Data Structures and Algorithms

(CS210A)

Semester I - 2014-15

Lecture 3:

- Time complexity, Big "O" notation
- Designing Efficient Algorithm
 - Maximum sum subarray Problem

Which algorithm turned out to be the best?

	Algorithm for $F(n) \mod m$	No. of Instructions
	RFib(n,m)	$> 2^{(n-2)/2}$
	IterFib (n,m)	3n
	Clever_Algo_Fib(n,m)	$27 \log_2 (n-1) + 6$

Assignment 1 - part 1 is over.

Lesson 1 learnt from Assignment 1?

No. of instructions executed by algorithm in **RAM** model

Inferences:

- The difference in the time of individual instructions (+,*,if,...) is irrelevant.
- RAM model of computation is a very <u>accurate</u> model for measuring efficiency of algorithms.

Time complexity of an algorithm

Definition:

The time complexity of an algorithm is the <u>worst case</u> number of instructions executed as a <u>function</u> of the <u>input size</u> (or a parameter defining the input size).

Example: the time complexity of searching for a '0' in a matrix M[n, n] is at most $n^2 + c$ for some constant c.

Example:

Time complexity of matrix multiplication

```
Matrix-mult(C[n,n],D[n,n])
  for i = 0 to n - 1
                                                       n times
     for j=0 to n-1
                                                       n times
              M[i,j] \leftarrow 0;
              for k=0 to n-1
                     M[i,j] \leftarrow M[i,j] + C[i,k] * D[k,j]; \vdash n + 1 instructions
                                                         1 time
   Return M
                          Time complexity = n^3 + n^2 + 1
```

Lesson 2 learnt from Assignment 1?

Algorithm for $F(n) \mod m$	No. of Instructions
RFib(n,m)	$> 2^{(n-2)/2}$
IterFib(n,m)	3n
Clever_Algo_Fib(n,m)	27 $\log_2(n-1) + 6$

Question: What would have been the outcome if

No. of instructions of Clever_Algo_Fib $(n,m) = 100 \log_2 (n-1) + 60$

Answer: Clever_Algo_Fib would still be the fastest algorithm for large value of n.

COMPARING EFFICIENCY OF ALGORITHMS

Comparing efficiency of two algorithms

Let A and B be two algorithms to solve a given problem.

Algorithm A has time complexity: $2 n^2 + 125$

Algorithm B has time complexity : $5 n^2 + 67 n + 400$

Question: Which algorithm is more efficient?

Obviously A is more efficient than B

Comparing efficiency of two algorithms

Let A and B be two algorithms to solve a given problem.

Algorithm A has time complexity: $2n^2 + 125$

Algorithm B has time complexity : 50 n + 125

Question: Which one would you prefer based on the efficiency criteria?

Answer : A is more efficient than **B** for n < 25

B is more efficient than **A** for n > 25

Time complexity is really an issue only when the input is of large size

Rule 1

Compare the **time complexities** of two algorithms for asymptotically large value of input size only

Comparing efficiency of two algorithms

Algorithm B with time complexity 50 n + 125

is certainly more efficient than

Algorithm A has time complexity: $n^2 + 125$

A judgment question for you!

Algorithm A for a given problem has time complexity $f(n) = 5 n^2 + n + 1250$ Researchers have designed two new algorithms B and C

- Algorithm B has time complexity $g(n) = n^2 + 10$
- Algorithm C has time complexity $h(n) = 10 n^{1.5} + 20 n + 2000$

$$\lim_{n\to\infty} \frac{\mathbf{g}(n)}{\mathbf{f}(n)} = 1/5$$

$$\lim_{n\to\infty} \frac{\mathbf{h}(n)}{\mathbf{f}(n)} = \mathbf{G}$$
C is an improvement over A in the true sense.

Rule 2

An algorithm **X** is superior to another algorithm **Y** if the **ratio** of time complexity of **X** and time complexity of **Y** approaches **0** for asymptotically large input size.

Some Observations

Algorithm A for a given problem has time complexity $f(n) = 5(n^2) + n + 1250$ Researchers have designed two new algorithms B and C

- Algorithm B has time complexity g(n) = n² + 10
 Algorithm C has time complexity h(n) = 10(n^{1.5}) + 20 n + 2000

Algorithm **C** is **the most efficient** of all.

Observation 1: multiplicative or additive Constants do not play any role.

Observation 2: the highest order term govern the time complexity asymptotically.

ORDER NOTATIONS

a neat and precise way to describe
Time Complexity

Order notation

Definition: Let f(n) and g(n) be any two increasing functions of n.

f(n) is said to be of the order of g(n) if there exist constants c and n_0 such that

$$f(n) \le c g(n)$$
 for all $n > n_0$

Order notation:

Examples

•
$$20 n^2 = O(n^2)$$

•
$$100 n + 60 = O(n^2)$$

•
$$100 n + 60 = O(n)$$

•
$$n^2 = O(n^{2.5})$$

•
$$2000 = 0(1)$$

$c = 20, n_0 = 1$

$$c = 1, n_0 = 160$$

$$c = 160, n_0 = 1$$

Simple observations:

If f(n) = O(g(n)) and g(n) = O(h(n)), then

$$f(n) = O(h(n))$$

If f(n) = O(h(n)) and g(n) = O(h(n)), then f(n) + g(n) = O(h(n))

These observations can be helpful for simplifying time complexity.

Prove these observation as Homeworks

A neat description of time complexity

• Algorithm B has time complexity $g(n) = n^2 + 10$

Hence
$$g(n) = O(n^2)$$

• Algorithm C has time complexity $h(n) = 10 n^{1.5} + 20 n + 2000$ Hence $h(n) = O(n^{1.5})$

Algorithm for multiplying two n×n matrices has time complexity

$$n^3 + n^2 + 1 = O(n^3)$$

Homeworks:

- $g(n) = 2^n$, $f(n) = 3^n$. Is f(n) = O(g(n))? Give proof.
- What is the time complexity of selection sort on an array storing n elements?
- What is the time complexity of Binary search in a sorted array of n elements?

HOW TO DESIGN EFFICIENT ALGORITHM?

(This sentence captures precisely the goal of theoretical computer science)

Designing an efficient algorithm

Facts from the world of algorithms:

- 1. There is **no formula** for designing efficient algorithms.
- 2. Almost every new problem demands a **fresh** approach.
- 3. Designing an efficient algorithm or data structure requires
 - 1. Ability to make **key observations**.
 - 2. Ability to ask **right kind of questions**.
 - 3. A **positive attitude** and ...
 - 4. a lot of perseverance.

We shall demonstrate the above facts during this course many times.

Max-sum subarray problem

Given an array A storing n numbers, find its **subarray** the sum of whose elements is maximum.

Max-sum subarray problem: A trivial algorithm

```
A_trivial_algo(A)
\{ \max \leftarrow A[0]; 
  For i=0 to n-1
    For j=i to n-1
            temp \leftarrow compute_sum(A,i,j);
             if max< temp then max ← temp;
 return max;
                                                           Homework: Prove that its
                                                            time complexity is O(n^3)
compute_sum(A, i,j)
\{ sum \leftarrow A[i]; 
   For k=i+1 to j sum \leftarrow sum +A[k];
   return sum;
```

Max-sum subarray problem:

Question: Can we design O(n) time algorithm for Max-sum subarray problem?

Answer: Yes.

Think over it with a fresh mind
We shall design it together in the next class... ©