
Data Structures and Algorithms 
(CS210A) 

Semester I – 2014-15 

Lecture 21 

• Finding a sink in a directed graph 

• Graph Traversal 
• Breadth First Search Traversal and its simple applications 
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An interesting problem 
(Finding a sink) 

Definition: A vertex x in a given directed graph is said to be a sink if  

• There is no edge emanating from (leaving) x 

• Every other vertex has an edge into x. 
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Sink 
At most 1. 

How many 
sinks can 

there be in G 
? 



An interesting problem 
(Finding a sink) 

Problem: Given a directed graph G=(V,E) in an adjacency matrix representation,  

design an O(𝒏) time algorithm to determine if there is any sink in G.  

 

 

 

 

 

 

 

 

Question: Can we verify efficiently whether any given vertex 𝒊 is a sink ? 

Answer: Yes, in O(𝒏) time only  
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Sink 

We are allowed to look into only  O(𝒏) 
entries of the Adjacency matrix M.  

Look at 𝒊th row and 𝒊th column of M.  



Key idea 
 

Let us try a single look-up in M. 

 

 

 

 

 

 
If M[𝒊, 𝒋] = 0,   then ??  

If M[𝒊, 𝒋] = 1 ,  then ?? 
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M 
𝒊 

𝒋 

𝒋 can not be sink 

𝒊 can not be sink 

Can we eliminate 𝒏 − 𝟏 non-sink vertices in O(𝒏) 
look-up into the Adjacency Matrix M ? 



Algorithm to find a sink in a graph 
 

Key ideas:  

• Looking at a single entry in M allows us to discard one vertex from being a sink. 

• It takes O(𝒏) time to verify if a vertex 𝒊 is a sink. 

 

Find-Sink(M)           // M is the adjacency matrix of the given directed graph. 

   s 0;     

   For(𝒊=1 to 𝒏 − 𝟏) 

    {         

                     If (M[s,𝒊] =  ? )  ….?...; 

    }  

    Verify if s is a sink and output accordingly. 

(Fill in the details of this pseudo code as an exercise.) 
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 What is Graph traversal ? 
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Graph traversal 

Definition:  

A vertex y is said to be reachable from x if there is a path from x to y. 

 

 

 

 

 

 

 

 

 

Graph traversal from vertex  x:  Starting from a given vertex x, the aim is to 
visit all vertices which are reachable from x. 
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x 

y 



Non-triviality of graph traversal 

 

• Avoiding loop:   

      How to avoid visiting a vertex multiple times ? 

     (keeping track of vertices already visited) 

 

 

• Finite number of steps :  

      The traversal must stop  in finite number of steps. 

 

• Completeness :  

      We must visit all vertices reachable from the start vertex x. 
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Spend some time on these points  
and see how can you design such 

a traversal algorithm 



 Breadth First Search traversal 
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We shall introduce this traversal technique 
through an interesting problem.  

computing distances from a vertex. 



Notations and Observations 

 

 

Length of a path: 
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x y 

A path of length 6 between x and y 

the number of edges on the path. 



Notations and Observations 

 

 

 

 

 

Observation:  

If  <𝒙, …,𝐯,𝐲> is a path of length 𝒌 from 𝒙 to 𝒚,  

then what is the length of the path  <𝒙, …,𝐯> ? 

Answer: 𝒌 − 𝟏 

 

Question: What can be the maximum length of any path in a graph ? 

Answer: 𝒏 − 𝟏 
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x y 

𝒌 

𝐯 

𝒌 − 𝟏 



Notations and Observations 

Shortest Path from x to y:   

 

Distance from x to y: 
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x 

y 

A path from x to y of least length 

the length of the shortest path from x to y. 



Shortest Paths  
in Undirected Graphs 

 

 

 

 

 

 

 

 

 

Problem: 

How to compute distance to all vertices 
reachable from x in a given undirected graph ? 
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Shortest Paths  
in Undirected Graphs 

 

 

 

 

 

 

 

 

 

 

 

𝑉0 : Vertices at distance 0 from x:  ??  

 

𝑉1 : Vertices at distance 1 from x:  ??  

 

𝑉2 : Vertices at distance 2 from x:  ??  
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{x} 

{f,u,b} 

{g,h,s,r,v,w} 

While reporting 𝑉2, you have 
(sub)consciously used an important 

property of shortest paths.  
Can you state this property ? 

Why ? 



An important property of shortest paths 

 

 
 

Observation:  

If  <𝒙, …,𝐯,𝐲> is a shortest path from 𝒙 to 𝒚, then  <𝒙, …,𝐯> is also a shortest path. 

Proof:   

Suppose  𝑷 = <𝒙, …,𝐯> is not a shortest path between 𝒙 and 𝐯. 

Then let 𝑷′ be a shortest path between 𝒙 and 𝐯.  

Length(𝑷′)  < Length(𝑷).  

Question: What happens if we concatenate 𝑷′ with edge (𝐯, 𝐲) ? 

Answer: a path between 𝒙 and 𝐲 shorter than the shortest-path  <𝒙, …,𝐯,𝐲> . 

 Contradiction. 
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x y 

A shortest path  
between x and y 

v 

𝑷 

𝑷′ 

What can you say 
about 𝑷  ? 



An important question 

 
 

 

 

 

 

 

Question:  

Let (𝐯,𝐰) be an edge. If Distance(𝐱,𝐯) is 𝒌,  

then what can be Distance(𝐱,𝐰)  ? 

Answer:  an element from the set {𝒌 − 𝟏, 𝒌, 𝒌 + 𝟏} only. 
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x v 

A shortest path  
between x and v 

𝒌 

𝒌 − 𝟏 𝒌 𝒌 + 𝟏 

𝐰 
𝐰 

𝐰 



Relationship among vertices  
at different distances from x 

𝑉0 : Vertices at distance 0 from x = {x}  

𝑉1 : Vertices at distance 1 from x =  

                                                         Neighbors of  𝑉0 

𝑉2 : Vertices at distance 2 from x = 

                                                        Those Neighbors of  𝑉1 which do not belong to 𝑉0 or 𝑉1  

      . 

      . 

      . 

 

𝑉𝑖+1 : Vertices at distance i+1 from x =  

                                                       Those Neighbors of 𝑉𝑖 which do not belong to 𝑉𝑖 − 1 or 𝑉𝑖 
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How to distinguish the neighbors of 𝑉𝑖 which belong to 𝑉𝑖+1 
from those which belong to 𝑉𝑗, 𝑗≤ 𝑖  ? 



How can we compute 𝑽𝒊+𝟏 ? 

Key idea: compute 𝑉𝑖’s in increasing order of 𝑖. 

Initialize Distance[v]  ∞ of each vertex v in the graph.  

Initialize Distance[x]  0.  

 

• First compute 𝑉0 . 

• Then compute 𝑉1 . 

• … 

• Once we have computed 𝑉𝑖  , for every neighbor v of a vertex in 𝑉𝒊, 

      If v is in 𝑉𝑗 for some  𝑗 ∈ {𝑖, 𝑖 − 1}, then Distance[v] =      ??  

      If v is in 𝑉𝑖+1, Distance[v] =       ?? 
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a number ≤ 𝒊 

∞ 

We can thus distinguish the neighbors of 𝑉𝑖 which 
belong to 𝑉𝑖+1 from those which belong to 𝑉𝑗. 



A neat algorithm for  
computing distances from x 
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we need an algorithm which traverses/visits the vertices in  
 non-decreasing order of distances from x 

This traversal algorithm  is called BFS (breadth first search) traversal 



Using a queue for traversing vertices in  
non-decreasing order of distances 

 

 

 

 

 

 

 

 

 

Compute distance of vertices from x: 
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Remove x and for each neighbor of x that 
was unvisited, mark it visited and put it 

into queue. Remove f and for each neighbor of f that 
was unvisited, mark it visited and put it 

into queue. 

Remove u and for each neighbor of u that 
was unvisited, mark it visited and put it 

into queue. 

Remove b and for each neighbor of b that 
was unvisited, mark it visited and put it 

into queue. 



BFS traversal from a vertex 

BFS(G, x) 

    CreateEmptyQueue(Q); 

    Distance(x)  0; 

    Enqueue(x,Q); 

    While(                          ??                       ) 

    {              v Dequeue(Q); 

                   For each neighbor w of v  

                   {          

                                    if (Distance(w) = ∞)                         

                                    {    Distance(w)                         ??            ;                           

                                                            ??         ; 

                                    } 

                   } 

    } 
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Not IsEmptyQueue(Q)  

Distance(v) +1 

Enqueue(w, Q); 



Running time of BFS traversal 

BFS(G, x) 

    CreateEmptyQueue(Q); 

    Distance(x)  0; 

    Enqueue(x,Q); 

    While(                          ??                       ) 

    {              v Dequeue(Q); 

                   For each neighbor w of v  

                   {          

                                    if (Distance(w) = ∞)                         

                                    {    Distance(w)                         ??            ;                           

                                                            ??         ; 

                                    } 

                   } 

    } 

Running time of BFS(x) =  no. of edges in the connected component of x. 
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Not IsEmptyQueue(Q)  

Distance(v) +1 

Enqueue(w, Q); 

O(deg(v)) 

A vertex can enter queue  
at most once. 

Prove this claim first. 



Correctness of BFS traversal 

Question:    What do we mean by correctness  of BFS traversal from vertex x ? 

 

Answer: 

 

• All vertices reachable from x  get visited. 

 

• Vertices get visited in the non-decreasing order of their distances from x. 

 

• At the end of the algorithm, Distance(v) is the distance of vertex v from x. 
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Think about the proofs of these 
statements. We shall discuss them in 

the next class. 



A useful advice 

 

 

An effective way to master the technique of proving correctness 
of an algorithm is to … 

 

 

 

24 

Do each home work exercise  
(about proof of correctness) 

that is asked in the class before attending 
the next class. 

There is no escape. There will be 
question on proof of correctness in 

the end-sem exam.  


