Data Structures and Algorithms (CS210A) Semester I – 2014-15

Lecture 35

• A new algorithm design paradigm: Greedy strategy

part II

Continuing Problem from last class

JOB Scheduling

Largest subset of non-overlapping job

A job scheduling problem Formal Description

INPUT:

- A set **J** of **n** jobs {**j**₁, **j**₂,..., **j**_n}
- job j_i is specified by two real numbers
 - s(i): start time of job j_i
 - f(i): finish time of job j_i
- A single server

Constraints:

- Server can execute <u>at most one job</u> at any moment of time and a job.
- **Job** j_i , if scheduled, has to be scheduled <u>during[s(i), f(i)] only</u>.

Aim: To select the **largest** subset of **non-overlapping** jobs which can be executed by the server.

Designing algorithm for the problem

Strategy 4: Select the job with earliest finish time

Intuition:

Selecting such a job will **free** the server **earliest**

→ hence more no. of jobs might get scheduled.

Algorithm "earliest finish time"

Proof of correctness ?

Let $x \in J$ be the job with earliest finish time. Let $J' = J \setminus Overlap(x)$

Algorithm (Input : set **J** of **n** jobs.)

- 1. Define $A \leftarrow \emptyset$;
- 2. While **J** <> Ø do
 - Let $x \in J$ has earliest finish time;

```
A \leftarrow A \cup \{x\};
J \leftarrow J \setminus Overlap(x);
```

- }
- 3. Return **A**;

Lemma1 (last class): There exists <u>an</u> optimal solution for *J* in which *x* is present.

Algorithm "earliest finish time"

Notation:

Opt(*J***)**: the size of an optimal solution for *J*.

Proof of correctness ? Let $x \in J$ be the job with earliest finish time. Let $J' = J \setminus Overlap(x)$

Theorem: Opt(J) = Opt(J') + 1.

• Proof for each part is a proof by **construction**

Algorithm "earliest finish time" Proving $Opt(\mathbf{J}) \ge Opt(\mathbf{J}') + 1$

Algorithm "earliest finish time" Proving $Opt(J') \ge Opt(J) - 1$.

Theorem:

Given any set **J** of **n** jobs, the algorithm based on "**earliest finish time**" approach computes the largest subset of non-overlapping job.

O(*n* log *n*) implementation of the Algorithm

Algorithm (Input : set J of n jobs.)

1. Define $A \leftarrow \emptyset$;

Problem 2

First we shall give motivation.

Motivation: A road or telecommunication network

Suppose there is a collection of possible links/roads that can be laid.

But laying down each possible link/road is costly.

Aim: To lay down **least number** of links/roads to ensure **connectivity** between each pair of nodes/cities.

Motivation

Formal description of the problem

Input: an undirected graph **G**=(**V**,**E**).

Aim: compute a **subgraph** (V, E'), $E' \subseteq E$ such that

- **Connectivity** among all **V** is guaranteed in the **subgraph**.
- **[E']** is minimum.

A road or telecommunication network

A road or telecommunication network

Is this subgraph meeting our requirement?

A tree

The following definitions are **equivalent**.

- An undirected graph which is **connected** but does **not have any cycle**.
- An undirected graph where each pair of vertices has a unique path between them.
- An undirected connected graph on n vertices and n 1 edges.
- An undirected graph on n vertices and n 1 edges and without any cycle.

A Spanning tree

Definition: For an undirected graph (V,E), spanning tree is a **subgraph** (V,E'), $E' \subseteq E$ which is a tree.

Observation: Given a spanning tree *T* of a graph *G*, adding a nontree edge *e* to *T* creates a unique cycle.

There will be total m - n + 1 such cycles. These are called **fundamental cycles** in *G* induced by the spanning tree *T*.

A road or telecommunication network

Assign each edge a weight/cost.

A road or telecommunication network

Any arbitrary spanning tree (like the one shown above) will not serve our goal⊗.

We need to select the spanning tree with **least weight/cost**.

Problem 2

Minimum spanning tree

Problem Description

Input: an undirected graph G=(V,E) with w: $E \rightarrow \mathbb{R}$,

Aim: compute a spanning tree (V,E'), E' \subseteq E such that $\sum_{e \in E'} w(e)$ is minimum.

Let $e_0 \in E$ be the edge of least weight in the given graph. Lemma2: There is a MST T containing e_0 . Proof: Consider any MST T. Let $e_0 \notin T$. Consider the fundamental cycle C defined by e_0 in T. Swap e_0 with any edge $e \in T$ present in C.

Let $e_0 \in E$ be the edge of least weight in the given graph. Lemma2: There is a MST T containing e_0 . Proof: Consider any MST T. Let $e_0 \notin T$. Consider the fundamental cycle C defined by e_0 in T. Swap e_0 with any edge $e \in T$ present in C. We get a spanning tree of weight $\leq w(T)$.

Try to translate Lemma2 to an algorithm for MST ?

with inspiration from the job scheduling problem ©