
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 27
• Analyzing average running time of Quick Sort

1

Overview of this lecture

Main Objective:

• Analyzing average time complexity of QuickSort using recurrence.

– Using mathematical induction.

– Solving the recurrence exactly.

• The outcome of this analysis will be quite surprising!

Extra benefits:

• You will learn a standard way of using mathematical induction to bound
time complexity of an algorithm. You must try to internalize it.

2

QuickSort

3

Pseudocode for QuickSort(𝑺)

QuickSort(𝑺)

{ If (|𝑺|>1)

 Pick and remove an element 𝒙 from 𝑺;

 (𝑺<𝒙, 𝑺>𝒙) Partition(𝑺,𝒙);

 return(Concatenate(QuickSort(𝑺<𝒙), 𝒙, QuickSort(𝑺>𝒙))

}

4

Pseudocode for QuickSort(𝑺)
When the input 𝑺 is stored in an array

QuickSort(𝑨,𝒍, 𝒓)

{ If (𝒍 < 𝒓)

 𝒊 Partition(𝑨,𝒍,𝒓);

 QuickSort(𝑨,𝒍, 𝒊 − 𝟏);

 QuickSort(𝑨,𝒊 + 𝟏, 𝒓)

}

Partition :

𝒙𝑨[𝒍] as a pivot element,

permutes the subarray 𝑨[𝒍…𝒓] such that

elements preceding 𝒙 are smaller than 𝒙,

𝑨[𝒊]= 𝒙,

and elements succeeding 𝒙 are greater than 𝒙.
5

Analyzing average time complexity of
QuickSort

6

Part 1

Deriving the recurrence

Analyzing average time complexity of QuickSort

Assumption (just for a neat analysis):

• All elements are distinct.

• Each recursive call selects the first element of the subarray as the pivot
element.

7

Analyzing average time complexity of QuickSort

A useful Fact: Quick sort is a comparison based algorithm.

Let 𝑒𝑖 : 𝑖th smallest element of 𝑨.

Observation: The execution of Quick sort depends upon

the permutation of 𝑒𝑖’s and not on the values taken by 𝑒𝑖’s.

8

 0 1 2 3 4 5 6 7 8

 6 11 42 37 24 5 16 27 2

 0 1 2 3 4 5 6 7 8

15 20 49 41 29 4 23 36 3

𝑒3 𝑒4 𝑒9 𝑒8 𝑒6 𝑒2 𝑒5 𝑒7 𝑒1 𝑒3 𝑒4 𝑒9 𝑒8 𝑒6 𝑒2 𝑒5 𝑒7 𝑒1

Analyzing average time complexity of QuickSort

𝑻(𝒏) : Average running time for Quick sort on input of size 𝒏.

(average over all possible permutations of {𝑒1, 𝑒2,… ,𝑒𝑛})

 Hence, 𝑻(𝒏)=
1

𝒏!
 𝑸(𝜋)𝜋 ,

where 𝑸(𝜋) is the time complexity (or no. of comparisons) when the input is permutation 𝜋.

9

Calculating 𝑻(𝒏) from definition/scratch is
impractical, if not impossible.

All 𝒏! permutations of {𝑒1, 𝑒2,… ,𝑒𝑛}

Analyzing average time complexity of QuickSort

Let P(𝒊) be the set of all those permutations of {𝑒1, 𝑒2,… ,𝑒𝑛} that begin with 𝑒𝑖.

Question: What fraction of all permutations constitutes P(𝒊) ?

Answer:
1

𝒏

Let 𝑮(𝒏, 𝒊) be the average running time of QuickSort over P(𝒊).

Question: What is the relation between 𝑻(𝒏) and 𝑮(𝒏, 𝒊)’s ?

Answer: 𝑻(𝒏) = 𝟏
𝒏
 𝑮(𝒏, 𝒊)𝑛
𝑖<1

Observation: We now need to derive an expression for 𝑮(𝒏, 𝒊).For this purpose, we need to
have a closer look at the execution of QuickSort over P(𝒊).

10

Permutations beginning with 𝑒3

Permutations beginning with 𝑒2

Permutations beginning with 𝑒1

 0 1 2 3 4 5 6 7 8

Quick Sort on a permutation from P(𝒊).

11

𝑒𝑖
< 𝑒𝑖

> 𝑒𝑖

What happens during
Partition(𝑨,𝟎,𝟖)

𝑨

 0 1 2 3 4 5 6 7 8

Quick Sort on a permutation from P(𝒊).

Lemma1:

There are exactly (𝒏 − 𝟏
𝒊 − 𝟏
) permutations from P(𝒊) that get mapped to one permutation in S(𝒊).

12

 0 1 2 3 4 5 6 7 8

 𝑒1… 𝑒𝑖;1
𝑒𝑖:1… 𝑒𝑛

𝑒𝑖

𝑨 P(𝒊)

S(𝒊)

(𝒊 − 𝟏)!⨯ (𝒏 − 𝒊)!

(𝒏 − 𝟏)!

Many-to-one
mapping

𝑒𝑖 Is it also a
uniform mapping

?

Yes

Reasons:

- Partition() is “well-defined”

- Partition() just compares
pivot with other elements.

S(𝒊): Permutations resulting from Partition().

Analyzing average time complexity of QuickSort

Question: Can you now express 𝑮(𝒏, 𝒊) recursively ?

 𝑮(𝒏, 𝒊) = 𝑻(𝒊 − 𝟏) + 𝑻(𝒏 − 𝒊) ----1

We showed previously that :

 𝑻(𝒏) = 𝟏
𝒏
 𝑮(𝒏, 𝒊)𝑛
𝑖<1 ----2

Question: Can you express 𝑻(𝒏) recursively using 1 and 2?

𝑻(𝒏) = 𝟏
𝒏
 (𝑻(𝒊 − 1)𝑛
𝑖<1 + 𝑻(𝒏 − 𝒊)) + d𝒏

 𝑻(𝟏) = c

13

+ d𝒏

Analyzing average time complexity of
QuickSort

14

Part 2

Solving the recurrence through
mathematical induction

𝑻(𝟏) = c

𝑻(𝒏) = 𝟏
𝒏
 (𝑻(𝒊 − 1)𝑛
𝑖<1 + 𝑻(𝒏 − 𝒊)) + d𝒏

 = 𝟐
𝒏
 𝑻(𝒊)𝑛;1
𝑖<1 + d𝒏

Assertion A(𝒎): 𝑻(𝒎) ≤ a𝒎 𝐥𝐨𝐠 𝒎 + b for all 𝒎 ≥ 1

Base case A(𝟎) : Holds for b ≥ c

Induction step: Assuming A(𝒎) holds for all 𝒎< 𝒏, we have to prove A(𝒏).

 𝑻(𝒏) ≤ 𝟐
𝒏
 (a𝒊 𝐥𝐨𝐠 𝒊 + b)𝑛;1
𝑖<1 + d𝒏

 ≤ 𝟐
𝒏
(a𝒊 𝐥𝐨𝐠 𝒊 𝑛;1
𝑖<1) + 2b + d𝒏

 = 𝟐
𝒏
(a𝒊 𝐥𝐨𝐠 𝒊
𝑛/2
𝑖<1 + a𝒊 𝐥𝐨𝐠 𝒊)𝑛;1

𝑖<
𝑛

2
:1

 + 2b + d𝒏

 ≤ 𝟐
𝒏
(a𝒊 𝐥𝐨𝐠 𝒏/𝟐
𝑛/2
𝑖<1 + a𝒊 𝐥𝐨𝐠 𝒏)𝑛;1

𝑖<
𝑛

2
:1

 + 2b + d𝒏

 = 𝟐
𝒏
(a𝒊 𝐥𝐨𝐠 𝒏 − 𝑛;1
𝑖<1 a𝒊)

𝑛/2
𝑖<1 + 2b + d𝒏

 =
𝟐

𝒏
 (
𝒏(𝒏;𝟏)

𝟐
 a 𝐥𝐨𝐠 𝒏 −

𝒏

𝟐
(
𝒏

𝟐
:𝟏)

𝟐
 a) + 2b + d𝒏

 ≤ a 𝒏 − 𝟏 𝐥𝐨𝐠 𝒏 −
𝒏

𝟒
 a + 2b + d𝒏

 = a𝒏𝐥𝐨𝐠 𝒏+ b −
𝒏

𝟒
 a + b + d𝒏

 ≤ a𝒏𝐥𝐨𝐠 𝒏+ b for a >𝟒(b + d)

15

Analyzing average time complexity of
QuickSort

16

Part 3

Solving the recurrence exactly

Some elementary tools

𝐇 𝒏 =
𝟏

𝒊

𝑛

𝑖<1

Question: How to approximate 𝐇(𝒏) ?

Answer: 𝐇(𝒏)  𝐥𝐨𝐠𝒆 𝒏 + ᵞ, as 𝒏 increases

 where ᵞ is Euler’s constant ~0.58

Hint: 

We shall calculate average number of comparisons during QuickSort using:

• our knowledge of solving recurrences by substitution

• our knowledge of solving recurrence by unfolding

• our knowledge of simplifying a partial fraction (from JEE days)

Students should try to internalize the way the above tools are used.

17

1

1/2
1/3

1/4 1/5 1/6

Look at this figure, and relate
it to the curve for function

f(x)= 1/x and its integration…

𝑻(𝒏) : average number of comparisons during QuickSort on 𝒏 elements.

 𝑻(𝟏) = 𝟎, 𝑻(𝟎) = 𝟎,

 𝑻(𝒏) = 𝟏
𝒏
 (𝑻(𝒊 − 1)𝑛
𝑖<1 + 𝑻(𝒏 − 𝒊)) + 𝒏 − 𝟏

 = 𝟐
𝒏
 (𝑻(𝒊 − 1)𝑛
𝑖<1) + 𝒏 − 𝟏

𝒏𝑻(𝒏) = 2 (𝑻(𝒊 − 1)𝑛
𝑖<1) + 𝒏(𝒏 − 𝟏) -----1

Question: How will this equation appear for 𝒏 − 𝟏 ?

(𝒏 − 𝟏)𝑻(𝒏 − 𝟏) = 2 (𝑻(𝒊 − 1)𝑛;1
𝑖<1) + (𝒏 − 𝟏)(𝒏 − 𝟐) -----2

Subtracting 2 from 1, we get

𝒏𝑻(𝒏) − (𝒏 − 𝟏)𝑻(𝒏 − 𝟏) = 2 𝑻(𝒏 − 𝟏) + 2(𝒏 − 𝟏)

𝒏𝑻(𝒏) − (𝒏 + 𝟏)𝑻(𝒏 − 𝟏) = 2(𝒏 − 𝟏)

Question: How to solve/simplify it further ?

𝑻(𝒏)
𝒏+1

 −
𝑻(𝒏;1)
𝒏

 =
𝟐(𝒏−1)

𝒏(𝒏+1)

18

𝑻(𝒏)
𝒏:1

 −
𝑻(𝒏−1)
𝒏

 =
𝟐(𝒏−1)

𝒏(𝒏+1)

 𝒈(𝒏) − 𝒈 𝒏 − 𝟏 =
𝟐(𝒏;1)

𝒏(𝒏:1)
 , where 𝒈 𝒎 = 𝑻(𝒎)

𝒎:1

Question: How to simplify RHS ?

𝟐(𝒏;1)

𝒏(𝒏:1)
 =
𝟐 𝒏:1 ;4

𝒏(𝒏:1)
 =

 =
𝟐

𝒏
 −

4

𝒏(𝒏:1)

 =
𝟐

𝒏
 −
4

𝒏
+
4

𝒏:1

 =
4

𝒏:1
 −
2

𝒏

 𝒈(𝒏) − 𝒈 𝒏 − 𝟏 =
4

𝒏:1
 −
2

𝒏

19

 𝒈(𝒏) − 𝒈 𝒏 − 𝟏 =
4

𝒏:1
 −
2

𝒏

Question: How to calculate 𝒈(𝒏) ?

 𝒈(𝒏 − 𝟏) − 𝒈 𝒏 − 𝟐 =
4

𝒏
 −
2

𝒏;𝟏

 𝒈(𝒏 − 𝟐) − 𝒈 𝒏 − 𝟑 =
4

𝒏;𝟏
 −
2

𝒏;𝟐

 … = …

 𝒈(𝟐) − 𝒈 𝟏 =
4

3
 −
2

𝟐

 𝒈(𝟏) − 𝒈 𝟎 =
4

2
 −
2

1

Hence 𝒈(𝒏) =
4

𝒏:1
 + (2

𝟏

𝒋
𝒏
𝒋<𝟐) − 2 =

4

𝒏:1
 + (2

𝟏

𝒋
𝒏
𝒋<𝟏) − 4

 =
4

𝒏:1
 + 2𝐇(𝒏) − 4

 𝑻(𝒏) = (𝒏 + 1) (
4

𝒏:1
 + 2𝐇(𝒏) − 4)

 = 2(𝒏 + 𝟏)𝐇(𝒏) − 4𝒏

20

𝑻(𝒏) = 2(𝒏 + 𝟏)𝐇(𝒏) − 4𝒏

 = 2(𝒏 + 1) 𝐥𝐨𝐠𝒆 𝒏 + 1.16 (𝒏 + 𝟏) − 𝟒𝒏

 = 2𝒏 𝐥𝐨𝐠𝒆 𝒏 − 2.84 𝒏 + O(1)

 = 2𝒏 𝐥𝐨𝐠𝒆 𝒏

Theorem: The average number of comparisons during QuickSort on 𝒏 elements

approaches 2𝒏 𝐥𝐨𝐠𝒆 𝒏 − 2.84 𝒏.

 = 1.39 𝒏 𝐥𝐨𝐠𝟐 𝒏 − O(𝒏)

The best case number of comparisons during QuickSort on 𝒏 elements = 𝒏 𝐥𝐨𝐠𝟐 𝒏

The worst case no. of comparisons during QuickSort on 𝒏 elements = 𝒏(𝒏 − 𝟏)

21

Quick sort versus Merge Sort

After seeing this table, no one would prefer Quick sort to Merge sort

But Quick sort is still the most preferred algorithm in practice. Why ?

22

No. of Comparisons Merge Sort Quick Sort

Average case

Best case

Worst case

𝒏 𝐥𝐨𝐠𝟐 𝒏

𝒏 𝐥𝐨𝐠𝟐 𝒏

𝒏 𝐥𝐨𝐠𝟐 𝒏

𝒏 𝐥𝐨𝐠𝟐 𝒏

𝒏(𝒏 − 𝟏)

1.39 𝒏 𝐥𝐨𝐠𝟐 𝒏

You will find the answer yourself in the
next programming assignment 

