Data Structures and Algorithms (CS210A) Semester I – 2014-15

Lecture 13:

- Algorithm paradigms
- Algorithm paradigm of Divide and Conquer
- Majority element : Proof of correctness of the algorithm from last class

Algorithm Paradigms

Algorithm Paradigm

Motivation:

- Many problems whose algorithms are based on a <u>common approach</u>.
- A need of a <u>systematic study</u> of the characteristics of such widely used approaches.

Algorithm Paradigms:

- Divide and Conquer
- Greedy Strategy
- Dynamic Programming
- Local Search

Divide and Conquer paradigm for Algorithm Design

Divide and Conquer paradigm An Overview

A problem in this paradigm is solved in the following way.

- **1. Divide** the problem instance into two or more instances of the same problem.
- 2. Solve each smaller instances **recursively** (base case suitably defined).
- **3. Combine** the solutions of the smaller instances to get the solution of the original instance.

This is usually the main **nontrivial** step in the design of an algorithm using divide and conquer strategy

Example 1

Sorting

A problem in Practice sheet 1 (8 August)

Merging two sorted arrays:

Given two sorted arrays A and B storing n elements each, Design an O(n) time algorithm to output a sorted array C containing all elements of A and B.

Example: If **A**={1,5,17,19} **B**={4,7,9,13}, then output is **C**={1,4,5,7,9,13,17,19}.

Merging two sorted arrays A and B

Pesudo-code for Merging two sorted arrays

Merge(A[0..n-1], B[0..m-1], C) // Merging two sorted arrays A and B into array C.

```
{ i \in 0; j \in 0;

k \in 0;

While(i < n and j < m)

{ If(A[i] < B[j]) { C[k] \in A[i]; k++; i++ }

Else { C[k] \in B[j]; k++; j++ }

}

While(i < n) { C[k] \in A[i]; k++; i++ }

While(j < m) { C[k] \in B[j]; k++; j++ }

return C;
```

}

Time Complexity = O(n+m)

Correctness : An exercise

Divide and Conquer based sorting algorithm

 $\begin{aligned} & \mathsf{MSort}(\mathsf{A}, i, j) \ // \ \text{Sorting the subarray } \mathsf{A}[i..j]. \\ & \{ \mathsf{If}(\ i < j \) \\ & \{ \mathsf{mid} \leftarrow (i+j)/2; \\ & \mathsf{MSort}(\mathsf{A}, i, \mathsf{mid}); \\ & \mathsf{MSort}(\mathsf{A}, i, \mathsf{mid}); \\ & \mathsf{MSort}(\mathsf{A}, \mathsf{mid}+1, j); \\ & \mathsf{Create temporarily } \mathsf{C}[0..j-i] \\ & \mathsf{Merge}(\mathsf{A}[i..\mathsf{mid}], \mathsf{A}[\mathsf{mid}+1..j], \mathsf{C}); \\ & \mathsf{Copy } \mathsf{C}[0..j-i] \ \text{to } \mathsf{A}[i..j] \end{aligned}$

}

Divide and Conquer based sorting algorithm

 $\begin{aligned} \text{MSort}(\mathbf{A}, i, j) & // \text{ Sorting the subarray } \mathbf{A}[i..j]. \\ \{ \text{ If } (i \leq j) \\ \{ \text{ mid} \leftarrow (i+j)/2; \\ \text{MSort}(\mathbf{A}, i, \text{mid}); & \mathsf{T}(n/2) \\ \text{MSort}(\mathbf{A}, \text{mid}+1, j); & \mathsf{T}(n/2) \\ \text{Create temporarily } \mathbf{C}[0..j-i] \\ \text{Merge}(\mathbf{A}[i..mid], \mathbf{A}[\text{mid}+1..j], \mathbf{C}); \\ Copy \mathbf{C}[0..j-i] \text{ to } \mathbf{A}[i..j] \end{aligned}$

Time complexity: If n = 1, T(n) = c for some constant c If n > 1, T(n) = c n + 2 T(n/2) $= c n + c n + 2^2 T(n/2^2)$ $= c n + c n + c n + 2^3 T(n/2^3)$ = c n + ... (log n terms)...+ c n $= \mathbf{O}(n \log n)$

Proof of correctness of Merge-Sort

MSort(A, i, j) // Sorting the subarray A[i..j].

- - { mid←(*i*+*j*)/2; MSort(A,*i*,mid); MSort(A,mid+1,*j*);

Create temporarily C[0..j - i]

Merge(A[*i*..**mid**], A[**mid**+1..*j*], C);

Copy C[0..j - i] to A[i..j]

Question: What is to be proved ? **Answer: MSort(A**,*i*,*j*) sorts the subarray **A**[*i*..*j*]

Question: How to prove ?

Answer:

- By **induction** on the <u>length</u> (j i + 1) of the subarray.
- Use correctness of the algorithm Merge.

Example 2

Faster algorithm for multiplying two integers

Addition is faster than multiplication

Given: any two *n*-bit numbers **X** and **Y**

Question: how many **bit-operations** are required to compute **X**+**Y** ? **Answer: O**(*n*)

Question: how many bit-operations are required to compute $X^* 2^n$? Answer: O(n) [left shift the number X by n places, (do it carefully)]

Question: how many bit-operations are required to compute X*Y? Answer: $O(n^2)$ (why ??) Can we compute

X*Y faster ??

Question: how to express X*Y in terms of multiplication/addition of {A,B,C,D}?

Hint: First Express X and Y in terms of {A,B,C,D}.

$$X = A^* 2^{n/2} + B$$
 and $Y = C^* 2^{n/2} + D$

Hence ...

$$X*Y = (A*C)*2^{n} + (A*D + B*C)*2^{n/2} + B*D$$

MSB
A
B
C
C
D
Y
X*Y =
$$(A*C)* 2^n + (A*D + B*C)* 2^{n/2} + B*D$$

et T(n) : time complexity of multiplying X and Y using the above equation.
T(n) = c n + 4 T(n /2) for some constant c
= c n + 2c n + 4c n + 4³ T(n /2³)
= c n + 2c n + 4c n + 8c n + ... + 4^{log_2n}T(1)
= c n + 2c n + 4c n + 8c n + ... + c n²
O(n²) time algo

Х

Question: How many multiplications do we need <u>now</u> to compute X*Y?

Answer: 3 multiplications :

- A*C
- B*D
- (A-B)*(D-C).

Conclusion

Theorem: There is a **divide and conquer** based algorithm for multiplying any two *n*-bit numbers in $O(n^{1.58})$ time (bit operations).

Note:

The fastest algorithm for this problem runs in almost **O**(*n* log *n*) time. One such algorithm was designed in **2008** at CSE, IIT Kanpur.

By (Dey, <u>Kurur</u>, Saha, and Saptharishi).

Example 3

Counting the number of "inversions" in an array

Counting Inversions in an array Problem description

Definition (Inversion): Given an array **A** of size **n**, a pair (i,j), $0 \le i < j < n$ is called an inversion if **A**[i]>**A**[j].

Example:

Inversions are : (1,2), (1,4), (3,4), (1,6), (3,6), (5,6), (5,7)

AIM: An efficient algorithm to count the number of inversions in an array A.

Counting Inversions in an array Problem familiarization

```
Trivial-algo(A[0..n-1])
{ count ← 0;
For(j=1 to n-1) do
    { For(i=0 to j-1)
        { If (A[i]>A[j]) count ← count + 1;
      }
}
Ponder over the divide and
conquer algorithm for this
problem. We shall discuss it
in the next class.
```

Time complexity: $O(n^2)$

Question: What can be the max. no. of inversions in an array A?

Answer:
$$\binom{n}{2}$$
, which is $O(n^2)$.

Question: Is the algorithm given above optimal?

Answer: No, our aim is <u>not</u> to report all inversions but to <u>report the count</u>.

Proof of correctness

Algorithm for majority element

Algorithm for majority element

Algo-majority(A){ count \leftarrow 0; **for**(i=0 to n-1) if (count=0) $\{ \mathbf{x} \leftarrow \mathbf{A}[\mathbf{i}]; \}$ count \leftarrow 1; else if(x<> A[i]) count \leftarrow count - 1; else $count \leftarrow count + 1;$ if x appears more than n/2, then print(x is majority element) else print(no majority element)

Question: What is to be proved ? Answer: For every possible instance of A, the output of algorithm is <u>correct</u>.

Observation: If **A** does not have any majority element, the output of the algorithm is correct.

→

Inference: To prove correctness, it suffices to prove the following:

If A has a majority element, say α , then at the end of the For loop, $x=\alpha$

Algorithm for majority element

```
Algo-majority(A){
   count \leftarrow 0;
   for(i=0 to n-1)
        if (count=0)
         \{ \mathbf{x} \leftarrow \mathbf{A}[\mathbf{i}]; \}
             count \leftarrow 1;
         else if(x<> A[i])
                 count \leftarrow count - 1;
                 else
                 count \leftarrow count + 1;
   if x appears more than n/2, then
       print(x is majority element)
  else print(no majority element)
```

Inference: To prove correctness, it suffices to prove the following:

If **A** has a majority element, say α , then at the end of the **For** loop, $x=\alpha$

Question: What assertion holds at the end of *i*th iteration ?

A wrong answer: x is a majority element of {A[0],A[1],...,A[i-1]}?

Question: What assertion holds at the end of *i*th iteration ? Answer:

P(i): α is a majority element of {x,...count times...,x, A[i],...,A[n-1]}?
Question: What is P(n)?

Answer: α is a majority element of {x,...count times...,x}

 \rightarrow x = α

As a homework exercise, prove assertion **P(i)** by induction on **i**.