
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 20:

• Solving some practice sheet problems

• Overview of the 2nd half of course.

1

Practice problems

Sheet 4

How to insert 4 ?

3

11

14

1

2

7 15

8 5

4

How to insert 4 ?

4

11

14

1

2

7 15

8 5

4

left rotation

How to insert 4 ?

5

11

14

1

7

2 15
8

5

4

Right rotation

How to insert 4 ?

6

11

7

8 14

15

1

2

5

4

How to insert 4 ?

7

11

7

8 14

15

1

2

5

4

How to insert 4 ?

8

11

7

8 14

15

1

2

5

4

All properties of red-black
tree are restored now

How to delete 9 ?

9

15

26

5 11

9

19 37

20 17

3

root

How to delete 9 ?

10

15

26

9 11

5

19 37

20 17

3

root

−

q
s

How to delete 9 ?

11

15

26

11

5

19 37

20 17

3

root

−

− −

q

How to delete 9 ?

12

15

26

11

5

19 37

20 17

3

root

−

Right rotation

− −

q

s

How to delete 9 ?

13

15

26
11

5 19

37
20

17

3

root

−

− −

q

How to delete 9 ?

14

15

26
11

5 19

37
20

17

3

root

−

left rotation

− −

s

q

How to delete 9 ?

15

15
26

19

37
20 17

3

root

11

5

q

− −

−

How to delete 9 ?

16

15
26

19

37
20 17

3

root

11

5

q

− − − −

How to delete 9 ?

17

15
26

19

37
20 17

3

root

11

5

q

All properties of red-black
tree are restored now

− − − −

Practice problems

Sheet 2

Stack with maxima

You need to maintain a stack whose elements will be positive numbers.

There will be an additional operation called Report-Maximum.

This operation is supposed to return the maximum element among all those
elements present in the stack.

You need to provide an implementation that will achieve O(1) time for each
operation (including Report-Maxima) on the stack.

At every moment of time, your data structure must occupy O(𝑛) space,

where 𝑛 is the number of elements present in the stack at that time.

Stack with maxima

Solution sketch:

• Keep two stacks
– One stack for usual pushing and popping of elements

– Another stack for storing ?

(Give details of push and pop operations now)

Question : Is it possible to achieve this goal using just one stack ?

Answer: Yes.

Ponder over this question with free mind without any worry
(because it will not be asked in the exams of this course.)

Max of all elements in the stack

Detecting self-loop in linked list

Aim:

To detect whether there is any self-loop in the linked list in O(𝒌) time,

 where 𝒌 is the no. of nodes in the list.

Let us first try to design an algorithm for this problem.

Then we shall try to improve its time complexity.

Detecting self-loop in linked list

Intuition:

If there is a self loop, then after a complete traversal of the list,

we shall start visiting nodes again and again.

Observation: Suppose after traversing 𝒋 steps, we are at node p.

If we happen to visit p again in the next 𝒋 steps

 then ?

Else ?

There is a self loop

There is no self loop in the prefix of length 𝒋 of the list

Translate this
observation into an

algorithm.

Detecting self-loop in linked list

First Algorithm:

𝑗 2;

flag false;

Loop-found false;

While (not flag)

{ Traverse loop from the start for 𝑗 steps;

 Let p be the node at 𝑗th place;

 In the next 𝑗 steps if we reach NULL then ?

 else if p is visited again then ?

 else ?

}

If (Loop-found) then print “there is self-loop” else print “there is no self-loop”

flag true;

{Loop-found true; flag true }

𝑗 𝑗 + 1 ;

The correctness of the
algorithm follows from

the previous slide.
Time complexity :

 𝑶(𝒋)
𝑘

1
 = 𝑶(𝒌𝟐)

Detecting self-loop in linked list

Question: Can you improve the time complexity ?

Hint:

Let integer 𝒌∗ be the power of 2 such that 𝒌 ≤ 𝒌∗ < 𝟐𝒌. Then observe that

 𝑶(𝒋)
𝑘

1
= 𝑶(𝒌𝟐)

but
𝟏 + 𝟐 + 𝟒 + 𝟖 +⋯+ 𝒌∗ = 𝑶(𝒌)

Use this hint to speed-up
the First algorithm.

Detecting self-loop in linked list

Final Algorithm:

𝑗 2;

flag false;

Loop-found false;

While (not flag)

{ Traverse loop from the start for 𝑗 steps;

 Let p be the node at 𝑗th place;

 In the next 𝑗 steps if we reach NULL then ?

 else if p is visited again then ?

 else ?

}

If (Loop-found) then print “there is self-loop” else print “there is no self-loop”

flag true;

{Loop-found true; flag true }

𝑗 2 ∗ 𝑗 ;

Time complexity of Final
algorithm is 𝑶(𝒌).

Can you simplify the
algorithm further ?

Practice problems

Sheet 3

Median of 2 arrays
 There are 2 sorted arrays A and B, each storing 𝑛 distinct numbers.

Design an algorithm to find the median of AUB.

The time complexity of your algorithm should be O(log 𝑛).

Solution sketch:

Compare the medians of A and B.

Based on the outcome, discard a fraction of both A and B.

Proceed recursively.

Note: Be careful in choosing the parameters of recursive calls.

A

B

67

88

Rest of the course

• Graph algorithms

– (we shall cover it just after the mid-semester exam.)

• Greedy algorithms

• Incredible data structures

