
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 14:
• Algorithm paradigm of Divide and Conquer : Counting the number of Inversions

• Another sorting algorithm based on Divide and Conquer : Quick Sort

1

Divide and Conquer paradigm
An Overview

A problem in this paradigm is solved in the following way.

1. Divide the problem instance into two or more instances of the same problem.

2. Solve each smaller instances recursively (base case suitably defined).

3. Combine the solutions of the smaller instances to get the solution of the
original instance.

2

This is usually the main nontrivial step
in the design of an algorithm using

divide and conquer strategy

Role of Data Structures in
designing efficient algorithms

Definition: A collection of data elements arranged and connected in a way

which can facilitate efficient executions of a

(possibly long) sequence of operations.

Parameters:

• Query/Update time

• Space

• Preprocessing time

3

Role of Data Structures in
designing efficient algorithms

Definition: A collection of data elements arranged and connected in a way

which can facilitate efficient executions of a

(possibly long) sequence of operations.

Consider an Algorithm 𝑨.

Suppose 𝑨 performs many operations of same type on some data.

4

Improving time complexity
of these operations

 Improving the time complexity of 𝑨.

So, it is worth designing a
suitable data structure.

Counting Inversions in an array
Problem description

Definition (Inversion): Given an array A of size 𝒏,

a pair (𝒊, 𝒋), 𝟎 ≤ 𝒊 < 𝒋 < 𝒏 is called an inversion if A[𝒊]>A[𝒋].

Example:

Inversions are : (1,2), (1,4), (3,4), (1,6), (3,6), (5,6), (5,7)

AIM: An efficient algorithm to count the number of inversions in an array A.

5

A 3 15 8 19 9 67 11 27

0 1 2 3 4 5 6 7

Counting Inversions in an array
Problem familiarization

Trivial-algo(A[𝟎. . 𝒏 − 𝟏])

{ count  0;

 For(𝒋=1 to 𝒏 − 𝟏) do

 { For(𝒊=0 to 𝒋 − 𝟏)

 { If (A[𝒊]>A[𝒋]) count  count + 1;

 }

 } return count;

}

Time complexity: O(𝒏𝟐)

Question: What can be the max. no. of inversions in an array A ?

Answer: 𝒏
𝟐

, which is O(𝒏𝟐).

Question: Is the algorithm given above optimal ?

Answer: No, our aim is not to report all inversions but to report the count.
6

Let us try to design a
Divide and Conquer based algorithm

7

How do we approach using divide & conquer

8

A 3 15 8 19 9 67 11 27

0 1 2 3 4 5 6 7

𝑐𝑜𝑢𝑛𝑡I 𝑐𝑜𝑢𝑛𝑡II

𝑐𝑜𝑢𝑛𝑡III

Counting Inversions
Divide and Conquer based algorithm

CountInversion(A,𝒊, 𝒌) // Counting no. of inversions in A[𝒊. . 𝒌]

If (𝒊 = 𝒌) return 0;

 Else{ 𝐦𝐢𝐝 (𝒊 + 𝒌)/2;

 𝑐𝑜𝑢𝑛𝑡I  CountInversion(A,𝒊, 𝐦𝐢𝐝);

 𝑐𝑜𝑢𝑛𝑡II  CountInversion(A,𝐦𝐢𝐝 + 𝟏, 𝒌);

 …. Code for 𝑐𝑜𝑢𝑛𝑡III ….

 return 𝑐𝑜𝑢𝑛𝑡I + 𝑐𝑜𝑢𝑛𝑡II + 𝑐𝑜𝑢𝑛𝑡III ;

 }

9

How to efficiently compute 𝑐𝑜𝑢𝑛𝑡III
(Inversions of type III) ?

Aim: For each 𝐦𝐢𝐝 < 𝒋 ≤ 𝒌, count the elements in A[𝒊..𝐦𝐢𝐝] that are greater than A[𝒋].

Trivial way: O(size of the subarray A[𝒊..𝐦𝐢𝐝]) time for a given 𝒋.

 O(𝒏) time for a given 𝒋 in the first call of the algorithm.

 O(𝒏𝟐) time for computing 𝑐𝑜𝑢𝑛𝑡III since there are 𝒏/𝟐 possible values of 𝒋.

10

A 3 15 8 19 9 67 11 27

𝑐𝑜𝑢𝑛𝑡III

O(𝒏𝟐) time algo

𝒌 𝒋 𝒊

How to efficiently compute 𝑐𝑜𝑢𝑛𝑡III
(Inversions of type III) ?

Key Observation: We have to perform 𝒏/𝟐 operations of the same kind:

 How many elements in A[𝒊..𝐦𝐢𝐝] are greater than A[𝒋] ?

Lesson from Data Structures :

We should build a suitable data structure storing elements of A[𝒊..𝐦𝐢𝐝] so that

the above operation can be performed efficiently for any 𝒋.

Question: What should be the data structure ?

Answer: Sorted subarray A[𝒊..𝐦𝐢𝐝].

11

Counting Inversions
First algorithm based on divide & conquer

CountInversion(A,𝒊, 𝒌)

If (𝒊=𝒌) return 0;

 Else{ 𝐦𝐢𝐝 (𝒊 + 𝒌)/2;

 𝑐𝑜𝑢𝑛𝑡I  CountInversion(A,𝒊, 𝐦𝐢𝐝);

 𝑐𝑜𝑢𝑛𝑡II  CountInversion(A,𝐦𝐢𝐝 + 𝟏, 𝒌);

 …. Code for 𝑐𝑜𝑢𝑛𝑡III ….

 return 𝑐𝑜𝑢𝑛𝑡I + 𝑐𝑜𝑢𝑛𝑡II + 𝑐𝑜𝑢𝑛𝑡III ;

 }

12

Sort(A,𝒊, 𝐦𝐢𝐝);
For each 𝐦𝐢𝐝 < 𝒋 ≤ 𝒌
 do binary search for A[𝒋] in A[𝒊..𝐦𝐢𝐝] to compute
 the number of elements greater than A[𝒋].
 Add this number to 𝑐𝑜𝑢𝑛𝑡III;

2 T(𝒏/𝟐)

c 𝒏 log 𝒏

Counting Inversions
First algorithm based on divide & conquer

Time complexity analysis:

If 𝒏 = 1,

 T(𝒏) = c for some constant c

If 𝒏 > 1,

 T(𝒏) = c 𝒏 log 𝒏 + 2 T(𝒏 /2)

 = c 𝒏 log 𝒏 + c 𝒏 ((log 𝒏)-1) + 𝟐𝟐 T(𝒏 /𝟐𝟐)

 = c 𝒏 log 𝒏 + c 𝒏 ((log 𝒏)-1) + c 𝒏 ((log 𝒏)-2) + 𝟐𝟑 T(𝒏 /𝟐𝟑)

 = O(𝒏 𝐥𝐨𝐠𝟐 𝒏)

13

Can we improve it further ?

Sequence of observations
To achieve better running time

• The extra log 𝒏 factor arises because for the “combine” step,

 we are spending O(𝒏 log 𝒏) time instead of O(𝒏).

• The reason for O(𝒏 log 𝒏) time for the “combine” step:

– Sorting A[0.. 𝒏/2] takes O(𝒏 log 𝒏) time.

– Doing Binary Search for 𝒏/2 elements from A[𝒏/2… 𝒏 -1]

• Each of the above tasks have optimal running time.

• So the only way to improve the running time of “combine” step is …

14

some new idea

Learn from the past knowledge

15

Many of you noticed some similarity between
the code of the O(𝒏 𝐥𝐨𝐠𝟐 𝒏) time algorithm and

Merge Sort. Explore these similarities more
closely.

Revisiting MergeSort algorithm

MSort(A,𝒊, 𝒌)// Sorting A[𝒊. . 𝒌]

{ If (𝒊 < 𝒌)

 { 𝐦𝐢𝐝(𝒊 + 𝒌)/2;

 MSort(A,𝒊, 𝐦𝐢𝐝);

 MSort(A,𝒎𝒊𝒅 + 𝟏, 𝒌);

 Create a temporary array C[𝟎. . 𝒌 − 𝒊]

 Merge(A,𝒊, 𝒎𝒊𝒅, 𝒌, C);

 Copy C[𝟎. . 𝒌 − 𝒊] to A[𝒊. . 𝒌]

 }

}

16

We shall carefully look at the Merge()
procedure to find an efficient way to count
the number of elements from A[𝒊 . . 𝐦𝐢𝐝]
which are smaller than A[𝒋] for any given

𝐦𝐢𝐝 < 𝒋 ≤ 𝒌

Relook
Merging A[𝒊. . 𝐦𝐢𝐝] and A[𝐦𝐢𝐝 + 𝟏. . 𝒌]

17

A

Sorted Sorted

𝒋

x

C

x

>x

Pesudo-code for Merging two sorted arrays

Merge(A,𝒊, 𝐦𝐢𝐝, 𝒌,C)

 𝒑 𝒊; 𝒋 𝐦𝐢𝐝 + 𝟏; 𝒓 0;

 While(𝒑 ≤ 𝐦𝐢𝐝 and 𝒋 ≤ 𝒌)

 { If(A[𝒑]< A[𝒋]) { C[𝒓]  A[𝒑]; 𝒓++; 𝒑++ }

 Else { C[𝒓]  A[𝒋]; 𝒓++; 𝒋++ }

 }

 While(𝒑 ≤ 𝐦𝐢𝐝) { C[𝒌]  A[𝒊]; 𝒌++; 𝒊++ }

 While(𝒋 ≤ 𝒌) { C[𝒌]  A[𝒋]; 𝒌++; 𝒋++ }

 return C ;

18

We shall make just a slight change in the above
pseudo-code to achieve our main objective of

computing 𝑐𝑜𝑢𝑛𝑡III. If you understood the discussion
of the previous slide, can you guess it now ?

Pesudo-code for
Merging and counting inversions

Merge_and_CountInversion(A,𝒊, 𝐦𝐢𝐝, 𝒌,C)

 𝒑 𝒊; 𝒋 𝐦𝐢𝐝 + 𝟏; 𝒓 0;

 𝑐𝑜𝑢𝑛𝑡III  0;

 While(𝒑 ≤ 𝐦𝐢𝐝 and 𝒋 ≤ 𝒌)

 { If(A[𝒑]< A[𝒋]) { C[𝒓]  A[𝒑]; 𝒓++; 𝒑++ }

 Else { C[𝒓]  A[𝒋]; 𝒓++; 𝒋++

 ?

 }

 }

 While(𝒑 ≤ 𝐦𝐢𝐝) { C[𝒌]  A[𝒊]; 𝒌++; 𝒊++ }

 While(𝒋 ≤ 𝒌) { C[𝒌]  A[𝒋]; 𝒌++; 𝒋++ }

 return 𝑐𝑜𝑢𝑛𝑡III;
19

𝑐𝑜𝑢𝑛𝑡III  𝑐𝑜𝑢𝑛𝑡III + (mid-p+1);

Counting Inversions
Final algorithm based on divide & conquer

Sort_and_CountInversion(A, 𝒊, 𝒌)

{ If (𝒊 = 𝒌) return 0;

 else

 { 𝐦𝐢𝐝(𝒊 + 𝒌)/2;

 𝑐𝑜𝑢𝑛𝑡I  Sort_and_CountInversion (A,𝒊, 𝐦𝐢𝐝);

 𝑐𝑜𝑢𝑛𝑡II Sort_and_CountInversion (A,𝐦𝐢𝐝 + 𝟏, 𝒌);

 Create a temporary array C[𝟎. . 𝒌 − 𝒊]

 𝑐𝑜𝑢𝑛𝑡III  Merge_and_CountInversion(A,𝒊, 𝐦𝐢𝐝, 𝒌,C);

 Copy C[𝟎. . 𝒌 − 𝒊] to A[𝒊. . 𝒌];

 return 𝑐𝑜𝑢𝑛𝑡I + 𝑐𝑜𝑢𝑛𝑡II + 𝑐𝑜𝑢𝑛𝑡III ;

 }

}

20

𝟐 T(𝒏/𝟐)

O(𝒏)

Counting Inversions
Final algorithm based on divide & conquer

Time complexity analysis:

If 𝒏 = 1,

 T(𝒏) = c for some constant c

If 𝒏 > 1,

 T(𝒏) = c 𝒏 + 2 T(𝒏/2)

 = O(𝒏 log 𝒏)

Theorem: There is a divide and conquer based algorithm for
computing the number of inversions in an array of size 𝒏. The
running time of the algorithm is O(𝒏 log 𝒏).

21

QuickSort

22

Another sorting algorithm based on
divide and conquer

 0 1 2 3 4 5 6 7 8

Is there any alternate way to divide ?

23

x

In MergeSort, we divide
the input instance in an

obvious manner.

 0 1 2 3 4 5 6 7 8

24

x
<x

>x

 0 1 2 3 4 5 6 7 8

This procedure is called Partition.

It rearranges the elements so that all elements less than x appear to the left of
x and all elements greater than x appear to the right of x. 25

 0 1 2 3 4 5 6 7 8

<x >x

Can you now guess a divide
and conquer algorithm for

sorting based on Partition() ?

Pseudocode for QuickSort(𝑺)

QuickSort(𝑺)

{ If (|𝑺|>1)

 Pick and remove an element 𝒙 from 𝑺;

 (𝑺<𝒙, 𝑺>𝒙) Partition(𝑺,𝒙);

 return(Concatenate(QuickSort(𝑺<𝒙), 𝒙, QuickSort(𝑺>𝒙))

}

26

Pseudocode for QuickSort(𝑺)
When the input 𝑺 is stored in an array

QuickSort(𝑨,𝒍, 𝒓)

{ If (𝒍 < 𝒓)

 𝒊 Partition(𝑨,𝒍,𝒓); // 𝒊 is index where element 𝑨[𝒍] is finally placed

 QuickSort(𝑨,𝒍, 𝒊 − 𝟏);

 QuickSort(𝑨,𝒊 + 𝟏, 𝒓)

}

27

View this algorithm from various perspectives. For
almost all practical purposes, this is the most efficient
algorithm for sorting. It outperforms MergeSort by a

significant factor.

QuickSort

Homework:

• The running time of Quick Sort depends upon the element we choose for
partition in each recursive call. What can be the worst case running time
of Quick Sort ? What can be the best case running time of Quick Sort ?

• Give an implementation of Partition that takes O(𝒓 − 𝒍) time and using
O(1) extra space only.

Sometime later in the course, we shall revisit QuickSort and analyze its
average time complexity.

28

