
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 32
• Magical application of binary trees – III

Data structure for sets

1

Rooted tree

2

Revisiting and extending

A typical rooted tree we studied

Definition we gave:

Every vertex, except root, has exactly one incoming edge and has a path from the root.

Examples:

 Binary search trees,

 DFS tree,

 BFS tree.
3

A typical rooted tree we studied

Question: what data structure can be used for representing a rooted tree ?

Answer:

Data structure 1:

• Each node stores a list of its children.

• To access the tree, we keep a pointer to the root node.

 (there is no way to access any node (other than root) directly in this data structure)

Data structure 2: (If nodes are labeled in a contiguous range [0..n-1])

 rooted tree becomes an instance of a directed graph.

 So we may use adjacency list representation.

 Advantage: ?

4

We can access each node directly.

Extending the definition of rooted tree

Extended Definition:

Type 1: Every vertex, except root, has exactly one incoming edge and has a path from the root.

5

Extending the definition of rooted tree

Extended Definition:

Type 1: Every vertex, except root, has exactly one incoming edge and has a path from the root.

 OR

Type 2: Every vertex, except root, has exactly one outgoing edge and has a path to the root.
6

Parent
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Data structure for rooted tree of type 2

If nodes are labeled in a contiguous range [𝟎..𝒏 − 𝟏],

there is even simpler and more compact data structure

 Guess ??

7

23 11

1 15 6 9 13

14 12 18 2 21 5 8

16 10 20 17 19 4 3 22 0

 7

8 23 9 8 18 13 23 13 11 14 7 6 11 1 23 14 12 6 12 12 9 8 7 7

Adjacency lists

Application of rooted tree of type 2

Maintaining sets

8

Sets under two operations

Given: a collection of 𝒏 singleton sets {𝟎}, {𝟏}, {𝟐}, … {𝒏 − 𝟏}

Aim: a compact data structure to perform

• Union(𝒊, 𝒋):

 Unite the two sets containing 𝒊 and 𝒋.

• Same_sets(𝒊, 𝒋):

 Determine if 𝒊 and 𝒋 belong to the same set.

Trivial Solution

Treat the problem as a graph problem: ??

• V = {0,…, 𝒏 − 𝟏}, E = empty set initially.

• A set  a connected component.

• Keep array Label[] such that Label[𝒊]=Label[𝒋] iff 𝒊 and 𝒋 belong to the same component.



Union(𝒊, 𝒋) :

 if (Same_sets(𝒊, 𝒋) = false)

 add an edge (𝒊, 𝒋) and recompute connected components using BFS/DFS.
9

Connected component

O(𝒏) time

Sets under two operations

Given: a collection of 𝒏 singleton sets {𝟎}, {𝟏}, {𝟐}, … {𝒏 − 𝟏}

Aim: a compact data structure to perform

• Union(𝒊, 𝒋):

 Unite the two sets containing 𝒊 and 𝒋.

• Same_sets(𝒊, 𝒋):

 Determine if 𝒊 and 𝒋 belong to the same set.

 Efficient solution:

• A data structure which supports each operation in O(log 𝒏) time.

• An additional heuristic

  time complexity of an operation : practically O(1).

10

Data structure for sets

Maintain each set as ? .

Question: How to perform operation Same_sets(𝒊, 𝒋) ?

Answer: Determine if 𝒊 and 𝒋 belong to the same tree.

 (To do this, find root of 𝒊 and root of 𝒋, and compare)

11

a rooted tree

4

2

6

1

3 0 5

{2,4,6} {0} {5} {1,3}

Data structure for sets

Maintain each set as ? .

Question: How to perform operation Same_sets(𝒊, 𝒋) ?

Answer: Determine if 𝒊 and 𝒋 belong to the same tree.

 (To do this, find root of 𝒊 and root of 𝒋, and compare)

Question: How to perform Union(𝒊, 𝒋) ?

Answer:

• find root of 𝒋; let it be 𝒒.

• Parent(𝒌)  𝒊.

12

a rooted tree

A

𝒌

B

𝒒

𝒊 𝒋

A rooted tree as a data structure for sets

13

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11
Parent 0 1 2 3 4 5 6 7 8 9 10 11

Union(2,6)

A rooted tree as a data structure for sets

14

0 1 2 3 4 5 6 7 8 9 10 11

0 1 3 4 5 7 8 9 10 11

Parent 0 1 2 3 4 5 6 7 8 9 10 11

2

6

2

Union(9,0)

A rooted tree as a data structure for sets

15

0 1 2 3 4 5 6 7 8 9 10 11

1 3 4 5 7 8 10 11

Parent 0 1 2 3 4 5 6 7 8 9 10 11

2

6

2

9

0

9

Union(2,8)

A rooted tree as a data structure for sets

16

0 1 2 3 4 5 6 7 8 9 10 11

1 3 4 5 7

8

10 11

Parent 9 1 2 3 4 5 2 7 8 9 10 11

2

6

2

9

0

Union(6,0)

A rooted tree as a data structure for sets

17

0 1 2 3 4 5 6 7 8 9 10 11

1 3 4 5 7 10 11

Parent 9 1 2 3 4 5 2 7 2 9 10 11

2

6

6

9

0

8

Pseudocode for Union and SameSet()

Find(𝒊) // subroutine for finding the root of the tree containing 𝒊

 If (Parent(𝒊) = 𝒊) return 𝒊 ;

 else return Find(Parent(𝒊));

SameSet(𝒊, 𝒋)
 𝒌  Find(𝒊);

 𝒍  Find(𝒋);

 If (𝒌 = 𝒍) return true else return false

Union(𝒊, 𝒋)

 𝒌  Find(𝒋);

 Parent(𝒌) 𝒊;

Observation: Time complexity of Union(𝒊, 𝒋) as well as Same_sets(𝒊, 𝒋) is

governed by the time complexity of Find(𝒊) and Find(𝒋).

Question: What is time complexity of Find(𝒊) ?

Answer: depth of the node 𝒊 in the tree containing 𝒊.

18

Time complexity of Find(𝒊)

Union(0,1)

Union(1,2)

Union(2,3)

 …

Union(9,10)

Union(10,11)

19

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11
Parent 0 1 2 3 4 5 6 7 8 9 10 11

What will be the rooted tree structures
after these union operations ?

Time complexity of Find(𝒊)

Union(0,1)

Union(1,2)

Union(2,3)

 …

Union(9,10)

Union(10,11)

20

0 1 2 3 4 5 6 7 8 9 10 11
Parent 0 0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

10

11

Time complexity of Find(𝒊) = O(𝒏)

Improving the time complexity of
Find(𝒊)

Heuristic 1: Union by size

21

Improving the Time complexity

Key idea: Change the union(𝒊,𝒋) .

While doing union(𝒊,𝒋), hook the smaller size tree to the root of the bigger size tree.

For this purpose, keep an array size[0,..,n-1]

size[𝒊] = number of nodes in the tree containing 𝒊

 (if 𝒊 is a root and zero otherwise)
22

A

𝒌

B

𝒒

𝒊 𝒋

Efficient data structure for sets

23

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

size 1 1 1 1 1 1 1 1 1 1 1 1

Parent 0 1 2 3 4 5 6 7 8 9 10 11

Efficient data structure for sets

24

0 1 2 3 4 5 6 7 8 9 10 11

1 3 4 5

7

10

11

size 0 1 5 1 1 1 0 0 0 0 3 0

Parent 9 1 2 3 4 5 2 10 2 6 10 10

2

6

9

0

8

Union(11,0)

Efficient data structure for sets

25

0 1 2 3 4 5 6 7 8 9 10 11

1 3 4 5

7

10

11

size 0 1 5 1 1 1 0 0 0 0 3 0

Parent 9 1 2 3 4 5 2 10 2 6 10 10

2

6

9

0

8

Pseudocode for modified Union
 Union(𝒊, 𝒋)

 𝒌  Find(𝒊);

 𝒍  Find(𝒋);

 If(size(𝒌) < size(𝒍))

 𝒍  Parent(𝒌);

 size(𝒍)  size(𝒌) + size(𝒍);

 size(𝒌)  0;

 Else

 𝒌  Parent(𝒍);

 size(𝒌)  size(𝒌) + size(𝒍);

 size(𝒍)  0;

Question: How to show that Find(𝒊) for any 𝒊 will now take O(log n) time only ?

Answer: It suffices if we can show that Depth(𝒊) is O(log n).

26

Can we infer history of a tree?

Answer: Can not be inferred with any certainty .

27

2

6 8

Which one of these was
Added before the other ?

Can we infer history of a tree?

 (09) was added before (96).

Theorem: The edges on a path from node 𝒗 to root were inserted

in the order they appear on the path.

28

7

10

11

2

9

0

8

7

7 11

Which one of these was
Added before the other ?

11

During union, we join
roots of two trees.

How to show that depth of any element = O(log 𝒏) ?

 Let 𝑒1, 𝑒2, …, 𝑒𝑡 be the edges on the path from 𝒊
to the root.

Edges 𝑒1, 𝑒2, …, 𝑒𝑡 would have been added in the
order:

𝑒1
𝑒2

 …
𝑒𝑡

30

A

B

X

Y

Y

𝒊

𝒒

𝒌

𝒓

𝒕

𝑒3

𝑒1

𝑒2

𝑒𝑡

Let us visit the history.
 (how this tree came into being ?).

How to show that depth of any element = O(log 𝒏) ?

 Let 𝑒1, 𝑒2, …, 𝑒𝑡 be the edges on the path from 𝒊
to the root.

Let no. of elements in subtree 𝑻(𝒊) at that
moment be 𝒏𝒊.

We added edge 𝒊 𝒕 (and not 𝒕 𝒊).

 no. of elements in 𝑻(𝒕) ≥ 𝒏𝒊.

 After the edge 𝒊 𝒕 is inserted,

 no. of element in 𝑻(𝒕) ≥ 2𝒏𝒊

31

Z

𝒊

Y

𝒕
𝑒1

Consider the moment just before
edge 𝑒1 is inserted.

How to show that depth of any element = O(log 𝒏) ?

 Let 𝑒1, 𝑒2, …, 𝑒𝑡 be the edges on the path from 𝒊
to the root.

no. of element in 𝑻(𝒕) ≥ 2𝒏𝒊

We added edge 𝒕 𝒌 (and not 𝒌 𝒕).

 # elements in 𝑻(𝒌) ≥ 𝟐𝒏𝒊.

 After the edge 𝒕 𝒌 is inserted,

 no. of element in 𝑻(𝒌) ≥ 4𝒏𝒊

32

Y

Z

𝒊
X

𝒌

𝒕
𝑒1

Consider the moment just before
edge 𝑒2 is inserted.

𝑒2

How to show that depth of any element = O(log 𝒏) ?

 Let 𝑒1, 𝑒2, …, 𝑒𝑡 be the edges on the path from 𝒊
to the root.

elements in 𝑻(𝒓) after insertion of 𝑒𝑡 ≥ ?

Obviously 𝟐𝒕𝒏𝒊 ≤ 𝒏



Theorem: 𝒕 ≤ log𝟐 𝒏

33

X

Y

Z

𝒊

𝒌

𝒕
𝑒1

𝑒2

Arguing in a similar manner for
edge 𝑒3, …, 𝑒𝑡 

A

B

𝒒

𝒓

𝑒3

𝑒𝑡

𝟐𝒕𝒏𝒊

Theorem: Given a collection of n singleton sets followed by a sequence of
union and find operations, there is a data structure based on “union by size”
heuristic that achieves O(log n) time per operation.

Question: Can we achieve even better bounds ?

Answer: Yes.

34

A new heuristic for better time complexity

Heuristic 2: Path compression

35

This is how this heuristic got invented

• The time complexity of a Find(𝒊) operation is proportional to the depth of the node
𝒊 in its rooted tree.

• If the elements are stored closer to the root, faster will the Find() be and hence
faster will be the overall algorithm.

The algorithm for Union and Find was used in some application of data-bases.

A clever programmer did the following modification to the code of Find(𝒊).
While executing Find(𝒊), we traverse the path from node 𝒊 to the root. Let 𝑣1,𝑣2, …, 𝑣𝑡, be the nodes
traversed with 𝑣𝑡 being the root node. At the end of Find(𝒊), if we update parent of each 𝑣𝑘, 1 ≤ 𝑘 < 𝑡, to
𝑣𝑡 , we achieve a reduction in depth of many nodes. This modification increases the time complexity of
Find(𝒊) by at most a constant factor. But this little modification increased the overall speed of the

application very significantly.

The heuristic is called path compression. It is shown pictorially on the following slide.

It remained a mystery for many years to provide a theoretical explanation for its
practical success.

36

Path compression during Find(i)

37

B

H

S

D

A

i

q

x

v

g
H

x

D

g

B

q

A

i

S

v

Pseudocode for the modified Find

Find(𝒊)

 If (Parent(𝒊) = 𝒊) return 𝒊 ;

 else

 𝒋  Find(Parent(𝒊));

 Parent(𝒊)  𝒋;

 return 𝒋

38

Concluding slide
Theorem: Given a collection of n singleton sets followed by a sequence of m union
and find operations, there exists a data structure (using union by size heuristic and
path compression heuristic) that achieves O(m + n log* n) time complexity.

Here log* n : the number of times we need to take log of a number till we get 1.

To see how “extremely slow growing” is the log* n function, see the following
example.

If n = 22222

 (> 264000),

Then log* n is just 5.

Although log* n is effectively a small constant for every value of n in real life, the crazy
theoreticians still do not consider it a constant since it is an increasing function of n.

 The proof will be discussed in one full lecture of CS345.

 Keep pondering over it for next one year.

Lesson for all: There are simple algorithm which may have very difficult analysis.

 39

