
Data Structures and Algorithms 
(CS210A) 

Semester I – 2014-15 

Lecture 32 
• Magical application of binary trees – III 

Data structure for sets 

1 



Rooted tree 

2 

Revisiting and extending  



A typical rooted tree we studied 

 

 

 

 

 
 

Definition we gave:   

Every vertex, except root, has exactly one incoming edge and has a path from the root. 

Examples:    

                    Binary search trees,  

                    DFS tree,  

                    BFS tree. 
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A typical rooted tree we studied 

Question: what data structure can be used for representing a rooted tree ? 

 

Answer: 

Data structure 1: 

• Each node stores a list of its children. 

• To access the tree, we keep a pointer to the root node. 

       (there is no way to access any node (other than root) directly in this data structure) 

 

Data structure 2: (If nodes are labeled in a contiguous range [0..n-1]) 

       rooted tree becomes an instance of a directed graph. 

      So we may use adjacency list representation.  

      Advantage:             ? 
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We can access each node directly. 



Extending the definition of rooted tree 

 

 

 

 

 

 
 

Extended Definition: 

Type 1: Every vertex, except root, has exactly one incoming edge and has a path from the root.                                                                
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Extending the definition of rooted tree 

 

 

 

 

 

 
 

Extended Definition: 

Type 1: Every vertex, except root, has exactly one incoming edge and has a path from the root. 

                                                               OR 

Type 2: Every vertex, except root, has exactly one outgoing edge and has a path to the root. 
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Parent 
0  1     2    3     4    5     6    7     8    9   10   11  12   13  14  15  16  17  18  19  20   21 22  23 

Data structure for rooted tree of type 2 

 

 

 

 

 

 
If nodes are labeled in a contiguous range [𝟎..𝒏 − 𝟏],  

there is even simpler and  more compact data structure  

                                                                           Guess ?? 
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23                                                                    11 

1             15               6                                9                              13  

14                              12              18              2              21               5               8  

16     10                20   17   19     4                                                          3      22   0  
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8    23   9   8    18  13   23         13  11  14  7     6    11  1    23   14   12  6   12  12  9     8    7 7 

Adjacency lists 



Application of rooted tree of type 2 

Maintaining sets 
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Sets under two operations 

Given: a collection of 𝒏 singleton sets {𝟎}, {𝟏}, {𝟐}, … {𝒏 − 𝟏}  

Aim:  a compact data structure to perform 

•       Union(𝒊, 𝒋):  

                                     Unite the two sets containing 𝒊  and 𝒋. 

•        Same_sets(𝒊, 𝒋):  

                                     Determine if 𝒊  and 𝒋 belong to the same set. 

 

Trivial Solution 

Treat the problem as a graph problem: ?? 

• V = {0,…, 𝒏 − 𝟏}, E =  empty set initially. 

• A set  a connected component. 

• Keep array Label[] such that Label[𝒊]=Label[𝒋] iff 𝒊 and 𝒋 belong to the same component. 

 

Union(𝒊, 𝒋) :  

                    if (Same_sets(𝒊, 𝒋) = false)    

                    add an edge (𝒊, 𝒋) and  recompute connected components using BFS/DFS. 
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Connected component 

O(𝒏) time 



Sets under two operations 

Given: a collection of 𝒏 singleton sets {𝟎}, {𝟏}, {𝟐}, … {𝒏 − 𝟏}  

Aim:  a compact data structure to perform 

•       Union(𝒊, 𝒋):  

                                     Unite the two sets containing 𝒊  and 𝒋. 

•        Same_sets(𝒊, 𝒋):  

                                     Determine if 𝒊  and 𝒋 belong to the same set. 

 

  

                                                           Efficient solution: 

 

• A data structure which supports each operation in O(log 𝒏) time. 

 

• An additional heuristic  

         time complexity of an operation : practically O(1).  
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Data structure for sets 

Maintain each set as            ?           . 

 

Question: How to perform operation Same_sets(𝒊, 𝒋) ? 

Answer:  Determine if 𝒊  and 𝒋 belong to the same tree. 

                   (To do this, find root of 𝒊 and root of 𝒋, and compare) 
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a rooted tree 

4 

2 

6 

1 

3  0  5 

{2,4,6} {0} {5} {1,3} 



Data structure for sets 

Maintain each set as            ?           . 

 

Question: How to perform operation Same_sets(𝒊, 𝒋) ? 

Answer:  Determine if 𝒊  and 𝒋 belong to the same tree. 

                   (To do this, find root of 𝒊 and root of 𝒋, and compare) 

 

 

Question: How to perform Union(𝒊, 𝒋) ? 

Answer:  

• find root of 𝒋; let it be 𝒒.  

• Parent(𝒌)  𝒊. 
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a rooted tree 

A 

𝒌 

B 

𝒒 

𝒊  𝒋 



A rooted tree as a data structure for sets 
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0 1 2 3 4 5 6 7 8 9 10 11 

0          1         2          3          4         5         6         7          8         9          10       11 
Parent 0          1         2          3          4         5         6         7          8         9          10       11 

Union(2,6) 



A rooted tree as a data structure for sets 
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0          1         2          3          4         5         6         7          8         9          10       11 

0 1 3 4 5 7 8 9 10 11 

Parent 0          1         2          3          4         5         6         7          8         9          10       11 

2 

6 

2 

Union(9,0) 



A rooted tree as a data structure for sets 
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0          1         2          3          4         5         6         7          8         9          10       11 

1 3 4 5 7 8 10 11 

Parent 0          1         2          3          4         5         6         7          8         9          10       11 

2 

6 

2 

9 

0 

9 

Union(2,8) 



A rooted tree as a data structure for sets 
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0          1         2          3          4         5         6         7          8         9          10       11 

1 3 4 5 7 

8 

10 11 

Parent 9          1         2          3          4         5         2         7          8         9          10       11 

2 

6 

2 

9 

0 

Union(6,0) 



A rooted tree as a data structure for sets 
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0          1         2          3          4         5         6         7          8         9          10       11 

1 3 4 5 7 10 11 

Parent 9          1         2          3          4         5         2         7          2         9          10       11 

2 

6 

6 

9 

0 
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Pseudocode for Union and SameSet() 
 

Find(𝒊)    // subroutine for finding the root of the tree containing 𝒊 

         If (Parent(𝒊) = 𝒊)     return 𝒊 ; 

        else  return Find(Parent(𝒊)); 

 

SameSet(𝒊, 𝒋) 
         𝒌  Find(𝒊); 

          𝒍  Find(𝒋); 

         If (𝒌 = 𝒍)     return true else return false 

 

Union(𝒊, 𝒋) 

           𝒌  Find(𝒋); 

           Parent(𝒌) 𝒊; 

Observation: Time complexity of Union(𝒊, 𝒋) as well as Same_sets(𝒊, 𝒋) is  

governed by the time complexity of Find(𝒊) and Find(𝒋).  

Question: What is time complexity of Find(𝒊) ? 

Answer:  depth of the node 𝒊 in the tree containing 𝒊. 
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Time complexity of Find(𝒊)  

Union(0,1) 

Union(1,2) 

Union(2,3) 

   … 

Union(9,10) 

Union(10,11) 
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0 1 2 3 4 5 6 7 8 9 10 11 

0          1         2          3          4         5         6         7          8         9          10       11 
Parent 0          1         2          3          4         5         6         7          8         9          10       11 

What will be the rooted tree structures 
after these union operations ?  



Time complexity of Find(𝒊)  

Union(0,1) 

Union(1,2) 

Union(2,3) 

   … 

Union(9,10) 

Union(10,11) 

 

 

 

20 

0          1         2          3          4         5         6         7          8         9          10       11 
Parent 0          0         1          2          3         4         5         6          7         8        9         10 

0 

1 

2 

3 

10 

11 

Time complexity of  Find(𝒊) = O(𝒏)  



Improving the time complexity of 
Find(𝒊)    

Heuristic 1: Union by size  
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Improving the Time complexity 

 

 

 

 

 

 

 

 

 

 

 

Key idea: Change the union(𝒊,𝒋) . 

While doing union(𝒊,𝒋), hook the smaller size tree to the root of the bigger size tree. 

For this purpose, keep an array size[0,..,n-1] 

size[𝒊] =  number of nodes in the tree containing 𝒊  

                 (if 𝒊 is a root and zero otherwise) 
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A 

𝒌 

B 

𝒒 

𝒊  𝒋 



Efficient data structure for sets 
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0          1         2          3          4         5         6         7          8         9          10       11 

0 1 2 3 4 5 6 7 8 9 10 11 

size 1          1         1          1         1         1         1         1          1         1          1          1 

Parent 0          1         2          3          4         5         6         7          8         9          10       11 



Efficient data structure for sets 
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0          1         2          3          4         5         6         7          8         9          10       11 

1 3 4 5 

7 

10 

11 

size 0          1         5          1         1         1         0         0          0         0          3          0 

Parent 9          1         2          3          4         5         2         10       2         6          10       10 

2 

6 

9 

0 

8 

Union(11,0) 



Efficient data structure for sets 
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0          1         2          3          4         5         6         7          8         9          10       11 

1 3 4 5 

7 

10 

11 

size 0          1         5          1         1         1         0         0          0         0          3          0 

Parent 9          1         2          3          4         5         2         10       2         6          10       10 

2 

6 

9 

0 

8 



Pseudocode for modified Union 
 Union(𝒊, 𝒋) 

           𝒌  Find(𝒊); 

           𝒍  Find(𝒋); 

           If(size(𝒌) < size(𝒍) )  

                    𝒍  Parent(𝒌); 

                   size(𝒍)  size(𝒌) + size(𝒍);   

                   size(𝒌)  0; 

           Else   

                    𝒌  Parent(𝒍); 

                    size(𝒌)  size(𝒌) + size(𝒍);      

                    size(𝒍)  0; 

 

Question: How to show that Find(𝒊) for any 𝒊 will now take O(log n) time only ? 

Answer: It suffices if we can show that Depth(𝒊) is O(log n). 
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Can we infer history of a tree? 

 

 

 

 

 

 

 

 

 

 

 

Answer: Can not be inferred with any certainty . 

27 

2 

6 8 

Which one of these was  
Added before the other ? 



Can we infer history of a tree? 

 

 

 

 

 

 

 

 

 

 (09) was added before  (96). 

Theorem: The edges on a path from node 𝒗 to root were inserted  

in the order they appear on the path.  
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7 

10 

11 

2 

9 

0 

8 

7 

7 11 

Which one of these was  
Added before the other ? 
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During union, we join 
roots of two trees. 



How to show that depth of any element = O(log 𝒏) ? 

 Let 𝑒1, 𝑒2, …, 𝑒𝑡 be the edges on the path from 𝒊 
to the root. 

 

 

 

 

Edges  𝑒1, 𝑒2, …, 𝑒𝑡 would have been added in the 
order: 

𝑒1 
𝑒2 

         … 
𝑒𝑡 
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A 

B 

X 

Y 

Y 

𝒊 

𝒒 

𝒌 

𝒓 

𝒕 

𝑒3 

𝑒1 

𝑒2 

𝑒𝑡 

Let us visit the history.  
  (how this tree came into being ? ). 



How to show that depth of any element = O(log 𝒏) ? 

 Let 𝑒1, 𝑒2, …, 𝑒𝑡 be the edges on the path from 𝒊 
to the root. 

 

 

Let no. of elements in subtree 𝑻(𝒊) at that 
moment be 𝒏𝒊. 

 

We added edge 𝒊 𝒕 (and not 𝒕 𝒊). 

 no. of elements in 𝑻(𝒕)  ≥ 𝒏𝒊. 

 After the edge 𝒊 𝒕 is inserted, 

                       no. of element in 𝑻(𝒕) ≥ 2𝒏𝒊 
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Z 

𝒊 

Y 

𝒕 
𝑒1 

Consider the moment just before 
edge 𝑒1 is inserted. 



How to show that depth of any element = O(log 𝒏) ? 

 Let 𝑒1, 𝑒2, …, 𝑒𝑡 be the edges on the path from 𝒊 
to the root. 

 

 

 

no. of element in 𝑻(𝒕) ≥ 2𝒏𝒊 

 

We added edge 𝒕 𝒌 (and not 𝒌 𝒕). 

 # elements in 𝑻(𝒌)  ≥ 𝟐𝒏𝒊. 

 After the edge 𝒕 𝒌 is inserted, 

                       no. of element in 𝑻(𝒌) ≥ 4𝒏𝒊 
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Y 

Z 

𝒊 
X 

𝒌 

𝒕 
𝑒1 

Consider the moment just before 
edge 𝑒2 is inserted. 

𝑒2 



How to show that depth of any element = O(log 𝒏) ? 

 Let 𝑒1, 𝑒2, …, 𝑒𝑡 be the edges on the path from 𝒊 
to the root. 

 

 

 

 

# elements in 𝑻(𝒓) after insertion of 𝑒𝑡 ≥    ? 

Obviously 𝟐𝒕𝒏𝒊 ≤ 𝒏 

 

Theorem:  𝒕 ≤  log𝟐 𝒏 

33 

X 

Y 

Z 

𝒊 

𝒌 

𝒕 
𝑒1 

𝑒2 

Arguing in a similar manner for 
edge 𝑒3, …, 𝑒𝑡  

A 

B 

𝒒 

𝒓 

𝑒3 

𝑒𝑡 

𝟐𝒕𝒏𝒊 



 

 

 

 

Theorem: Given a collection of n singleton sets followed by a sequence of 
union and find operations,  there is a data structure based on “union by size” 
heuristic that achieves O(log n) time per operation. 

 

Question: Can we achieve even better bounds ? 

Answer: Yes. 
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A new heuristic for better time complexity 

Heuristic 2: Path compression 
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This is how this heuristic got invented 

• The time complexity of a Find(𝒊) operation is proportional to the depth of the node 
𝒊 in its rooted tree. 

• If the elements are stored closer to the root, faster will the Find()  be and hence 
faster will be the overall algorithm. 

 

The algorithm for Union and Find was used in some application of data-bases. 

A clever programmer did the following modification to the code of Find(𝒊). 
While executing Find(𝒊), we traverse the path from node 𝒊 to the root. Let 𝑣1,𝑣2, …, 𝑣𝑡, be the nodes 
traversed  with 𝑣𝑡 being the root node. At the end of Find(𝒊), if we update parent of each 𝑣𝑘, 1 ≤ 𝑘 < 𝑡, to 
𝑣𝑡 , we achieve a reduction in depth of many nodes. This modification increases the time complexity of 
Find(𝒊) by at most a constant factor. But this little modification increased the overall speed of the 

application very significantly.                               

The heuristic is called path compression. It is shown pictorially on the following slide. 

It remained a  mystery for many years to provide a theoretical explanation for its 
practical success.  
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Path compression during Find(i) 
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Pseudocode for the modified Find 
  

 

 

Find(𝒊) 

         If (Parent(𝒊) = 𝒊)     return 𝒊 ; 

         else       

                 𝒋  Find(Parent(𝒊)); 

                Parent(𝒊)  𝒋; 

         return 𝒋 
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Concluding slide 
Theorem: Given a collection of n singleton sets followed by a sequence of m union 
and find operations, there exists a  data structure (using union by size heuristic and 
path compression heuristic)  that achieves O(m + n log* n) time complexity. 

 

Here log* n : the number of times we need to take log of a number till we get 1. 

To see how “extremely slow growing” is the log* n function, see the following 
example.   

If n =  22222

 (> 264000), 

Then log* n  is just  5.  

Although log* n is effectively a small constant for every value of n in real life, the crazy 
theoreticians still do not consider it a constant since it is an increasing function of n. 

 

                                The proof will be discussed in one full lecture of CS345.  

                                Keep pondering over it for next one year. 

Lesson for all: There are simple algorithm which may have very difficult analysis.  
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