
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 35
• A new algorithm design paradigm:

 part II

1

Greedy strategy

Continuing Problem from last class

2

JOB Scheduling

Largest subset of non-overlapping job

A job scheduling problem
 Formal Description

INPUT:

• A set 𝑱 of 𝒏 jobs {𝒋𝟏, 𝒋𝟐,…, 𝒋𝒏}

• job 𝒋𝒊 is specified by two real numbers

 s(𝒊): start time of job 𝒋𝒊

 f(𝒊): finish time of job 𝒋𝒊

• A single server

Constraints:

• Server can execute at most one job at any moment of time and a job.

• Job 𝒋𝒊, if scheduled, has to be scheduled during[s(𝒊), f(𝒊)] only.

Aim: To select the largest subset of non-overlapping jobs which can be executed by
the server.

3

Designing algorithm for the problem

Intuition:

Selecting such a job will free the server earliest

 hence more no. of jobs might get scheduled.

4

0 1 2 3 4 5 6 7

Strategy 4: Select the job with earliest finish time

Algorithm “earliest finish time”

Algorithm (Input : set 𝑱 of 𝒏 jobs.)

1. Define 𝑨 ∅;

2. While 𝑱 <>∅ do

 { Let 𝒙 ∈ 𝑱 has earliest finish time;

 𝑨 𝑨 U {𝒙};

 𝑱  𝑱\Overlap(𝒙);

 }

3. Return 𝑨;

Lemma1 (last class): There exists an optimal
solution for 𝑱 in which 𝒙 is present.

Proof of correctness ?

Let 𝒙 ∈ 𝑱 be the job with earliest finish time.

 Let 𝑱′ = 𝑱\Overlap(𝒙)

5

𝑱

𝑱′

Greedy
step

Greedy
step

Algorithm “earliest finish time”

Notation:

Opt(𝑱): the size of an optimal solution for 𝑱.

Proof of correctness ?

Let 𝒙 ∈ 𝑱 be the job with earliest finish time.

 Let 𝑱′ = 𝑱\Overlap(𝒙)

6

𝑱

𝑱′

Greedy
step

Greedy
step

Opt(𝑱)

Opt(𝑱′)

Lemma1

What will suffice as
proof of correctness ?

Opt(𝑱)= Opt(𝑱′) + 1

How to prove it ?

Theorem: Opt(𝑱) = Opt(𝑱′) + 1.

• Proof has two parts

 Opt(𝑱) ≥ Opt(𝑱′) + 1

 Opt(𝑱′) ≥ Opt(𝑱) – 1

• Proof for each part is a proof by construction

7

Try to give a physical
interpretation to these

inequalities.

Algorithm “earliest finish time”

Proving Opt(𝑱) ≥ Opt(𝑱′) + 1.
Observation: start time of every job in 𝑱′ is greater than finish time of 𝒙.

Let 𝑶′ be any optimal solution for 𝑱′.

None of the jobs in 𝑶′ overlaps with 𝒙.

Hence 𝑶′ U{𝒙} is a subset of non-overlapping jobs.

Therefore Opt(𝑱) ≥ |𝑶′| + 1 = Opt(𝑱′) + 1.

8

0 1 2 3 4 5 6 7

𝒙 Overlap(𝒙)

𝑱′

From an optimal solution of 𝑱′
can you derive a solution for 𝑱 with one extra job?

Algorithm “earliest finish time”

Proving Opt(𝑱′) ≥ Opt(𝑱) - 1.
Lemma1 (last class): There exists an optimal solution for 𝑱 in which 𝒙 is present.

Let 𝑶 be an optimal solution for 𝑱 containing 𝒙.

None of the jobs in 𝑶 overlaps with 𝒙.

 Every job from 𝑶 other than 𝒙 belongs to 𝑱′.

Hence 𝑶\{𝒙} is a subset of non-overlapping jobs from 𝑱′.

Therefore Opt(𝑱′) ≥ |𝑶| - 1 = Opt(𝑱) - 1.

9

0 1 2 3 4 5 6 7

𝒙 Overlap(𝒙)

𝑱′

From an optimal solution of 𝑱
can you derive a solution for 𝑱′ with one job less?

Theorem:

Given any set 𝑱 of 𝒏 jobs, the algorithm based on “earliest finish time”
approach computes the largest subset of non-overlapping job.

10

O(𝒏 log 𝒏) implementation of the Algorithm

Algorithm (Input : set 𝑱 of 𝒏 jobs.)

1. Define 𝑨 ∅;

2. While 𝑱 <>∅ do

 { Let 𝒙 ϵ 𝑱 have earliest finish time;

 𝑨 𝑨 U {𝒙};

 𝑱  𝑱\Overlap(𝒙);

 }

3. Return 𝑨;

 O(𝒏𝟐) time complexity is obvious

 Maintain a binary min-heap for 𝑱

 based on … as the key.

Sort 𝑱 in increasing order of …

 11

finish time

start time.

Problem 2

12

First we shall give motivation.

Motivation:
A road or telecommunication network

Suppose there is a collection of possible links/roads that can be laid.

But laying down each possible link/road is costly.

Aim: To lay down least number of links/roads to ensure connectivity

between each pair of nodes/cities.
13

Motivation

 Formal description of the problem

Input: an undirected graph G=(V,E).

Aim: compute a subgraph (V,E’), E’ ⊆ E such that

• Connectivity among all V is guaranteed in the subgraph.

• |E’| is minimum.

14

How will such a subgraph look like ?

A road or telecommunication network

15

A road or telecommunication network

Is this subgraph meeting our requirement ?

16

Yes No No

A tree

The following definitions are equivalent.

• An undirected graph which is connected but does not have any cycle.

• An undirected graph where each pair of vertices has a unique path between
them.

• An undirected connected graph on 𝒏 vertices and 𝒏 − 𝟏 edges.

• An undirected graph on 𝒏 vertices and 𝒏 − 𝟏 edges and without any cycle.

17

A Spanning tree
 Definition: For an undirected graph (V,E), spanning tree is a subgraph (V,E’), E’ ⊆ E

which is a tree.

Observation: Given a spanning tree 𝑻 of a graph 𝑮, adding a nontree edge 𝒆 to 𝑻 creates
a unique cycle.

There will be total 𝒎− 𝒏+ 𝟏 such cycles. These are called fundamental cycles in
𝑮 induced by the spanning tree 𝑻. 18

A road or telecommunication network

Assign each edge a weight/cost.

19

170

33

35
31

41 81

52

42

50

102

50 30
60

70

54

57

49

49

80

78

63
54

53

44

29

64

Adding more reality to the problem

A road or telecommunication network

Any arbitrary spanning tree (like the one shown above) will not serve our
goal.

We need to select the spanning tree with least weight/cost.

20

170

33

35
31

41 81

52

42

50

102

50 30
60

70

54

57

49

49

80

78

63
54

53

44

29

64

Problem 2

21

Minimum spanning tree

Problem Description

Input: an undirected graph G=(V,E) with w: E  ℝ,

Aim: compute a spanning tree (V,E’), E’ ⊆ E such that w(𝒆)
𝒆ϵE’ is minimum.

22

How to compute a MST ?

23

170

33

13
31

41 81

52

42

50

102

50 30
60

70

54

57

49

49

80

78

63
54

53

44

29

64

Look at this graph carefully and with open mind.
Can you claim anything about the MST ?

Is there any edge for which you feel
strongly to be present in MST ?

The least weight edge
should be in MST.

But why ?

Let 𝒆𝟎ϵ E be the edge of least weight in the given graph.

Lemma2: There is a MST 𝑻 containing 𝒆𝟎.

Proof: Consider any MST 𝑻. Let 𝒆𝟎∉ 𝑻.

Consider the fundamental cycle 𝑪 defined by 𝒆𝟎 in 𝑻.

Swap 𝒆𝟎 with any edge 𝒆ϵ 𝑻 present in 𝑪.

24

𝒆𝟎

𝒆

Let 𝒆𝟎ϵ E be the edge of least weight in the given graph.

Lemma2: There is a MST 𝑻 containing 𝒆𝟎.

Proof: Consider any MST 𝑻. Let 𝒆𝟎∉ 𝑻.

Consider the fundamental cycle 𝑪 defined by 𝒆𝟎 in 𝑻.

Swap 𝒆𝟎 with any edge 𝒆ϵ 𝑻 present in 𝑪.

We get a spanning tree of weight ≤ w(𝑻).

25

𝒆𝟎

𝒆

Try to translate Lemma2 to an algorithm for MST ?

with inspiration from the job scheduling problem 

26

