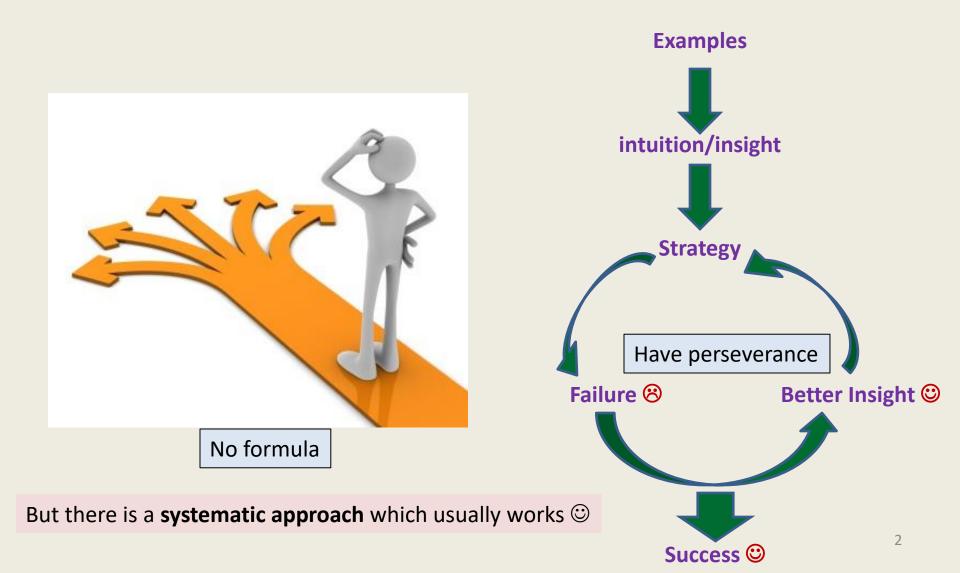
Data Structures and Algorithms (CS210A) Semester I – 2014-15

Lecture 34

• A new algorithm design paradigm: Greedy strategy

part I

Path to the solution of a problem



Today's lecture will demonstrate this approach 😊

Problem : JOB Scheduling Largest subset of non-overlapping job

A motivating example

Antaragni

- There are *n* large-scale activities to be performed in Auditorium.
- Each large scale activity has a **start time** and **finish time**.
- There is **overlap** among various activities.

Aim: What is the largest subset of activities that can be performed?

Can you formulate the problem theoretically through this example ?

A job scheduling problem Formal Description

INPUT:

- A set **J** of **n** jobs {**j**₁, **j**₂,..., **j**_n}
- job **j**_i is specified by two real numbers
 - s(i): start time of job j_i
 - f(i): finish time of job j_i
- A single server

Constraints:

- Server can execute <u>at most one job</u> at any moment of time and a job.
- **Job** j_i , if scheduled, has to be scheduled <u>during[s(i), f(i)] only</u>.

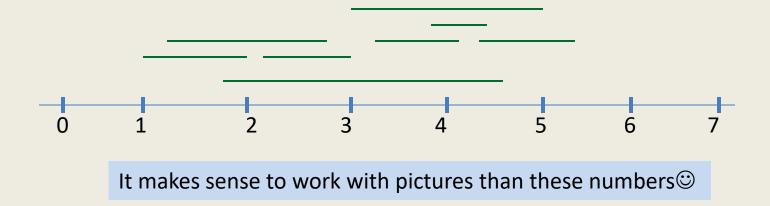
Aim:

To select the **largest** subset of **non-overlapping** jobs which can be executed by the server.

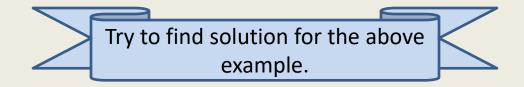
A job scheduling problem

Example

INPUT: (1, 2), (1. 2, 2. 8), (1. 8, 4. 6), (2. 1, 3), (3, 5), (3. 3, 4. 2), (3. 9, 4. 4), (4. 3, 5. 4)



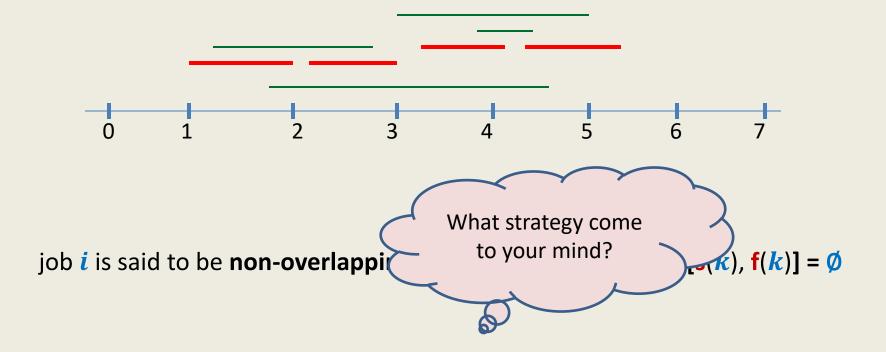
job *i* is said to be **non-overlapping** with job *k* if $[s(i), f(i)] \cap [s(k), f(k)] = \emptyset$



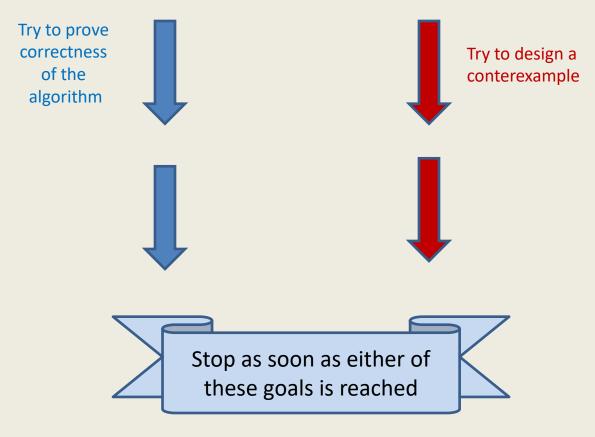
A job scheduling problem

Example

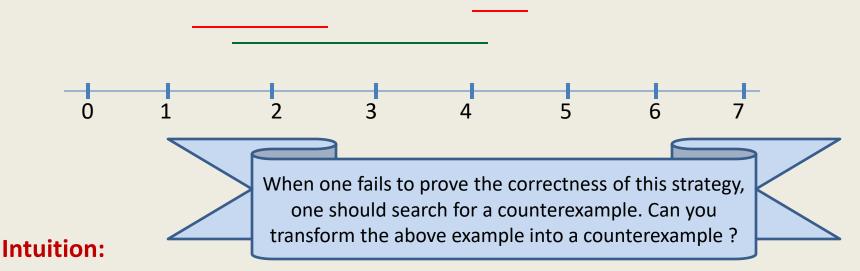
INPUT: (1, 2), (1. 2, 2. 8), (1. 8, 4. 6), (2. 1, 3), (3, 5), (3. 3, 4. 2), (3. 9, 4. 4), (4. 3, 5. 4)



- 1. Choose a strategy based on some intuition
- 2. Transform the strategy into an algorithm.

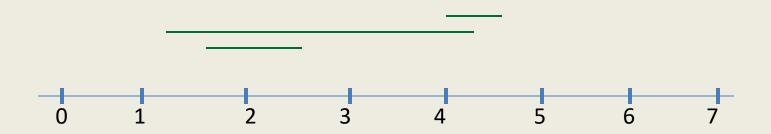


Strategy 1: Select the earliest start time job



It might be better to assign jobs as early as possible so as to make optimum use of server.

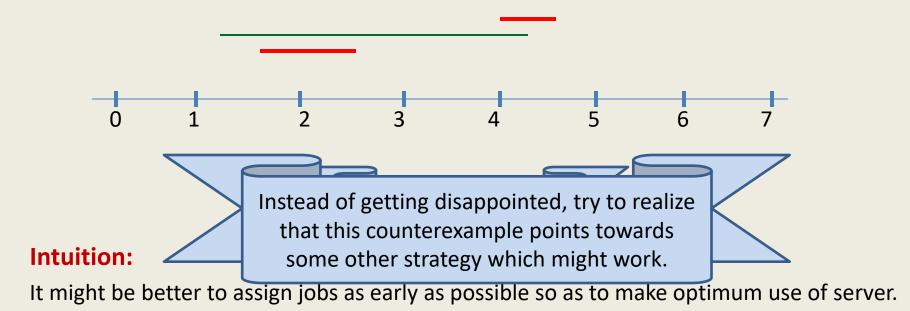
Strategy 1: Select the earliest start time job



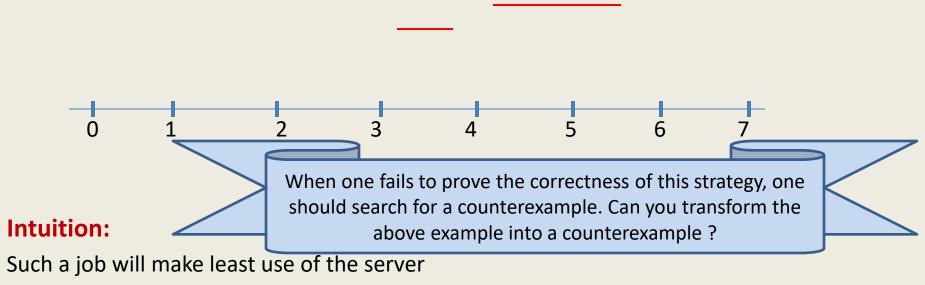
Intuition:

It might be better to assign jobs as early as possible so as to make optimum use of server.

Strategy 1: Select the earliest start time job

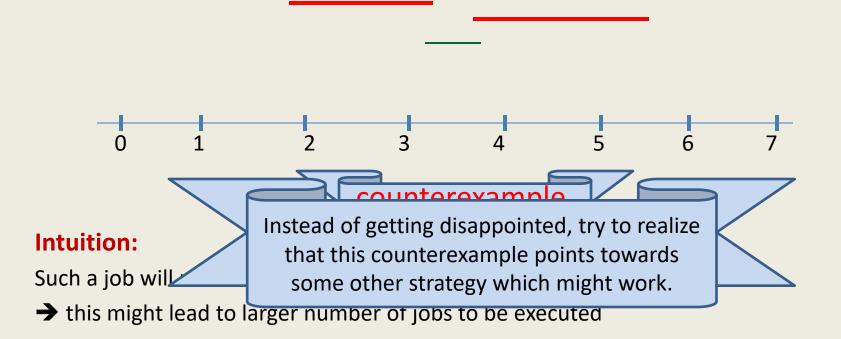


Strategy 2: Select the job with smallest duration

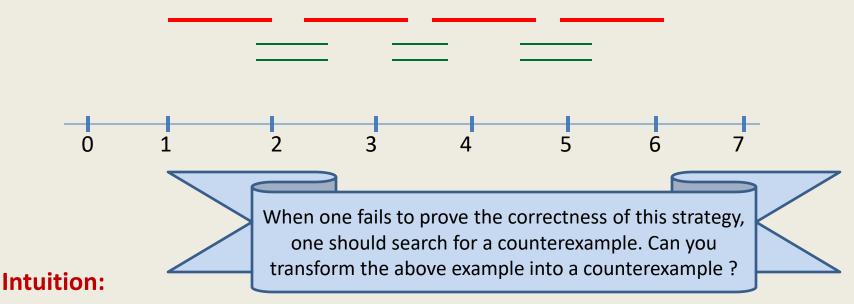


→ this might lead to larger number of jobs to be executed

Strategy 2: Select the job with smallest duration

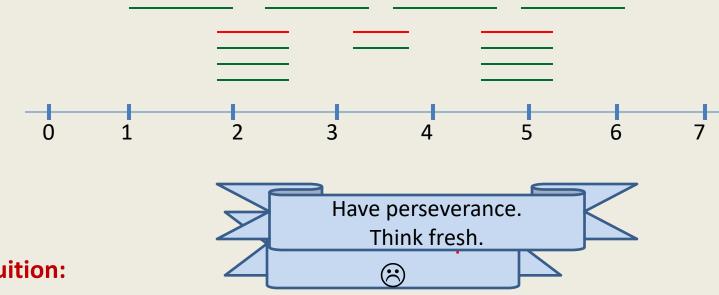


Strategy 3: Select the job with smallest no. of overlaps



Selecting such a job will result in least number of other jobs to be discarded.

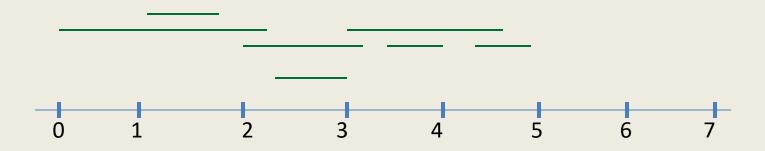
Strategy 3: Select the job with smallest no. of overlaps



Intuition:

Selecting such a job will result in least number of other jobs to be discarded.

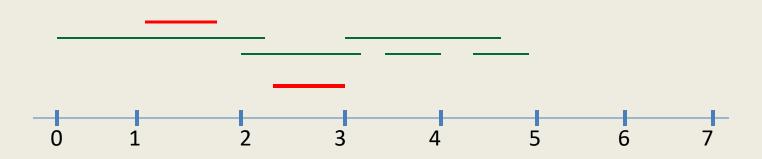
Strategy 4: Select the job with earliest finish time



Intuition:

Selecting such a job will **free** the server **earliest**

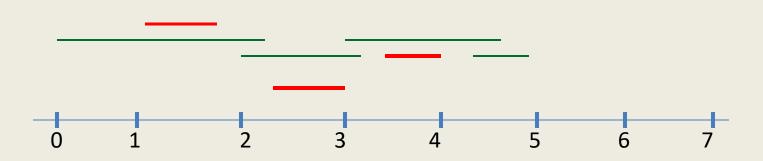
Strategy 4: Select the job with earliest finish time



Intuition:

Selecting such a job will **free** the server **earliest**

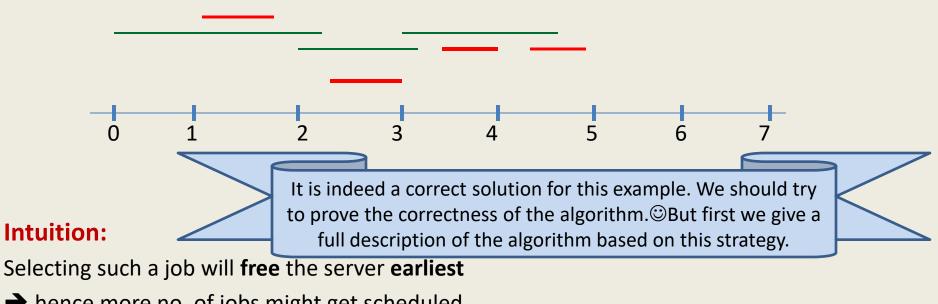
Strategy 4: Select the job with earliest finish time



Intuition:

Selecting such a job will **free** the server **earliest**

Strategy 4: Select the job with earliest finish time



Algorithm "earliest finish time" Description

Algorithm (Input : set J of n jobs.)

- 1. Define $A \leftarrow \emptyset$;
- 2. While **J** <>Ø do
 - { Let x be the job from J with earliest finish time;

```
A \leftarrow A U \{x\};
```

Remove x and all jobs that overlap with x from set J;

}

3. Return A;

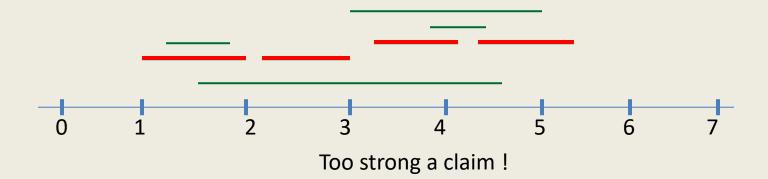
Running time for a trivial implementation of the above algorithm: $O(n^2)$

Algorithm "earliest finish time"

Correctness

Let \boldsymbol{x} be the job with earliest finish time.

Lemma1: *x* is present in the optimal solution for *J*.



Algorithm "earliest finish time" Correctness

Let \boldsymbol{x} be the job with earliest finish time. **Lemma1:** There exists an optimal solution for \mathbf{J} in which \mathbf{x} is present. **Proof:** Consider any optimal solution **0** for **J**. Let us suppose $x \notin 0$. $\Rightarrow f(x) \leq f(y)$ Let y be the job from 0 with earliest finish time. Let $O' \leftarrow O \setminus \{y\}$ $\rightarrow f(y) < s(z) \forall z \in O'$ $f(x) < \mathbf{s}(z) \ \forall \ z \in \mathbf{O}'$ $O' \cup \{x\}$ is also an optimal solution. **Reason**: $O' \cup \{x\}$ has no overlapping intervals. Give reasons. Hence \boldsymbol{x} does not overlap With any interval of O'. We are done 🙂 1 3 5 2 0 4

Homework exercises

Spend 30 minutes today on the following problems.

- 1. Use **Lemma1** to complete the proof of correctness of the algorithm.
- 2. Design an $O(n \log n)$ implementation of the algorithm.