Data Structures and Algorithms

(CS210A)
Semester | — 2014-15

Lecture 27

e Analyzing average running time of Quick Sort

Overview of this lecture

Main Objective:

* Analyzing average time complexity of QuickSort using recurrence.
— Using mathematical induction.
— Solving the recurrence exactly.

* The outcome of this analysis will be quite surprising!

Extra benefits:

* You will learn a standard way of using mathematical induction to bound
time complexity of an algorithm. You must try to internalize it.

QuickSort

Pseudocode for QuickSort(S)

QuickSort(S)
{ 1f(]S]>1)
Pick and remove an element x from S;
(S <, S,)€ Partition(S,x);
return(Concatenate(QuickSort(S.,), x, QuickSort(S~,))

Pseudocode for QuickSort(S)

When the input S is stored in an array

QuickSort(A4,l,)

{ If (L<71)
i€ Partition(4,l,1);
QuickSort(A,l,i — 1);
QuickSort(A4,i + 1, r)

Partition :

x<A[l] as a pivot element,

permutes the subarray A[l ... r] such that
elements preceding x are smaller than x,
Ali]=x,

and elements succeeding x are greater than x.

Analyzing average time complexity of
QuickSort

Part 1
Deriving the recurrence

Analyzing average time complexity of QuickSort

Assumption (just for a neat analysis):
* All elements are distinct.

e Each recursive call selects the first element of the subarray as the pivot
element.

Analyzing average time complexity of QuickSort

A useful Fact: Quick sort is a comparison based algorithm.

Let e; : ith smallest element of A.

Observation: The execution of Quick sort depends upon
the permutation of ¢;’s and not on the values taken by e;’s.

Analyzing average time complexity of QuickSort

T(n) : Average running time for Quick sort on input of size n.

(average over all possible permutations of {e;, e,,... ,e,,})

Hence, T(n)=%2n Q(m),

where Q(m) is the time complexity (or no. of comparisons) when the input is permutation .

i' Calculating T(n) from definition/scratch is 'f
impractical, if not impossible.

—_— ——

Analyzing average time complexity of QuickSort

Permutations beginning with e,
Permutations beginning with e,

Permutations beginning with e3
All n! permutations of {e;, e, ... ,e,,}

Let P(i) be the set of all those permutations of {¢;, e,,... ,e,,} that begin with e;.
Question: What fraction of all permutations constitutes P(i) ?

1
Answer: —
n

Let G(n, i) be the average running time of QuickSort over P(i).

Question: What is the relation between T(n) and G(n, i)’s ?
Answer: T(n)= Y7, G(n,i)

Observation: We now need to derive an expression for G(n, i).For this purpose, we need to
have a closer look at the execution of QuickSort over P(i).

Quick Sort on a permutation from P(i).

‘ <€i

; What happens during g
Partition(4,0,8)

11

Quick Sort on a permutation from P(i).

|
Many-to-one €i s it also a
mapping uniform mapping

. i 7 5 Reasons:
- Partition() is “well-defined
E Partition() just compares
_ | o \ | e | | pivot with other elements.
(l—l).x(n—l). Y l Y
€1... ;1 €it1- En

Lemmal:

_ S(i): Permutations resulting from Partition(). .. .
?_]]:) E—I II(I\Z\-UHIVI I 11 N1l ‘Ir’ (R A B9 b%b IIIUPV\-M W/ VI(I)\- Vermutatlon In S(l)-

12

There are exactly (

Analyzing average time complexity of QuickSort

Question: Can you now express G(n, i) recursively ?

Gni)=T(i—1)+T(n—1) + dn -1
We showed previously that :
T(n)= 137, G(n, i) 2

Question: Can you express T(n) recursively using 1 and 2°?
T(n) =YL, (TA-1)+Tn—1i)+ dn
T(1) =c

Analyzing average time complexity of
QuickSort

Part 2

Solving the recurrence through
mathematical induction

14

T(1) =c

T(n) =_Y" (TE-1)+Tn-1i)) +dn
=%Zi=1 T(i) + dn

Assertion A(m): T(m) <amlogm+b forallm=1

Base case A(0) : Holdsforb >c

Induction step: Assuming A(m) holds for all m< n, we have to prove A(n).

T(n) <2Y7"'(ailogi+b) + dn
< (¥t ailogi) + 2b+dn
=22 n/2 Jailogi +Z" 723 ailogi)+2b+ dn
< %(Z?zl ailogn/2 + Z?=_§1+1 ailogn)+2b+dn
=¥ ailogn — ZTL_/Z ai) + 2b +dn

(
nn 1)alogn —

1)
=—(a)+ 2b+dn
<a(n—1)logn —2a+2b+dn
=anlogn+b — %a +b + dn

<anlogn+b for a >4(b + d)

15

Analyzing average time complexity of
QuickSort

Part 3
Solving the recurrence exactly

Some elementary tools

n

- 3!

i=1
Question: How to approximate H(n) ?

Answer: H(n) 2 log,. n + Y, as n increases

where ¥ is Euler’s constant ~0.58

Look at this figure, and relate
it to the curve for function
f(x)= 1/x and its integration...

Hint: 2>

We shall calculate average number of comparisons during QuickSort using:
* our knowledge of solving recurrences by substitution

* our knowledge of solving recurrence by unfolding

* our knowledge of simplifying a partial fraction (from JEE days)

Students should try to internalize the way the above tools are used.

17

T(n) : average number of comparisons during QuickSort on nn elements.

T(1)=0, T(0)=0,
T(n) =_3¥" (TA-1D)+Tm—-1i) +n-1
=% = (T@E-1) +n-1

dPnT(n)= 2" (T{i-1) + n(n-1) - 1
Question: How will this equation appear forn — 1 ?
m-1DTn-1)=2Y"T@{i-1) + m—1DNn—-2) - 2

Subtracting 2 from 1, we get
nTm)—(m—1DTn—-1)=2Tn—-1)+2(n—-1)
2PnTn)—(n+ 1DTn—-1)=2(n—-1)
Question: How to solve/simplify it further ?

r(n) T(n—1) 2m-1)
n+1 n nn+1)

18

T(n) T(n—1) 2(m-1)
n+1 n nn+1)

2 —
2> gn) —gn—1)-= n?;+3 , Where

Question: How to simplify RHS ?

2(n-1) _ 2(n+1)—-4 _
n(n+1) - n(n+1) -

_2 4
" n _n(n+1)
2 4 4
n n on+1
4 2
" n+l n
> ()_ 4 2
g(n) g\n " n+l n

g(m) =

T(m)

m+1

19

4 2

gn) —gln—-1) =22
Question: How to calculate g(n) ?
2

gn-1) —gn-2)=>-—=

n—1

2

gn-2) —gn—-3)=——

9(2) —g) =22
g(1) —g(0) =2-2
Hence g(n)=ﬁ+(22}‘=2 71_) — 2 =
=——+2H(n) - 4

> T(n) = (n+1) - +2H(®) — 4)
=2(n+1)H(n) —4n

n_

2

4
n+1

+@% P — 4

20

T(n) =2(n+ 1)H(n) — 4n
=2n+1)log.n+1.16 (n+1) —4n
=2nlog,.n — 2.84 n + O(1)
=2nlog.n

Theorem: The average number of comparisons during QuickSort on n elements
approaches 2nlog, n — 2.84 n.

=1.39nlog, n — O(n)

The best case number of comparisons during QuickSort on n elements =nlog, n
The worst case no. of comparisons during QuickSort on n elements =n(n — 1)

21

Quick sort versus Merge Sort

Average case

nlog, n 1.39nlog, n
Best case

nlog, n nlog, n
Worst case

nlog; n nn-—1)

After seeing this table, no one would prefer Quick sort to Merge sort

But Quick sort is still the most preferred algorithm in practice. Why ?

You will find the answer yourself in the
next programming assignment ©

22

