Data Structures and Algorithms

(CS210A)

Semester I – **2014-15**

Lecture 31

Magical applications of Binary trees -II

RECAP OF LAST LECTURE

Intervals

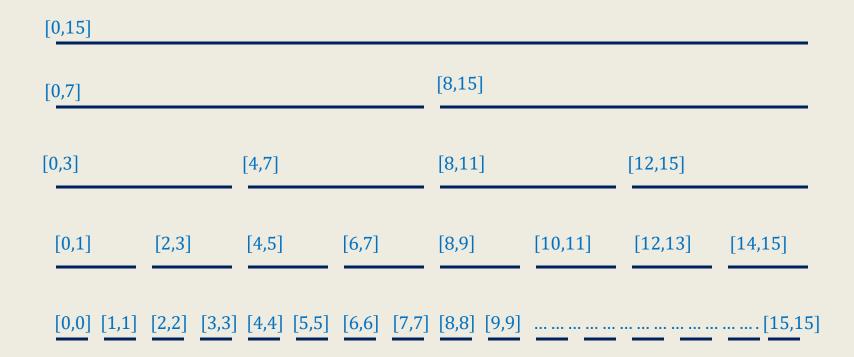
$$S = \{[i, j], 0 \le i \le j < n\}$$

Question: Can we have a <u>small set</u> XCS of intervals s.t.

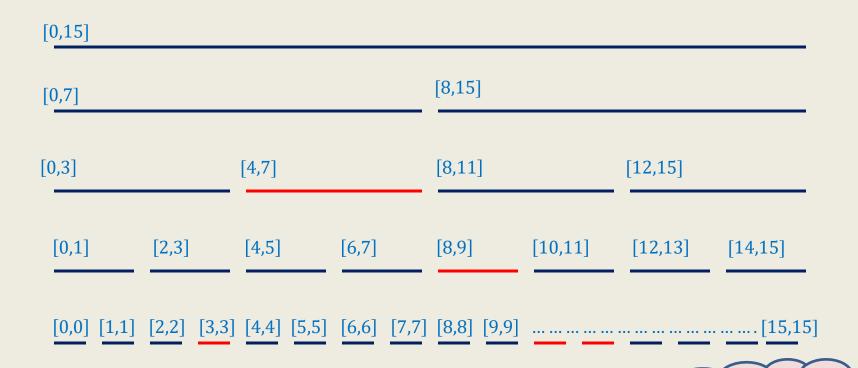
every interval in **S** can be expressed as a <u>union</u> of <u>a few</u> intervals from **X**?

Answer: yes©

[0,15]				[8,15]				
[0,3]		[4,7]		[8,11]	[8,11]		[12,15]	
[0,1]	[2,3]	[4,5]	[6,7]	[8,9]	[10,11]	[12,13]	[14,15]	
[0,0] [1,	1] [2,2] [3	,3] [4,4] [5	,5] [6,6] [7	,7] [8,8] [9,	,9] <u></u>	<u> </u>	[15,15]	



Observation: There are 2n intervals such that any interval [i, j] can be expressed as **union** of $O(\log n)$ basic intervals \odot

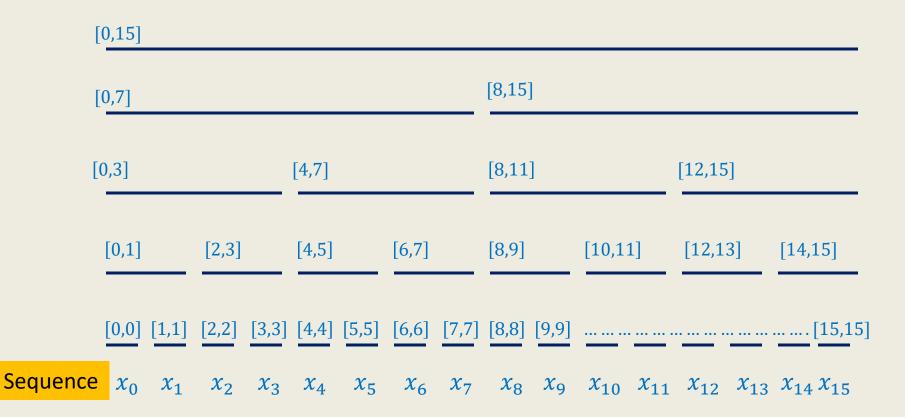


Observation: There are 2n intervals such that

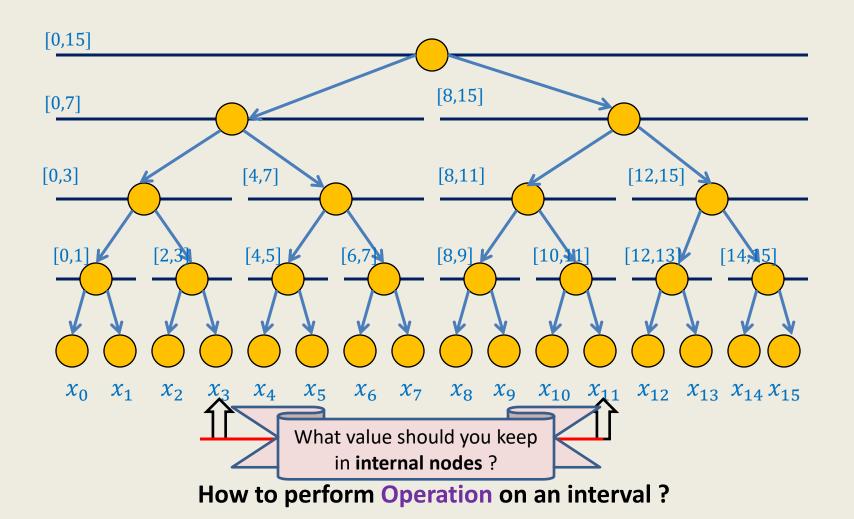
any interval [i, j] can be expressed as **union** of $O(\log n)$ basic intervals $\bigcirc f$

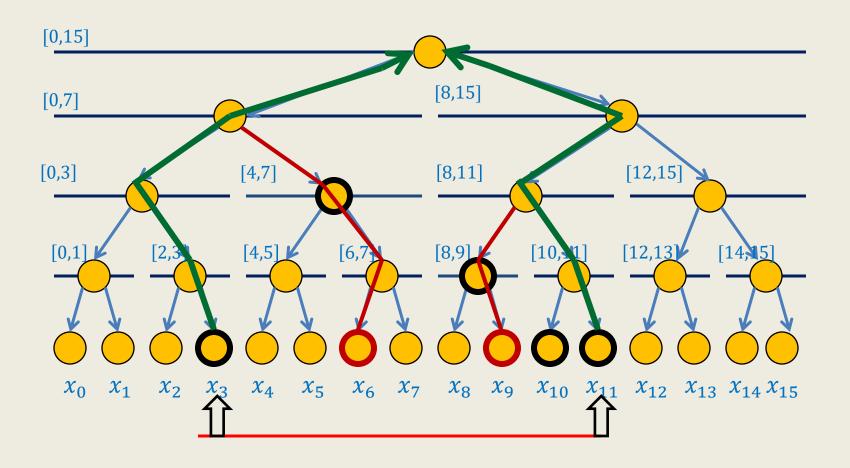
Relation to a **sequence**?

Which data structure emerges?



A Binary tree





How to perform Operation on an interval?

Problem 2

Dynamic Range-minima

Dynamic Range Minima Problem

Given an initial sequence $S = \langle x_0, ..., x_{n-1} \rangle$ of numbers, maintain a compact data structure to perform the following operations efficiently for any $0 \le i < j < n$.

```
• ReportMin(i, j):

Report the minimum element from \{x_k \mid \text{ for each } i \leq k \leq j\}
```

Update(*i*, a):

a becomes the new value of x_i .

Example:

```
Let the initial sequence be S = \langle 14, 12, 3, 49, 4, 21, 322, -40 \rangle

ReportMin(1, 5) returns 3

Update(2, 19) update S to \langle 14, 12, 19, 49, 4, 21, 322, -40 \rangle

ReportMin(1, 5) returns 4

ReportMin(0, 3) returns 12
```

Dynamic Range Minima Problem

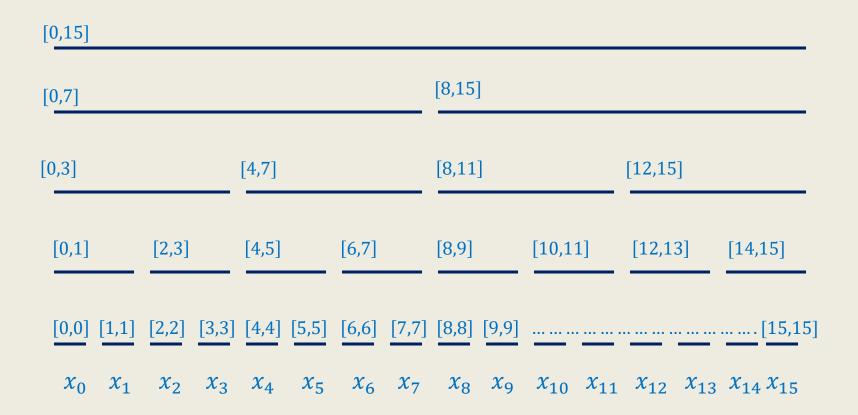
Given an initial sequence $S = \langle x_0, ..., x_{n-1} \rangle$ of numbers, maintain a compact data structure to perform the following operations efficiently for any $0 \le i < j < n$.

- ReportMin(i, j):

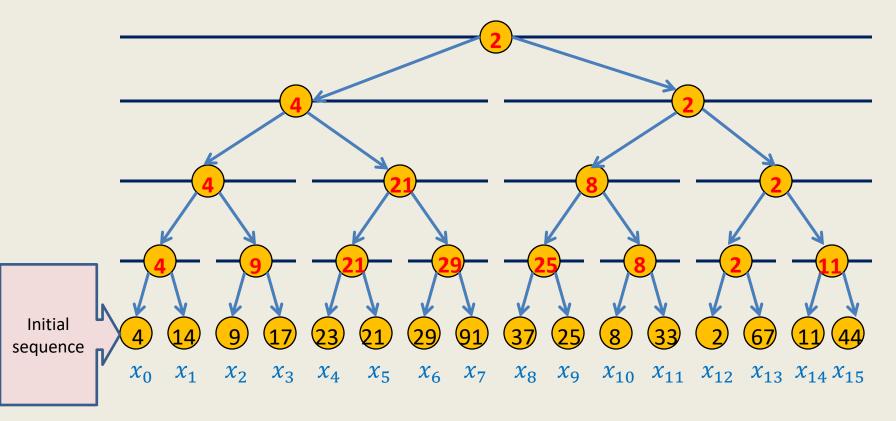
 Report the minimum element from $\{x_k \mid \text{ for each } i \leq k \leq j\}$
- Update(*i*, a):
 - **a** becomes the new value of x_i .

AIM:

- O(n) size data structure.
- ReportMin(i, j) in $O(\log n)$ time.
- Update(i, a) in O(log n) time.

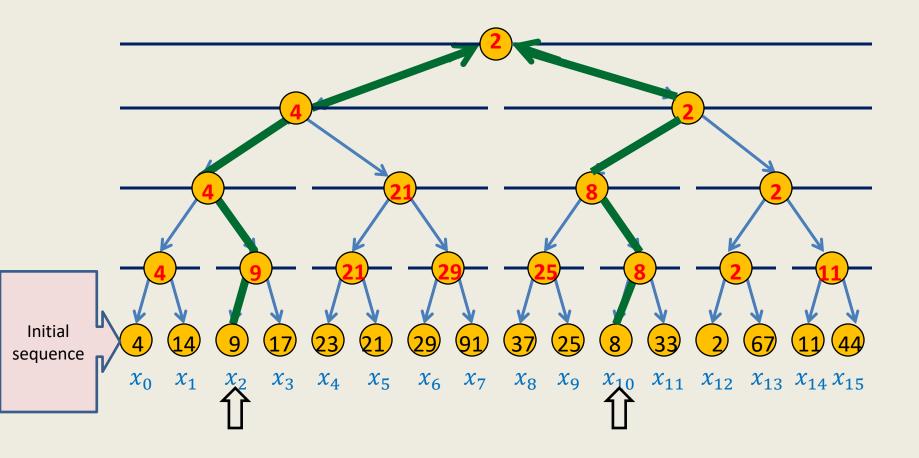


Observation: There are 2n intervals such that any interval [i, j] can be expressed as **union** of $O(\log n)$ basic intervals \odot

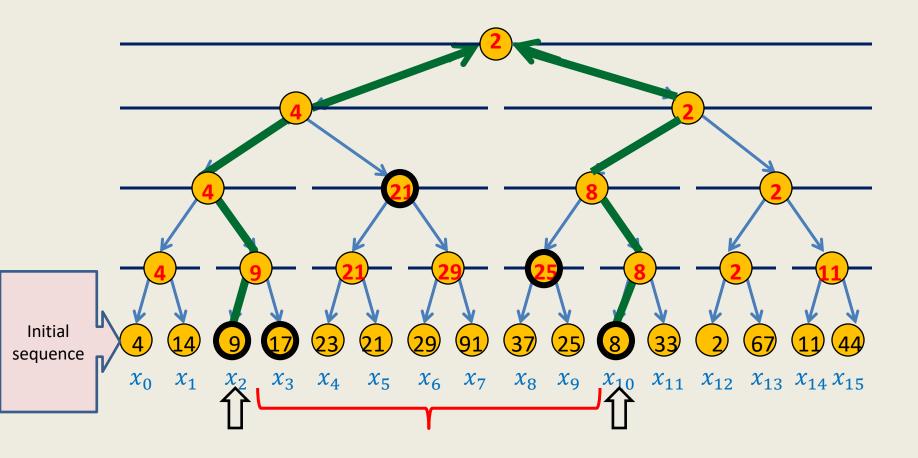


Question: What should be stored in an internal node v?

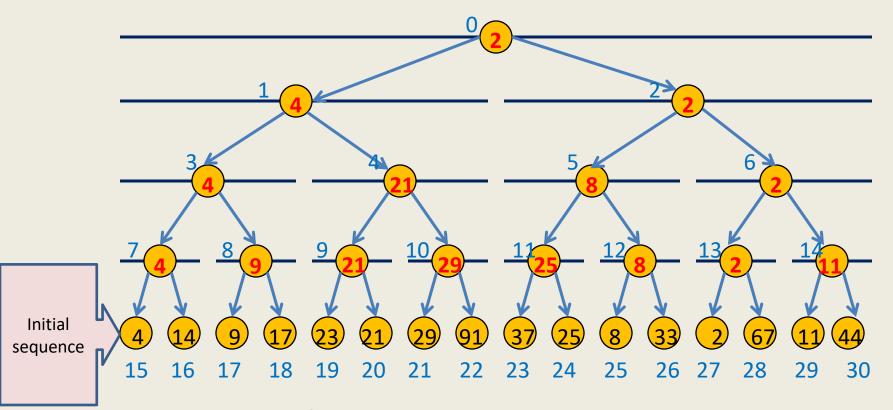
Answer: minimum value stored in **subtree(v)**.



How to do Report-Min(2,10)?



How to do Report-Min(2,10)?



Data structure: An array **A** of size 2n-1.

Copy the sequence $S = \langle x_0, ..., x_{n-1} \rangle$ into A[n-1]...A[2n-2]

Leaf node corresponding to $x_i = A[(n-1) + i]$

How to check if a node is left child or right child of its parent?

(if index of the node is odd, then the node is left child, else the node is right child)

Update(i, a)

```
Update(i, a)
     i \leftarrow (n-1) + i;
    A[i] \leftarrow a;
     i \leftarrow \lfloor (i-1)/2 \rfloor;
     While(
                               ??
                          Homework
```

Report-Min(i,j)

```
Report-Min(i,j)
    i \leftarrow (n-1)+i;
    j \leftarrow (n-1)+j;
    \min \leftarrow A(i);
    If (i > i)
            If (A(j) < min) \quad min \leftarrow A(j);
            While (|(i-1)/2| <> |(i-1)/2|)
                   If(i\%2=1 and A(i+1)< min) min \leftarrow A(i+1);
                   If (j\%2=0 \text{ and } A(j-1) < \min) \quad \min \leftarrow A(j-1);
                   i \leftarrow |(i-1)/2|;
                  i \leftarrow |(i-1)/2|;
     return min;
```

Proof of correctness

Let **T** be the tree data structure for **Dynamic Range-minima** problem. Let **u** be any node in **T**.

Question:

What can we say about **value(u)** after a series of operations?

Answer:

After every operation:

value(u) is minimum among all values stored in the leaf nodes of subtree(u).

Another interesting problem on sequences

Practice Problem

Given an initial sequence $S = \langle x_0, ..., x_{n-1} \rangle$ of n numbers, maintain a compact data structure to perform the following operations efficiently:

• Report_min(i, j):

Report the minimum element from $\{x_i, ... x_j\}$.

• Multi-Increment(i, j, Δ):

Add Δ to each x_k for each $i \leq k \leq j$

Example:

```
Let the initial sequence be $ = < 14, 12, 3, 12, 111, 51, 321, -40 >

Report_min(1, 4):

returns 3

Multi-Increment(2,6,10):

$ becomes < 14, 12, 13, 22, 121, 61, 331, -40 >

Report_min(1, 4):

returns 12
```

An challenging problem on sequences

For winter vacation (not for the exam)

* Problem

Given an initial sequence $S = \langle x_0, ..., x_{n-1} \rangle$ of n numbers, maintain a compact data structure to perform the following operations efficiently:

- Report_min(i, j):

 Report the minimum element from $\{x_i, ... x_j\}$.
- Multi-Increment(i, j, Δ):

 Add Δ to each x_k for each $i \leq k \leq j$
- Rotate(*i*, *j*):

$$x_i \leftrightarrow x_j$$
 , $x_{i+1} \leftrightarrow x_{j-1}$,

Example:

Let the initial sequence be S = < 14, 12, 23, 19, 111, 51, 321, -40 > After Rotate(1,6), S becomes < 14, 321, 51, 111, 19, 23, 12, -40 >

Problem 4

A data structure for sets

Sets under operations

```
Given: a collection of n singleton sets \{0\}, \{1\}, \{2\}, ... \{n-1\}
Aim: a compact data structure to perform
       Union(i, j):
                       Unite the two sets containing i and j.
        Same_sets(i, j):
                       Determine if i and j belong to the same set.
                                         Trivial Solution 1
Keep an array Label[] such that
                  Label[i] = Label[j] if and only if i and j belong to the same set.
\rightarrow Same_sets(i, j):
                                                                                       O(1) time
                check if Label[i]=Label[j] ?
                                                                                      O(n) time
\rightarrow Union(i, j):
```

For each $0 \le k < n$

if (Label[k] = Label[i])

Label[k] \leftarrow Label[i])

Sets under operations

```
Given: a collection of n singleton sets {0}, {1}, {2}, ... {n - 1}
Aim: a compact data structure to perform
Union(i, j):

Unite the two sets containing i and j.
Same_sets(i, j):

Determine if i and j belong to the same set.
```

Trivial Solution 2

Treat the problem as a graph problem: ??

Connected component

- $V = \{0, ..., n 1\}$, E = empty set initially.
- A set ⇔ a connected component.
- Keep array Label[] such that Label[i]=Label[j] iff i and j belong to the same component.

```
>
```

```
Union(i, j):
    add an edge (i, j) and
    recompute connected components using BFS/DFS.
```

30

O(n) time

Sets under operations

```
Given: a collection of n singleton sets {0}, {1}, {2}, ... {n - 1}
Aim: a compact data structure to perform
Union(i, j):

Unite the two sets containing i and j.

Same_sets(i, j):

Determine if i and j belong to the same set.
```

Efficient solution:

- A data structure which supports each operation in $O(\log n)$ time.
- An additional heuristic
 - \rightarrow time complexity of an operation : practically O(1).