
Data Structures and Algorithms 
(CS210A) 

Semester I – 2014-15 

Lecture 14: 
• Algorithm paradigm of Divide and Conquer : Counting the number of Inversions 

• Another sorting algorithm based on Divide and Conquer  : Quick Sort 
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Divide and Conquer paradigm 
An Overview 

 
A problem in this paradigm is solved in the following way. 

 

1.  Divide the problem instance into two or more instances  of the same problem. 

2.  Solve each smaller instances recursively (base case suitably defined). 

3.  Combine the solutions of the smaller instances to get the solution of the 
original instance. 
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This is usually the main nontrivial step 
in the design of an algorithm using 

divide and conquer strategy 



Role of Data Structures in  
designing efficient algorithms 

 

 

Definition: A collection of data elements arranged and connected in a way  

which can facilitate efficient executions of a   

(possibly long) sequence of operations. 

 

Parameters: 

• Query/Update time 

• Space 

• Preprocessing time 
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Role of Data Structures in  
designing efficient algorithms 

 

 

Definition: A collection of data elements arranged and connected in a way  

which can facilitate efficient executions of a   

(possibly long) sequence of operations. 

 

Consider an Algorithm 𝑨.  

Suppose 𝑨 performs many operations of same type on some data. 
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Improving time complexity 
of these operations  

 Improving the time complexity of 𝑨. 

So, it is worth designing a 
suitable data structure. 



Counting Inversions in an array 
Problem description 

Definition (Inversion): Given an array A of size 𝒏,  

a pair (𝒊, 𝒋), 𝟎 ≤ 𝒊 < 𝒋 < 𝒏 is called an inversion if A[𝒊]>A[𝒋].  

Example: 

 

 
 

 

Inversions are : (1,2), (1,4), (3,4), (1,6), (3,6), (5,6), (5,7) 

 

AIM: An efficient algorithm to count  the number of inversions in an array A.  
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A 3       15         8       19       9      67     11       27   

0            1            2           3             4         5           6            7 



Counting Inversions in an array 
Problem familiarization 

Trivial-algo(A[𝟎. . 𝒏 − 𝟏]) 

{ count  0; 

   For(𝒋=1  to 𝒏 − 𝟏) do 

   {        For( 𝒊=0 to 𝒋 − 𝟏 ) 

             {       If (A[𝒊]>A[𝒋])  count  count + 1; 

             } 

   }    return count; 

} 

Time complexity:  O(𝒏𝟐) 

Question: What can be the max. no. of inversions in an array A ? 

Answer: 𝒏
𝟐

, which is O(𝒏𝟐). 

Question: Is the algorithm given above optimal ? 

Answer:  No, our aim is not to report all inversions but to report the count. 
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Let us try to design a  
Divide and Conquer based algorithm 
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How do we approach using divide & conquer 

 

8 

A 3       15         8       19       9      67     11       27   

0            1            2           3             4         5           6            7 

𝑐𝑜𝑢𝑛𝑡I 𝑐𝑜𝑢𝑛𝑡II 

𝑐𝑜𝑢𝑛𝑡III 



Counting Inversions 
Divide and Conquer based algorithm 

CountInversion( A,𝒊, 𝒌)      // Counting no. of inversions in A[𝒊. . 𝒌] 

If (𝒊 = 𝒌) return 0; 

  Else{  𝐦𝐢𝐝 (𝒊 + 𝒌)/2; 

             𝑐𝑜𝑢𝑛𝑡I  CountInversion(A,𝒊, 𝐦𝐢𝐝); 

             𝑐𝑜𝑢𝑛𝑡II  CountInversion(A,𝐦𝐢𝐝 + 𝟏, 𝒌); 

              

 

                  …. Code for 𝑐𝑜𝑢𝑛𝑡III …. 

 

                

            return 𝑐𝑜𝑢𝑛𝑡I + 𝑐𝑜𝑢𝑛𝑡II + 𝑐𝑜𝑢𝑛𝑡III ; 

         } 
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How to efficiently compute 𝑐𝑜𝑢𝑛𝑡III   
(Inversions of type III) ? 

 

 

 

 

 

 

 

 

 

 

Aim: For each 𝐦𝐢𝐝 < 𝒋 ≤ 𝒌, count the elements in A[𝒊..𝐦𝐢𝐝] that are greater than A[𝒋]. 

Trivial way: O( size of the subarray A[𝒊..𝐦𝐢𝐝]) time for a given 𝒋. 

                O(𝒏) time for a given 𝒋 in the first call of the algorithm. 

                O(𝒏𝟐) time for computing 𝑐𝑜𝑢𝑛𝑡III since there are 𝒏/𝟐 possible values of 𝒋. 
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A 3       15         8       19       9      67     11       27   

𝑐𝑜𝑢𝑛𝑡III 

O(𝒏𝟐) time algo 

𝒌  𝒋  𝒊  



How to efficiently compute 𝑐𝑜𝑢𝑛𝑡III   
(Inversions of type III) ? 

 
Key Observation: We have to perform 𝒏/𝟐 operations of the same kind: 

               How many elements in A[𝒊..𝐦𝐢𝐝] are greater than A[𝒋] ? 

 

Lesson from Data Structures  : 

We should build a suitable data structure storing elements of A[𝒊..𝐦𝐢𝐝] so that  

the above operation can be performed efficiently for any 𝒋. 

 
Question:  What should be the data structure ? 

Answer:  Sorted subarray A[𝒊..𝐦𝐢𝐝]. 
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Counting Inversions 
First algorithm based on divide & conquer 

CountInversion( A,𝒊, 𝒌) 

If (𝒊=𝒌) return 0; 

  Else{  𝐦𝐢𝐝 (𝒊 + 𝒌)/2; 

             𝑐𝑜𝑢𝑛𝑡I  CountInversion(A,𝒊, 𝐦𝐢𝐝); 

             𝑐𝑜𝑢𝑛𝑡II  CountInversion(A,𝐦𝐢𝐝 + 𝟏, 𝒌); 

              

 

                  …. Code for 𝑐𝑜𝑢𝑛𝑡III …. 

 

                

            return 𝑐𝑜𝑢𝑛𝑡I + 𝑐𝑜𝑢𝑛𝑡II + 𝑐𝑜𝑢𝑛𝑡III ; 

         } 
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Sort(A,𝒊, 𝐦𝐢𝐝); 
For each 𝐦𝐢𝐝 < 𝒋 ≤ 𝒌  
       do binary search for A[𝒋] in A[𝒊..𝐦𝐢𝐝] to compute    
       the number of elements greater than A[𝒋]. 
       Add this number to 𝑐𝑜𝑢𝑛𝑡III;    

2 T(𝒏/𝟐) 

c 𝒏 log 𝒏 



Counting Inversions 
First algorithm based on divide & conquer 

Time complexity analysis: 

If 𝒏 = 1,       

            T(𝒏) = c for some constant c 

If 𝒏 > 1,         

           T(𝒏) =  c 𝒏 log 𝒏 + 2 T(𝒏 /2) 
  

                   =  c 𝒏 log 𝒏 + c 𝒏 ((log 𝒏)-1) + 𝟐𝟐 T(𝒏 /𝟐𝟐) 
  

                    = c 𝒏 log 𝒏 + c 𝒏 ((log 𝒏)-1) + c 𝒏 ((log 𝒏)-2) + 𝟐𝟑 T(𝒏 /𝟐𝟑) 
                    

                   = O(𝒏 𝐥𝐨𝐠𝟐 𝒏)         
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Can we improve it further ? 



Sequence of observations  
To achieve better running time 

• The extra log 𝒏  factor arises because for the “combine” step,  

       we are spending O(𝒏 log 𝒏) time instead of O(𝒏). 

 

• The reason for O(𝒏 log 𝒏) time for the “combine” step: 

– Sorting A[0.. 𝒏/2] takes O(𝒏 log 𝒏) time. 

– Doing Binary Search for 𝒏/2 elements from A[𝒏/2… 𝒏 -1]  

 

• Each of the above tasks have optimal running time. 

 

• So the only way to improve the running time of “combine” step is … 
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some new idea 



Learn from the past knowledge 
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Many of you noticed some similarity between 
the code of the O(𝒏 𝐥𝐨𝐠𝟐 𝒏) time algorithm and 

Merge Sort.  Explore these similarities more 
closely. 



Revisiting MergeSort algorithm 

MSort(A,𝒊, 𝒌)// Sorting A[𝒊. . 𝒌] 

{   If (𝒊 <  𝒌) 

    {    𝐦𝐢𝐝(𝒊 + 𝒌)/2; 

         MSort(A,𝒊, 𝐦𝐢𝐝); 

         MSort(A,𝒎𝒊𝒅 + 𝟏, 𝒌); 

         Create a temporary array C[𝟎. . 𝒌 − 𝒊] 

         Merge(A,𝒊, 𝒎𝒊𝒅, 𝒌, C); 

         Copy C[𝟎. . 𝒌 − 𝒊]  to A[𝒊. . 𝒌] 

    } 

}          
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We shall carefully look at the Merge() 
procedure to find an efficient way to count 
the number of elements from A[ 𝒊 . . 𝐦𝐢𝐝] 
which are smaller than A[𝒋] for any given 

𝐦𝐢𝐝 <  𝒋 ≤  𝒌 



Relook  
Merging A[𝒊. . 𝐦𝐢𝐝] and A[𝐦𝐢𝐝 + 𝟏. . 𝒌] 
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A 

Sorted Sorted 

𝒋 

x 

C 

x 

>x 



Pesudo-code for Merging two sorted arrays  

 

Merge(A,𝒊, 𝐦𝐢𝐝, 𝒌,C) 

   𝒑 𝒊;  𝒋 𝐦𝐢𝐝 + 𝟏; 𝒓 0; 

   While(𝒑 ≤ 𝐦𝐢𝐝  and 𝒋 ≤  𝒌) 

   {        If(A[𝒑]< A[𝒋]) {      C[𝒓]  A[𝒑]; 𝒓++;  𝒑++  } 

            Else                 {      C[𝒓]  A[𝒋]; 𝒓++;  𝒋++  } 

    } 

    While(𝒑 ≤ 𝐦𝐢𝐝)     {  C[𝒌]  A[𝒊]; 𝒌++;  𝒊++   } 

    While(𝒋 ≤ 𝒌)           {  C[𝒌]  A[𝒋]; 𝒌++;  𝒋++   } 

    return C ; 
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We shall make just a slight change in the above 
pseudo-code to achieve our main objective of 

computing 𝑐𝑜𝑢𝑛𝑡III. If you understood the discussion 
of the previous slide, can you guess it now ? 



Pesudo-code for  
Merging and counting inversions 

 

Merge_and_CountInversion(A,𝒊, 𝐦𝐢𝐝, 𝒌,C) 

   𝒑 𝒊;  𝒋 𝐦𝐢𝐝 + 𝟏; 𝒓 0; 

   𝑐𝑜𝑢𝑛𝑡III  0; 

   While(𝒑 ≤ 𝐦𝐢𝐝  and 𝒋 ≤  𝒌) 

   {        If(A[𝒑]< A[𝒋]) {      C[𝒓]  A[𝒑]; 𝒓++;  𝒑++  } 

            Else                 {      C[𝒓]  A[𝒋]; 𝒓++;  𝒋++   

                                                     ? 

                                    } 

    } 

    While(𝒑 ≤ 𝐦𝐢𝐝)     {  C[𝒌]  A[𝒊]; 𝒌++;  𝒊++   } 

    While(𝒋 ≤ 𝒌)           {  C[𝒌]  A[𝒋]; 𝒌++;  𝒋++   } 

    return 𝑐𝑜𝑢𝑛𝑡III; 
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𝑐𝑜𝑢𝑛𝑡III  𝑐𝑜𝑢𝑛𝑡III + (mid-p+1); 



Counting Inversions 
Final algorithm based on divide & conquer 

Sort_and_CountInversion(A, 𝒊, 𝒌) 

{   If (𝒊 = 𝒌) return 0; 

    else 

    {    𝐦𝐢𝐝(𝒊 + 𝒌)/2; 

         𝑐𝑜𝑢𝑛𝑡I  Sort_and_CountInversion (A,𝒊, 𝐦𝐢𝐝); 

         𝑐𝑜𝑢𝑛𝑡II Sort_and_CountInversion (A,𝐦𝐢𝐝 + 𝟏, 𝒌); 

         Create a temporary array C[ 𝟎. . 𝒌 − 𝒊] 

         𝑐𝑜𝑢𝑛𝑡III    Merge_and_CountInversion(A,𝒊, 𝐦𝐢𝐝, 𝒌,C); 

         Copy C[𝟎. . 𝒌 − 𝒊]  to A[𝒊. . 𝒌]; 

         return 𝑐𝑜𝑢𝑛𝑡I + 𝑐𝑜𝑢𝑛𝑡II + 𝑐𝑜𝑢𝑛𝑡III ; 

     } 

}          
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𝟐 T(𝒏/𝟐) 

O(𝒏) 



Counting Inversions 
Final algorithm based on divide & conquer 

Time complexity analysis: 

If 𝒏 = 1,       

            T(𝒏) = c for some constant c 

If 𝒏 > 1,         

           T(𝒏) =  c 𝒏 + 2 T(𝒏/2) 

                   = O(𝒏 log 𝒏) 

                    

Theorem: There is a divide and conquer based algorithm for 
computing the number of inversions in an array of size 𝒏.  The 
running time of the algorithm is  O(𝒏 log 𝒏). 
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QuickSort  
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Another sorting algorithm based on 
divide and conquer 



 0        1         2       3        4        5       6       7        8 

Is there any alternate way to divide ? 
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x 

In MergeSort, we divide 
the input instance in an 

obvious manner. 



 0        1         2       3        4        5       6       7        8 
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x 
<x 

>x 



 0        1         2       3        4        5       6       7        8 

 

 

 

 

 

 

 

 

 

 

 

 

This procedure is called Partition. 

It rearranges the elements so that all elements less than x appear to the left of 
x and all elements greater than x appear to the right of x.  25 

 0        1         2       3        4        5       6       7        8 

<x >x 

Can you now guess a divide 
and conquer algorithm for 

sorting based on Partition() ? 



Pseudocode for QuickSort(𝑺) 
 

 

 

 

QuickSort(𝑺) 

{        If (|𝑺|>1)  

                      Pick and remove an element 𝒙 from 𝑺; 

                      (𝑺<𝒙, 𝑺>𝒙) Partition(𝑺,𝒙);  

                      return( Concatenate(QuickSort(𝑺<𝒙), 𝒙, QuickSort(𝑺>𝒙)) 

} 
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Pseudocode for QuickSort(𝑺) 
When the input 𝑺 is stored in an array 

 

 

QuickSort(𝑨,𝒍, 𝒓) 

{        If (𝒍 < 𝒓) 

                     𝒊 Partition(𝑨,𝒍,𝒓); // 𝒊 is index where element 𝑨[𝒍] is finally placed 

                    QuickSort(𝑨,𝒍, 𝒊 − 𝟏); 

                    QuickSort(𝑨,𝒊 + 𝟏, 𝒓) 

} 
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View this algorithm from various perspectives. For 
almost all practical purposes, this is the most efficient 
algorithm for sorting.  It outperforms MergeSort by a 

significant factor. 



QuickSort 

Homework:  

 

• The running time of Quick Sort depends upon the element we choose for 
partition in each recursive call. What can be the worst case running time 
of Quick Sort ? What can be the best case running time of Quick Sort ? 

 

• Give an implementation of Partition that takes O(𝒓 − 𝒍) time and using 
O(1) extra space only.  

 

Sometime later in the course, we shall revisit QuickSort and analyze its 
average time complexity.  
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