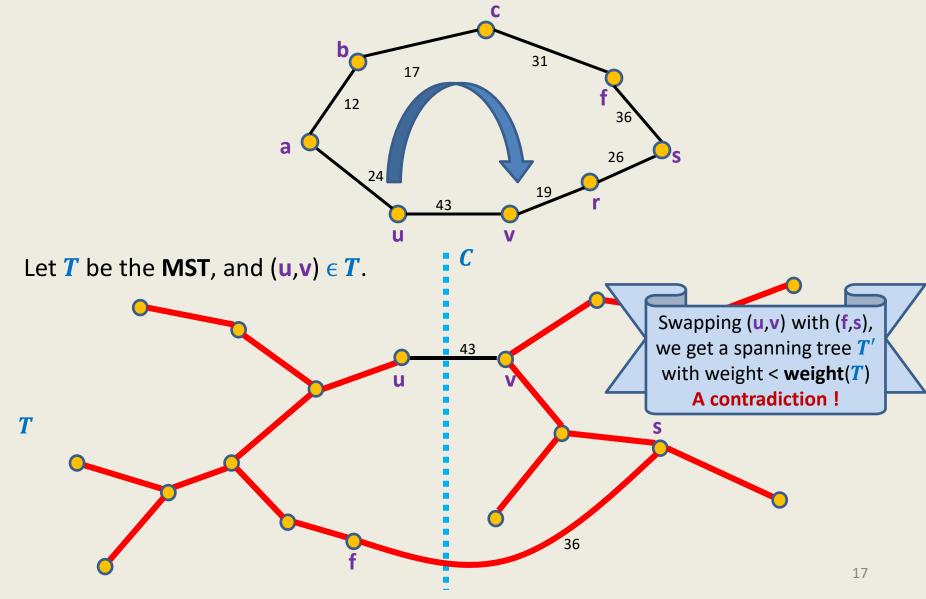
Let T be the MST, and $(u,v) \in T$.



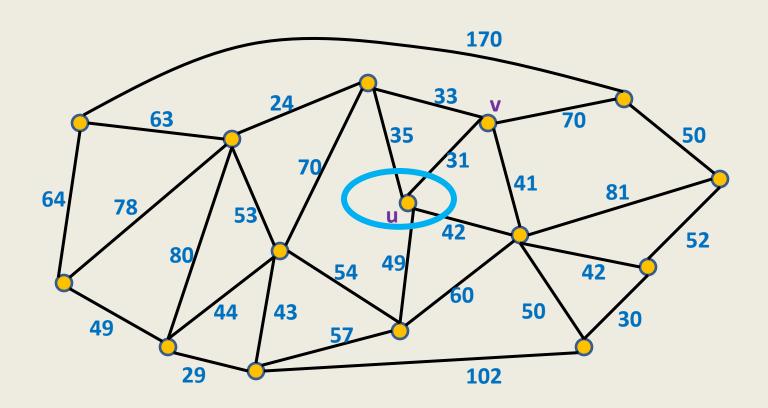
Proof of Cycle property

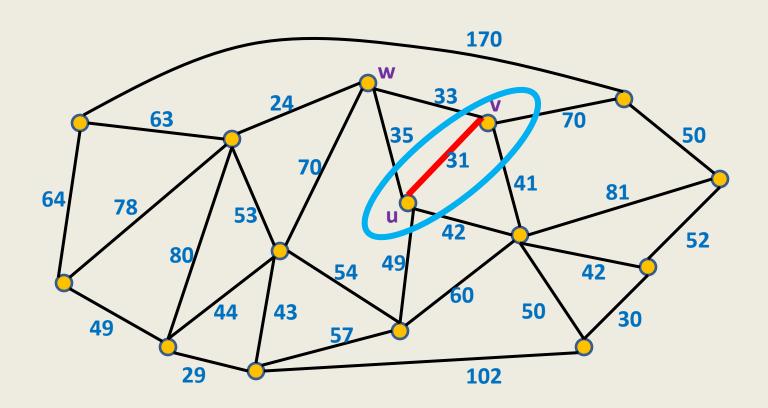


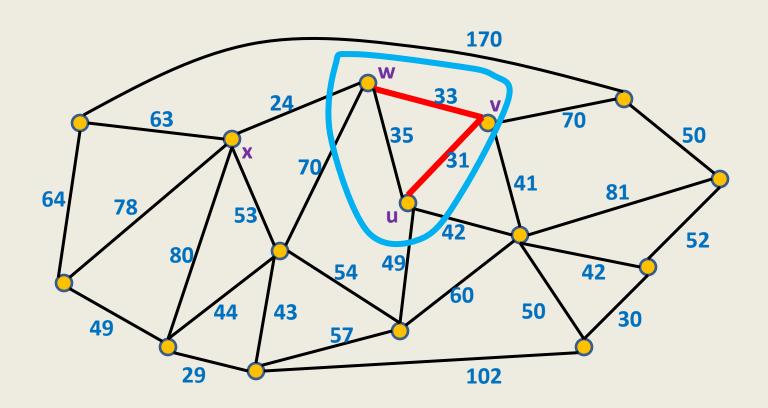
Proof of Cycle property

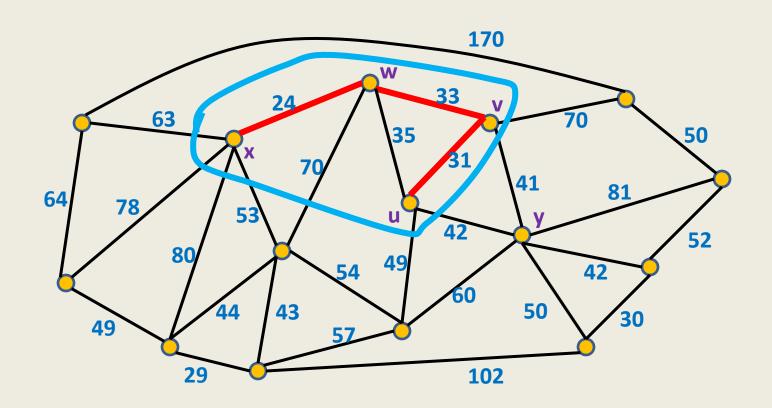


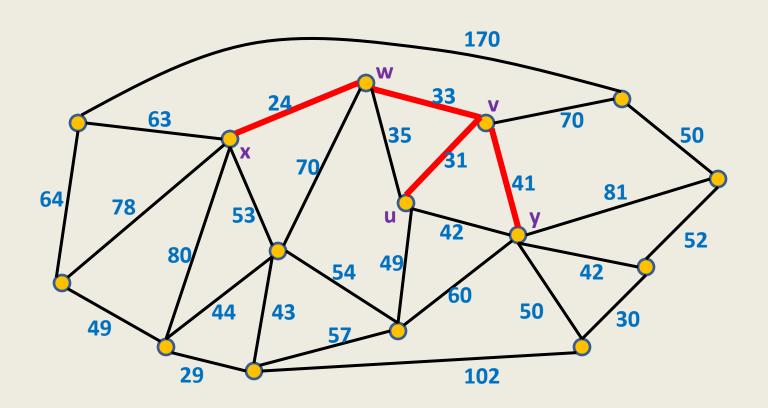
Algorithms based on cut Property

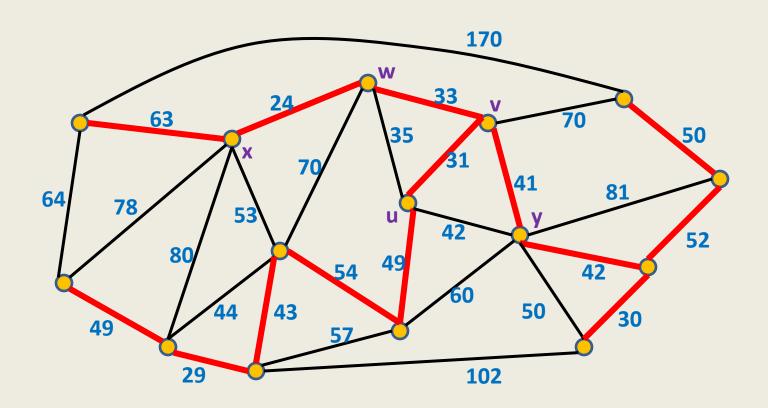












An Algorithm based on cut property

```
Algorithm (Input: graph G = (V, E) with weights on edges)
T \leftarrow \emptyset:
A \leftarrow \{u\};
While (A \Leftrightarrow V) do
            Compute the least weight edge from cut(A,A);
             Let this edge be (x,y), with x \in A, y \in \overline{A};
            T \leftarrow T \cup \{(x, y)\};
            A \leftarrow A \cup \{v\};
Return T;
Number of iterations of the While loop:
```

Time spent in one iteration of While loop: O(m)

 \rightarrow Running time of the algorithm: O(mn)

Algorithm based on cycle Property

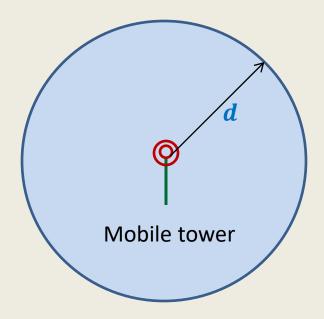
An Algorithm based on cycle property

Description

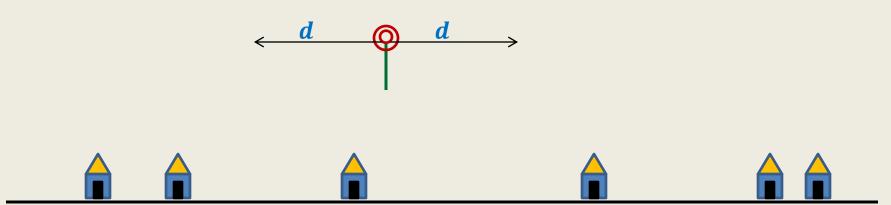
Number of iterations of the **While** loop: m-n+1Time spent in one iteration of While loop: O(n)Running time of the algorithm: O(mn)

Problem 3

Mobile towers on a road



A mobile tower can cover any cell phone within radius d.

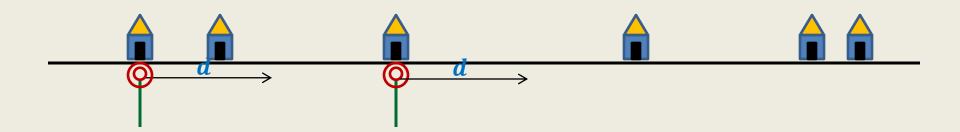


Problem statement:

There are n houses located along a road.

We want to place mobile towers such that

- Each house is <u>covered</u> by at least one mobile tower.
- The number of mobile towers used is least possible.

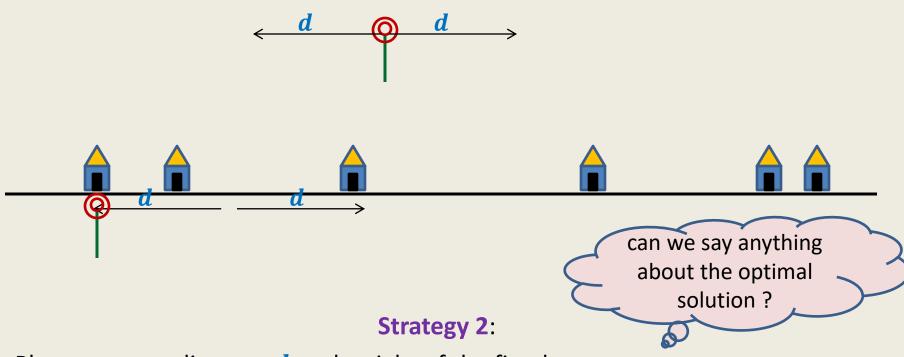


Strategy 1:

Place tower at first house,

Remove all houses covered by this tower.

Proceed to the next uncovered house ...



Place tower at distance *d* to the right of the first house;

Remove all houses covered by this tower;

Proceed to the next uncovered house along the road...

Lemma: There is an optimal solution for the problem in which the <u>leftmost</u> tower is placed at distance d to the right of the first house

Problem 4

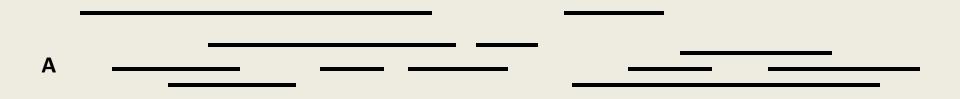
Overlapping Intervals

If you have started feeling that design of greedy algorithm is easy, this problem is going to prove you wrong ... ©

Overlapping Intervals

Pi	ro	b	ler	n	St	ta	te	m	ei	nt:
		N				ш				

Given a set A of n intervals, compute smallest set B of intervals so that for every interval I in $A\backslash B$, there is some interval in B which overlaps/intersects with I.



Overlapping Intervals

Problem statement:

Given a set A of n intervals, compute smallest set B of intervals so that for every interval I in $A\backslash B$, there is some interval in B which overlaps/intersects with I.

another optimal solution ©

A difficult problem ③
We shall solve it in

one full lecture.

Homework ...

Ponder over the following questions before coming for the next class

- Use cycle property and/or cut property to design a new algorithm for MST
- Use some data structure to improve the running time of the algorithms discussed in this class to $O(m \log n)$