
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 3:
• Time complexity, Big “O” notation
• Designing Efficient Algorithm

• Maximum sum subarray Problem

1

Which algorithm turned out to be the best ?

Assignment 1 - part 1 is over.

2

Algorithm for F(𝑛)mod 𝑚 No. of Instructions

RFib(𝑛,𝑚) > 2(𝑛−2)/2

IterFib(𝑛,𝑚) 3𝑛

Clever_Algo_Fib(𝑛,𝑚) 27 𝐥𝐨𝐠2 (𝑛 − 1) + 6

Lesson 1 learnt from Assignment 1 ?

Inferences:

• The difference in the time of individual instructions (+,*,if,…) is irrelevant.

• RAM model of computation is a very accurate model for measuring
efficiency of algorithms.

 3

No. of instructions executed by
algorithm in RAM model

Time taken by algorithm
in real life ? Proportional to

Time complexity of an algorithm

Definition:
The time complexity of an algorithm is the worst case number of instructions

executed as a function of the input size (or a parameter defining the input size).

Example: the time complexity of searching for a ‘0’ in a matrix M[𝑛, 𝑛] is at most

 𝑛2+ c for some constant c.

4

Example:
Time complexity of matrix multiplication

Matrix-mult(C[n,n],D[n,n])
{ for i = 0 to 𝒏 − 𝟏

 { for j=0 to 𝒏 − 𝟏

 { M[i,j]  0;

 for k=0 to 𝒏 − 𝟏

 { M[i,j] M[i,j] + C[i,k]*D[k,j];

 }

 }

 }

 Return M

}

5

Time complexity = 𝒏𝟑 + 𝒏𝟐 + 𝟏

𝒏 + 𝟏 instructions

𝒏 times

𝒏 times

𝟏 time

Lesson 2 learnt from Assignment 1 ?

Question: What would have been the outcome if

 No. of instructions of Clever_Algo_Fib(𝑛,𝑚) = 100 𝐥𝐨𝐠2 (𝑛 − 1) + 60

Answer: Clever_Algo_Fib would still be the fastest algorithm ...

6

Algorithm for F(𝑛)mod 𝑚 No. of Instructions

RFib(𝑛,𝑚) > 2(𝑛−2)/2

IterFib(𝑛,𝑚) 3𝑛

Clever_Algo_Fib(𝑛,𝑚) 27 𝐥𝐨𝐠2 (𝑛 − 1) + 6

for large value of 𝑛.

COMPARING EFFICIENCY OF ALGORITHMS

7

Comparing efficiency of two algorithms

 Let A and B be two algorithms to solve a given problem.

Algorithm A has time complexity : 2 𝑛2 + 125

Algorithm B has time complexity : 5 𝑛2 + 67 𝑛 + 400

Question: Which algorithm is more efficient ?

Obviously A is more efficient than B

8

Comparing efficiency of two algorithms

 Let A and B be two algorithms to solve a given problem.

Algorithm A has time complexity : 2 𝑛2 + 125

Algorithm B has time complexity : 50 𝑛 + 125

Question: Which one would you prefer based on the efficiency criteria ?

Answer : A is more efficient than B for 𝑛 < 25

 B is more efficient than A for 𝑛 > 25

9

Time complexity is
really an issue only
when the input is of

large size

Rule 1

Compare the time complexities of two algorithms for

asymptotically large value of input size only

10

Comparing efficiency of two algorithms

Algorithm B with time complexity 50 𝑛 + 125

 is certainly more efficient than

Algorithm A has time complexity : 𝑛2 + 125

11

A judgment question for you !

Algorithm A for a given problem has time complexity f(𝑛)= 5 𝑛2 + 𝑛 + 1250

Researchers have designed two new algorithms B and C

• Algorithm B has time complexity g(𝑛) = 𝑛2 + 10

• Algorithm C has time complexity h(𝑛) = 10 𝑛1.5 + 20 𝑛 + 2000

12

Which of B and C is an
improvement over A in the

true sense ?

 lim
𝑛→∞

𝐠(𝑛)

𝐟(𝑛)
 = 1/5 lim

𝑛→∞

𝐡(𝑛)

𝐟(𝑛)
 = ? 0

 C is an improvement over A
in the true sense.

Rule 2

An algorithm X is superior to another algorithm Y if

the ratio of time complexity of X and time complexity of Y

approaches 0 for asymptotically large input size.

13

Some Observations

Algorithm A for a given problem has time complexity f(𝑛)= 5 𝑛2 + 𝑛 + 1250

Researchers have designed two new algorithms B and C

• Algorithm B has time complexity g(𝑛) = 𝑛2 + 10

• Algorithm C has time complexity h(𝑛) = 10 𝑛1.5 + 20 𝑛 + 2000

Observation 1: multiplicative or additive Constants do not play any role.

Observation 2: the highest order term govern the time complexity
asymptotically.

 14

Algorithm C is the most efficient of all.

ORDER NOTATIONS

15

a neat and precise way to describe
Time Complexity

Order notation

Definition: Let f(𝑛) and g(𝑛) be any two increasing functions of n.

 f(𝑛) is said to be of the order of g(𝑛) if there exist constants c and 𝑛0 such that

f(𝑛) ≤ c g(𝑛) for all n > 𝑛0

16

𝑛0

f(𝑛)

c g(𝑛)

If f(𝑛) is of the order of g(𝑛),
we write f(𝑛) = O(g(𝑛))

Order notation :
Examples

• 20 𝑛2 = O(𝑛2)

• 100 𝑛 + 60 = O(𝑛2)

• 100 𝑛 + 60 = O(𝑛)

• 𝑛2 = O(𝑛2.5)

• 2000 = O(1)

Simple observations:

 If f(𝑛) = O(g(𝑛)) and g(𝑛) = O(h(𝑛)), then

 f(𝑛) = O(h(𝑛))

 If f(𝑛) = O(h(𝑛)) and g(𝑛) = O(h(𝑛)), then f(𝑛) + g(𝑛) =

These observations can be helpful for simplifying time complexity.

17

O(h(𝑛)) ?

Prove these observation as Homeworks

𝑐 =20, 𝑛0 = 1

𝑐 =1, 𝑛0 = 160

𝑐 =160, 𝑛0 = 1

A neat description of time complexity

• Algorithm B has time complexity g(𝑛) = 𝑛2 + 10

Hence g(𝑛) = O(𝑛2)

• Algorithm C has time complexity h(𝑛) = 10 𝑛1.5 + 20 𝑛 + 2000

Hence h(𝑛) = O(𝑛1.5)

• Algorithm for multiplying two n×n matrices has time complexity

 𝑛3 + 𝑛2 + 1 = O(𝑛3)

Homeworks:

• g(𝑛) = 2𝑛 , f(𝑛) = 3𝑛 . Is f(𝑛) = O(g(𝑛)) ? Give proof.

• What is the time complexity of selection sort on an array storing n elements ?

• What is the time complexity of Binary search in a sorted array of n elements ?
18

HOW TO DESIGN EFFICIENT ALGORITHM ?

(This sentence captures precisely the goal of theoretical computer science)

19

Designing an efficient algorithm

Facts from the world of algorithms:
1. There is no formula for designing efficient algorithms.

2. Almost every new problem demands a fresh approach.

3. Designing an efficient algorithm or data structure requires

1. Ability to make key observations.

2. Ability to ask right kind of questions.

3. A positive attitude and …

4. a lot of perseverance.

20

We shall demonstrate the above facts
during this course many times.

Max-sum subarray problem

Given an array A storing n numbers,

find its subarray the sum of whose elements is maximum.

21

3 -5 3 8 2 -4 9 -6 3 -2 -8 3 -5 1 7 -9 A

4 7

-2 18

Max-sum subarray problem:
A trivial algorithm

A_trivial_algo(A)
{ max A[0];

 For i=0 to n-1

 For j=i to n-1

 { temp  compute_sum(A,i,j);

 if max< temp then max temp;

 }

 return max;

}

compute_sum(A, i,j)

{ sumA[i];

 For k=i+1 to j sum sum+A[k];

 return sum;

} 22

 Homework: Prove that its
time complexity is O(𝑛3)

Max-sum subarray problem:

Question: Can we design O(𝑛) time algorithm for Max-sum subarray problem ?

Answer: Yes.

23

Think over it with a fresh mind ….
We shall design it together in the next class…

