
Data Structures and Algorithms 
(CS210A) 

Semester I – 2014-15 

Lecture 35 
• A new algorithm design paradigm: 

                                                          part II                 
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Greedy strategy 



Continuing Problem from last class 
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JOB Scheduling 

Largest subset of non-overlapping job 



A job scheduling problem 
 Formal Description 

INPUT:  

• A set 𝑱 of 𝒏 jobs {𝒋𝟏, 𝒋𝟐,…,  𝒋𝒏}  

• job 𝒋𝒊 is specified by two real numbers 

 s(𝒊): start time of job 𝒋𝒊 

 f(𝒊): finish time of job 𝒋𝒊 

• A single server  

 

Constraints:   

• Server can execute at most one job at any moment of time and a job. 

• Job 𝒋𝒊, if scheduled, has to be scheduled during[s(𝒊), f(𝒊)] only. 

 

Aim:  To select the largest subset of non-overlapping jobs which can be executed by 
the server. 
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Designing algorithm for the problem 
 

 

 

 

 

 

 

 

 

 

Intuition:  

Selecting such a job will free the server earliest  

 hence more no. of jobs might get scheduled. 
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Strategy 4: Select the job with earliest finish time 



Algorithm “earliest finish time” 

 

 

Algorithm (Input : set 𝑱 of 𝒏 jobs.) 

1. Define 𝑨 ∅; 

2. While 𝑱 <>∅ do  

         {       Let 𝒙 ∈ 𝑱 has earliest finish time; 

                  𝑨 𝑨 U {𝒙}; 

                   𝑱  𝑱\Overlap(𝒙); 

         } 

3. Return 𝑨; 

 

Lemma1 (last class):  There exists an optimal 
solution for 𝑱 in which 𝒙 is present. 

 

 

 

 

Proof of correctness ? 

Let 𝒙 ∈ 𝑱 be the job with earliest finish time. 

 Let 𝑱′ = 𝑱\Overlap(𝒙) 
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𝑱 

𝑱′ 

Greedy 
step 

Greedy 
step 



Algorithm “earliest finish time” 

 

 

 

 

 

 

 

 

 

 

 

 

Notation: 

Opt(𝑱): the size of an optimal solution for 𝑱. 

 

Proof of correctness ? 

Let 𝒙 ∈ 𝑱 be the job with earliest finish time. 

 Let 𝑱′ = 𝑱\Overlap(𝒙) 
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𝑱 

𝑱′ 

Greedy 
step 

Greedy 
step 

Opt(𝑱) 

Opt(𝑱′) 

Lemma1 

What will suffice as 
proof of correctness ? 

Opt(𝑱)= Opt(𝑱′) + 1 

How to prove it ? 



Theorem:  Opt(𝑱) = Opt(𝑱′) + 1.  

 

 

• Proof has two parts  

 Opt(𝑱) ≥ Opt(𝑱′) + 1 

 Opt(𝑱′) ≥ Opt(𝑱) – 1 

 

•  Proof for each part is a proof by construction 
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Try to give a physical 
interpretation to these 

inequalities. 



Algorithm “earliest finish time” 

Proving Opt(𝑱) ≥ Opt(𝑱′) + 1.  
Observation: start time of every job in 𝑱′ is greater than finish time of 𝒙.  

Let 𝑶′ be any optimal solution for 𝑱′.  

None of the jobs in 𝑶′ overlaps with 𝒙. 

Hence 𝑶′ U{𝒙} is a subset of non-overlapping jobs. 

Therefore Opt(𝑱) ≥ |𝑶′| + 1 = Opt(𝑱′) + 1. 
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𝒙 Overlap(𝒙) 

𝑱′ 

From an optimal solution of 𝑱′  
can you derive a solution for 𝑱 with one extra job? 



Algorithm “earliest finish time” 

Proving Opt(𝑱′) ≥ Opt(𝑱) - 1.  
Lemma1 (last class):  There exists an optimal solution for 𝑱 in which 𝒙 is present. 

Let 𝑶 be an optimal solution for 𝑱 containing 𝒙.  

None of the jobs in 𝑶 overlaps with 𝒙.  

 Every job from 𝑶 other than 𝒙 belongs to 𝑱′. 

Hence 𝑶\{𝒙} is a subset of non-overlapping jobs from 𝑱′. 

Therefore Opt(𝑱′) ≥ |𝑶| - 1 = Opt(𝑱) - 1. 
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𝒙 Overlap(𝒙) 

𝑱′ 

From an optimal solution of 𝑱  
can you derive a solution for 𝑱′ with one job less? 



 

 

 

Theorem:  

Given any set 𝑱 of 𝒏 jobs, the algorithm based on “earliest finish time” 
approach computes the largest subset of non-overlapping job. 
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O(𝒏 log 𝒏) implementation of the Algorithm 

 

 

Algorithm (Input : set 𝑱 of 𝒏 jobs.) 

1. Define 𝑨 ∅; 

2. While 𝑱 <>∅ do  

         {       Let 𝒙 ϵ 𝑱 have earliest finish time; 

                  𝑨 𝑨 U {𝒙}; 

                   𝑱  𝑱\Overlap(𝒙); 

         } 

3. Return 𝑨; 

 

 O(𝒏𝟐) time complexity is obvious  

 

 

 

 

 

    Maintain a binary min-heap for 𝑱  

    based on             …           as the key. 

 

 

 

Sort 𝑱 in increasing order of       … 
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finish time 

start time. 



Problem 2 
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First we shall give motivation.  



Motivation: 
A road or telecommunication network 

 

 

 

 

 

 

 

 
Suppose there is a collection of possible links/roads that can be laid.  

But laying down each possible link/road is costly.  

Aim: To lay down least number of links/roads to ensure connectivity 

between each pair of nodes/cities. 
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Motivation 

                                   Formal description of the problem 

  

Input: an undirected graph G=(V,E).  

 

Aim: compute a subgraph (V,E’), E’ ⊆ E such that 

• Connectivity among all V is guaranteed in the subgraph. 

• |E’| is minimum.    
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How will such a subgraph look like ? 



A road or telecommunication network 
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A road or telecommunication network 

 

 

 

 

 

 

 

 

 

Is this subgraph meeting our requirement ? 
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Yes No No 



A tree 

The following definitions are equivalent. 

 
• An undirected graph which is connected but does not have any cycle. 

 

• An undirected graph where each pair of vertices has a unique path between 
them. 

 

• An undirected connected graph on 𝒏 vertices and 𝒏 − 𝟏 edges.  

 

• An undirected graph on 𝒏 vertices and 𝒏 − 𝟏 edges and  without any cycle.  
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A Spanning tree 
 Definition: For an undirected graph (V,E), spanning tree is a subgraph (V,E’), E’ ⊆ E 

which is a tree. 

 

 

 

 

 

 

 

 
 

Observation: Given a spanning tree 𝑻 of a graph 𝑮, adding a nontree edge 𝒆 to 𝑻 creates 
a unique cycle.  

There will be total 𝒎− 𝒏+ 𝟏 such cycles.  These are called fundamental cycles in 
𝑮 induced by the spanning tree 𝑻. 18 



A road or telecommunication network 

Assign each edge a weight/cost. 
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Adding more reality to the problem 



A road or telecommunication network 

 

 

 

 

 

 

 

 

 
Any arbitrary spanning tree (like the one shown above) will not serve our 
goal.  

We need to select the spanning tree with least weight/cost.  
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Problem 2 
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Minimum spanning tree 



Problem Description 

 

 

 

Input: an undirected graph G=(V,E) with w: E  ℝ,  

 

Aim: compute a spanning tree (V,E’), E’ ⊆ E such that   w(𝒆)
𝒆ϵE’   is minimum.    
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How to compute a MST ? 
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Look at this graph carefully and with open mind.  
Can you claim anything about the MST ? 

Is there any edge for which you feel 
strongly to be present in MST ? 

The least weight edge 
should be in MST.  

But  why ?  



Let 𝒆𝟎ϵ E be the edge of least weight in the given graph.  

Lemma2: There is a MST 𝑻 containing 𝒆𝟎. 

Proof: Consider any MST 𝑻. Let 𝒆𝟎∉ 𝑻. 

Consider the fundamental cycle 𝑪 defined by 𝒆𝟎 in 𝑻. 

Swap 𝒆𝟎 with any edge 𝒆ϵ 𝑻 present in 𝑪.  
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𝒆𝟎 

𝒆 



Let 𝒆𝟎ϵ E be the edge of least weight in the given graph.  

Lemma2: There is a MST 𝑻 containing 𝒆𝟎. 

Proof: Consider any MST 𝑻. Let 𝒆𝟎∉ 𝑻. 

Consider the fundamental cycle 𝑪 defined by 𝒆𝟎 in 𝑻. 

Swap 𝒆𝟎 with any edge 𝒆ϵ 𝑻 present in 𝑪.  

We get a spanning tree of weight ≤ w(𝑻). 
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𝒆𝟎 

𝒆 



 

 

Try to translate Lemma2 to an algorithm for MST ? 

 

with inspiration from the job scheduling problem  
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