Data Structures and Algorithms (CS210A) Semester I – 2014-15

Lecture 30

Magical applications of Binary trees

Two interesting problems on sequences

Problem 1

Multi-increment

Problem 1

Given an initial sequence **S** = $\langle x_0, ..., x_{n-1} \rangle$ of *n* numbers,

maintain a compact data structure to perform the following operations efficiently :

• Report(*i*):

Report the current value of x_i .

Multi-Increment(*i*, *j*, Δ):

Add Δ to each x_k for each $i \leq k \leq j$

Example:

Let the initial sequence be $S = \langle 14, 12, 23, 12, 111, 51, 321, -40 \rangle$ After Multi-Increment(2,6,10), S becomes

< 14, 12, **33**, **22**, **121**, **61**, **331**, -40 ≻

Trivial solution discussed in the last class :

- O(n) time per Multi-Increment (i, j, Δ) :
- **O**(1) time per **Report**(*i*):

Towards efficient solution of Problem 1

Explore ways to maintain sequence **S implicitly** such that

- Multi-Increment(*i*, *j*, △) is efficient.
- **Report**(*i*) is efficient too.

Main hurdle: To perform Multi-Increment(*i*, *j*, △) efficiently

Assumption: without loss of generality assume *n* is power of 2.

A <u>SYSTEMATIC</u> JOURNEY TO THE SOLUTION

A motivating problem

S = {1,2,3, ..., 2^n }

Question: Can we have a <u>small set XCS</u> of numbers s.t. Every number from **S** can be expressed as a <u>sum</u> of <u>**a few**</u> numbers from **X** ? Answer: $X = \{1, 2, 4, 8, ..., 2^n\}$ $|\mathbf{X}| = n$ 10000000000If it is too trivial, try to 100000 answer the problem of next slide. 1000010001 1001011001

S = {[i, j], $0 \le i \le j < n$ }

Question: Can we have a <u>small set</u> **XCS** of intervals s.t.

every interval in S can be expressed as a <u>union</u> of <u>a few</u> intervals from X?

How to express [0, 12] ?

[0,15]				[8,15]					
[0,3] [4,7]				[8,11] [12,15]					
[0,1]	[2,3]	[4,5]	[6,7]	[8,9]	[10,11]	[12,13]	[14,15]		
[0,0] [1,1]	[2,2] [3,3] [4,4] [5,5]	[6,6] [7,7]	[8,8] [9,9]	<u> </u>		[15,15]		
<i>x</i> ₀ <i>x</i> ₁	<i>x</i> ₂ <i>x</i> ₃	<i>x</i> ₄ <i>x</i> ₅	<i>x</i> ₆ <i>x</i> ₇	<i>x</i> ₈ <i>x</i> ₉	<i>x</i> ₁₀ <i>x</i> ₁₁	<i>x</i> ₁₂ <i>x</i> ₁₃	$x_{14} x_{15}$		

How to express [0, 12]?

[0,15] [8,15] [0,7] [0,3] [8,11] [12,15] [4,7] [0,1] [2,3] [4,5] [6,7] [8,9] [10,11] [12,13] [14,15] [0,0] [1,1] [2,2] [3,3] [4,4] [5,5] [6,6] [7,7] [8,8] [9,9] x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10} x_{11} x_{12} x_{13} x_{14} x_{15}

How to express [0, 12] ?

[0,15] [8,15] [0,7] [4,7] [12,15] [8,11] [0,3] [2,3] [4,5] [10,11] [6,7] [8,9] [12,13] [0,1] [14,15] [0,0] [1,1] [2,2] $[\frac{1}{3},\frac{1}{3}]$ [4,4] [5,5] [6,6] [7,7] [8,8] [9,9] x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10} x_{11} x_{12} x_{13} x_{14} x_{15}

How to express [3, 11] ?

	Multi-Increme	$nt(i, j, \Delta)$ efficiently?				
[0,15]						
[0,7]		[8,15]				
[0,3]	[4,7]	[8,11]	[12,15]			
[0,1] [2,3]	[4,5] [6,7]	[8,9] [10,11]	[12,13] [14,15]			
[0,0] [1,1] [2,2] [3,3] [4,4] [5,5] [6,6] [7	,7] [8,8] [9,9]				
$x_0 \ x_1 \ x_2 \ x_3$	$x_4 \ x_5 \ x_6 \ x_6$	$x_7 x_8 x_9 x_{10} x_1$	$_{1} x_{12} x_{13} x_{14} x_{15}$			

How to use this Observation to perform

.

Observation: There are 2n intervals such that any interval [i, j] can be expressed as **union** of $O(\log n)$ basic intervals \bigcirc

	Multi-Increment	$(\mathbf{i}, \mathbf{j}, \mathbf{\Delta})$ efficiently?				
[0,15]						
[0,7]		[8,15]				
[0,3]	[4,7]	[8,11]	[12,15]			
[0,1] [2,3]	[4,5] [6,7]	[8,9] [10,11]	[12,13] [14,15]			
[0,0] [1,1] [2,2] [3,3] [4,4] [5,5] [6,6] [7,7]	[8,8] [9,9]				
x_0 x_1 x_2 x_3	$x_4 x_5 x_6 x_7$	$x_8 \ x_9 \ x_{10} \ x_{11}$	x_{12} x_{13} x_{14} x_{15}			

How to use this Observation to perform

Maintain 2*n* intervals with a field increment

Multi-Increment $(i, j, \Delta) \rightarrow \text{add } \Delta$ to **increment** field of its $O(\log n)$ intervals.

How to use this Observation to perform Multi-Increment(i, j, Δ) efficiently?

[0,15]								
[0,7]				[8,15]				
[0,3]		[4,7]		[8,11]		[12,15]		
[0,1]	[2,3]	[4,5]	[6,7]	[8,9]	[10,11]	[12,13]	[14,15]	
[0,0] [1,1]	[2,2] [3,3]	[4,4] [5,5]	[6,6] [7,7]	[8,8] [9,9]]— —	[15,15]	
$x_0 x_1$	$x_2 x_3$	$x_4 x_5$	$x_6 x_7$	<i>x</i> ₈ <i>x</i> ₉	<i>x</i> ₁₀ <i>x</i> ₁	$x_{12} x_{13}$	$x_{14} x_{15}$	

Maintain 2*n* intervals with a field increment

Multi-Increment(i, j, Δ) \rightarrow add Δ to increment field of its $O(\log n)$ intervals. How to perform Report(i) ?

l					Μ	ulti-l	ncrer	nent	(i , j , i	∆) ef	ficiently?			
	[0,15]													
	[0,7]						[8,15]							
	[0,3]				[4,7]			[8,11]			[12,15]			
	[0,1]		[2,3]		[4,5]		[6,7]		[8,9]		[10,11]	[12,1]	3]	[14,15]
	[0,0]	[1,1]	[2,2]	[3,3]	[4,4]	[5,5]	[6,6]	[7,7]	[8,8]	[9,9]	· <u>····</u> ··	. <u></u>		[15,15]
	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> 9	<i>x</i> ₁₀ <i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	$x_{14} x_{15}$

How to use this Observation to perform

.

.....

Maintain 2*n* intervals with a field increment

Multi-Increment(i, j, Δ) \rightarrow add Δ to increment field of its $O(\log n)$ intervals. How to perform Report(i) ? What data structure to use ?

You might like to have another look on the last slide to answer this question.

I have **reproduced** it for you again in the next slide

Have another look,

think for a while ...

and then only proceed.

Which data structure emerges ?

[0,15]				[8,15]				
[0,3]		[4,7]		[8,11]		[12,15]		
[0,1] [2,3]		[4,5]	[6,7]	[8,9]	[10,11]	[12,13] [14,15]		
[0,0] [1,1]	[2,2] [3,3]	[4,4] [5,5]	[6,6] [7,7]	[8,8] [9,9]			[15,15]	
$x_0 x_1$	$x_2 x_3$	<i>x</i> ₄ <i>x</i> ₅	$x_6 x_7$	<i>x</i> ₈ <i>x</i> ₉	<i>x</i> ₁₀ <i>x</i> ₁₁	<i>x</i> ₁₂ <i>x</i> ₁₃	$x_{14} x_{15}$	

Isn't it a **Binary tree** that you thought ?

How to do Multi-Increment(3,11,10)?

How to do Multi-Increment(3,11,10)?

How to do Multi-Increment(3,11,10)?

Are we done ?

Yes

What path was followed ?

Multi-Increment(i, j, Δ) efficiently

Sketch:

- 1. Let **u** and **v** be the leaf nodes corresponding to x_i and x_j .
- 2. Increment the value stored at **u** and **v**.
- Keep repeating the following step as long as parent(u) <> parent(v)
 Move up by one step simultaneously from u and v
 - If **u** is **left child** of its parent, increment value stored in sibling of **u**.
 - If v is right child of its parent, increment value stored in sibling of v.

Executing Report(*i***) efficiently**

Sketch:

- 1. Let **u** be the leaf nodes corresponding to x_i .
- 2. val \leftarrow 0;
- 3. Keep moving up from **u** and keep adding the value of all the nodes on the path to the root to **val**.
- 4. Return val.

Realize that it was a **complete binary tree**.

Exploiting complete binary tree structure

Copy the sequence $S = \langle x_0, ..., x_{n-1} \rangle$ into A[n-1]...A[2n-2]Leaf node corresponding to $x_i = A[(n-1) + i]$

How to check if a node is left child or right child of its parent?

(if index of the node is odd, then the node is left child, else the node is right child?)

MultiIncrement(*i*, *j*, Δ)

MultiIncrement(*i*, *j*,∆)

}

}

```
i \leftarrow (n-1) + i;
j \leftarrow (n-1) + j;
A(i) \leftarrow A(i) + \Delta;
If (i > i)
{
          A(\mathbf{j}) \leftarrow A(\mathbf{j}) + \Delta;
          While \left[ \frac{(i-1)}{2} \right] <> \left[ \frac{(j-1)}{2} \right]
          {
                  If (i\%2=1) A(i+1) \leftarrow A(i+1) + \Delta;
                  If (j\%2=0) A(j-1) \leftarrow A(j-1) + \Delta;
                  i \in |(i-1)/2|;
                 j \leftarrow [(j-1)/2];
```

Report(*i*)

```
Report(i)

i \in (n-1) + i;

val \in 0;

While(i > 0)

{

val \in val + A[i];

i \in \lfloor (i-1)/2 \rfloor;

}

return val;
```

The solution of Multi-Increment Problem

Theorem: There exists a data structure of size O(n) for maintaining a sequence $S = \langle x_0, ..., x_{n-1} \rangle$ such that each Multi-Increment() and Report() operation takes $O(\log n)$ time.

Problem 2

Dynamic Range-minima

Problem 2

Given an initial sequence $S = \langle x_0, ..., x_{n-1} \rangle$ of numbers, maintain a compact data structure to perform the following operations efficiently for any $0 \le i < j < n$.

• ReportMin(*i*, *j*):

Report the minimum element from $\{x_k \mid \text{ for each } i \leq k \leq j\}$

• **Update**(*i*, a):

a becomes the new value of x_i .

AIM:

- **O**(*n*) size data structure.
- **ReportMin**(*i*, *j*) in **O**(log *n*) time.
- **Update**(*i*, *a*) in **O**(log *n*) time.

Efficient dynamic range minima

Make sincere attempts to solve the problem. We shall discuss it in next class \bigcirc