
Data Structures and Algorithms 
(CS210A) 

Semester I – 2014-15 

Lecture 13: 
• Algorithm paradigms 

• Algorithm paradigm of Divide and Conquer  

• Majority element : Proof of correctness of the algorithm from last class 
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Algorithm Paradigms 
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Algorithm Paradigm 

Motivation: 
• Many problems whose algorithms are based on a common approach.  

• A need of a systematic study of the characteristics of such widely used 
approaches. 

 

Algorithm Paradigms: 

• Divide and Conquer 

• Greedy Strategy 

• Dynamic Programming 

• Local Search 
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Divide and Conquer paradigm for 
Algorithm Design 
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Divide and Conquer paradigm 
An Overview 

 
A problem in this paradigm is solved in the following way. 

 

1.  Divide the problem instance into two or more instances  of the same problem. 

2.  Solve each smaller instances recursively (base case suitably defined). 

3.  Combine the solutions of the smaller instances to get the solution of the 
original instance. 
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This is usually the main nontrivial step 
in the design of an algorithm using 

divide and conquer strategy 



Example 1 
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Sorting 



A problem in Practice sheet 1 (8 August) 

 

 

Merging two sorted arrays: 
Given two sorted arrays A and B storing 𝒏 elements each, Design an O(𝒏) 
time algorithm to output a sorted array C containing all elements of A and B.  

 

Example: If A={1,5,17,19} B={4,7,9,13}, then output is   

C={1,4,5,7,9,13,17,19}.  
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B A 

Merging two sorted arrays A and B 
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1 5 13 9 7 17     19 4 

C 5        7       9        13     1 4 

17     19 



Pesudo-code for Merging two sorted arrays  

Merge(A[0..𝑛-1],B[0..𝑚-1], C)    // Merging two sorted arrays A and B into array C. 

{  i 0;  j 0;  

    k 0; 

   While(i<𝑛  and j<𝑚) 

   {        If(A[i]< B[j]) {                      ?                      } 

            Else                {                     ?                      } 

    } 

    While(i<𝑛) {  C[k]  A[i]; k++;  i++   } 

    While(j<𝑚) {  C[k]  B[j]; k++;  j++   } 

    return C; 

} 
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Time Complexity = 
O(𝒏+𝒎) 

Correctness : An exercise 

C[k]  A[i]; k++;  i++ 

C[k]  B[j]; k++;  j++ 



Divide and Conquer based sorting algorithm 

MSort(A,𝑖,𝑗)  

{   If (     ?     ) 

    {    mid(𝑖+𝑗)/2; 

         MSort(A,𝑖,mid); 

         MSort(A,mid+1,𝑗); 

         Create temporarily  C[0..𝑗 − 𝑖] 

         Merge(A[𝑖..mid], A[mid+1..𝑗], C); 

         Copy C[0..𝑗 − 𝑖]  to A[𝑖..𝑗] 

}          
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Divide step 

Combine/conquer step 

This is Merge Sort 
algorithm 

i< j 

// Sorting the subarray A[𝑖..𝑗]. 



Divide and Conquer based sorting algorithm 

MSort(A,𝑖,𝑗)  

{   If (     ?     ) 

    {    mid(𝑖+𝑗)/2; 

         MSort(A,𝑖,mid); 

         MSort(A,mid+1,𝑗); 

         Create temporarily  C[0..𝑗 − 𝑖] 

         Merge(A[𝑖..mid], A[mid+1..𝑗], C); 

         Copy C[0..𝑗 − 𝑖]  to A[𝑖..𝑗] 

}          

Time complexity: 

If 𝒏 = 1,       

 T(𝒏) = c for some constant c 

If 𝒏 > 1,         

 T(𝒏) =  c 𝒏 + 2 T(𝒏/2) 

         =  c 𝒏 + c 𝒏 + 𝟐𝟐 T(𝒏/𝟐𝟐) 

         =  c 𝒏 + c 𝒏 + c 𝒏 + 𝟐𝟑 T(𝒏 /𝟐𝟑) 

         =  c 𝒏 + …(log 𝒏 terms)…+ c 𝒏   

         = O(𝒏 log 𝒏) 
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c 𝒏 

i< j 

// Sorting the subarray A[𝑖..𝑗]. 

T(𝒏/2) 

T(𝒏/2) 



Proof of correctness of Merge-Sort 

MSort(A,𝑖,𝑗)  

{   If (     ?     ) 

    {    mid(𝑖+𝑗)/2; 

         MSort(A,𝑖,mid); 

         MSort(A,mid+1,𝑗); 

         Create temporarily  C[0..𝑗 − 𝑖] 

         Merge(A[𝑖..mid], A[mid+1..𝑗], C); 

         Copy C[0..𝑗 − 𝑖]  to A[𝑖..𝑗] 

}          

Question: What is to be proved ? 

Answer: MSort(A,𝑖,𝑗) sorts the 
subarray A[𝑖..𝑗] 

 

Question: How to prove ? 

Answer:   

• By induction on the length 
(𝑗 − 𝑖 + 1) of the subarray. 

• Use correctness of the 
algorithm Merge. 
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i< j 

// Sorting the subarray A[𝑖..𝑗]. 



Example 2 
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Faster algorithm for multiplying two 
integers 



Addition is faster than multiplication 

Given: any two 𝑛-bit numbers  X and Y 

 

Question: how many bit-operations are required to  compute X+Y ? 

Answer:  O(𝑛) 

 

Question: how many bit-operations are required to  compute X* 𝟐𝒏 ? 

Answer:  O(𝑛)  [left shift the number X by 𝑛 places, (do it carefully)] 

 

Question: how many bit-operations are required to  compute X*Y ? 

Answer:  O(𝑛2)  (why ??) 
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Can we compute 
X*Y faster ?? 



Pursuing Divide and Conquer approach 

 

 

 
 

Question: how to express X*Y in terms of multiplication/addition of 

{A,B,C,D} ? 

Hint: First Express X  and Y in terms of {A,B,C,D}. 

          X = A* 𝟐𝒏/𝟐 + B       and Y = C* 𝟐𝒏/𝟐 + D  
Hence … 

           X*Y = (A*C)* ??    + (A*D   + B*C)* ??      +  B*D  
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X 

Y 

MSB LSB 

n-1  n-2…......………………n/2.............................2 1 0 

A B 

C D 

𝟐𝒏 𝟐𝒏/𝟐 

4 multiplications 



Pursuing Divide and Conquer approach 

 

 

 
 

X*Y = (A*C)* ??    + (A*D   + B*C)* ??      +  B*D  
Let T(𝒏) : time complexity of multiplying X and Y using the above equation.  

      T(𝒏) = c 𝒏 + 4 T(𝒏 /2) for some constant c 

              = c 𝒏 + 2c 𝒏 + 𝟒𝟐 T(𝒏 /𝟐𝟐)   

              = c 𝒏 + 2c 𝒏 + 4c 𝒏+ 𝟒𝟑 T(𝒏 /𝟐𝟑)    

              = c 𝒏 + 2c 𝒏 + 4c 𝒏+ 8c 𝒏+ … +  𝟒𝐥𝐨𝐠𝟐𝒏T(𝟏) 

              = c 𝒏 + 2c 𝒏 + 4c 𝒏+ 8c 𝒏+ … + c 𝒏𝟐  
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X 

Y 

MSB LSB 

n-1  n-2…......………………n/2.............................2 1 0 

A B 

C D 

𝟐𝒏 𝟐𝒏/𝟐 

O(𝒏𝟐) time algo 



Pursuing Divide and Conquer approach 

 

 

 
 

X*Y = (A*C)* ??    + (A*D   + B*C)* ??      +  B*D 

Observation: A*D + B*C = (A-B)*(D-C) + A*C + B*D  

Question: How many multiplications do we need now to compute X*Y ? 

Answer:  3 multiplications :  

• A*C 

• B*D 

• (A-B)*(D-C) . 
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X 

Y 

MSB LSB 

n-1  n-2…......………………n/2.............................2 1 0 

A B 

C D 

𝟐𝒏 𝟐𝒏/𝟐 



Pursuing Divide and Conquer approach 

 

 

 
 

X*Y = (A*C)* ??   + ((A-B)*(D-C) + A*C + B*D)* ??      +  B*D 
Let T(𝒏) : time complexity of the new algo for multiplying two 𝒏-bit numbers 

      T(𝒏) = c 𝒏 + 3 T(𝒏 /2) for some constant c 

              = c 𝒏 + 3 c 
𝒏

𝟐
 + 𝟑𝟐 T(𝒏 /𝟐𝟐) 

              = c 𝒏 + 3c 
𝒏

𝟐
 + 9c

𝒏

𝟒
+ + … + ? 

              = O(𝒏𝐥𝐨𝐠𝟐𝟑) = O(𝒏𝟏.𝟓𝟖)  
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X 

Y 

MSB LSB 

n-1  n-2…......………………n/2.............................2 1 0 

A B 

C D 

𝟐𝒏 𝟐𝒏/𝟐 

𝟑𝐥𝐨𝐠𝟐𝒏 T(𝟏)  



Conclusion 

 

Theorem: There is a divide and conquer based algorithm for multiplying any 

two 𝒏-bit numbers in O(𝒏𝟏.𝟓𝟖) time (bit operations). 

 

Note:  
The fastest algorithm for this problem runs in almost O(𝒏 log 𝒏) time.  

One such algorithm was designed in 2008 at CSE, IIT Kanpur. 

By (Dey, Kurur, Saha, and Saptharishi). 
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Example 3 

20 

Counting the number of “inversions” 
in an array 



Counting Inversions in an array 
Problem description 

Definition (Inversion): Given an array A of size n, a pair (i,j), 0≤i<j<n is 

called an inversion if A[i]>A[j].  

Example: 

 

 
 

 

Inversions are : (1,2), (1,4), (3,4), (1,6), (3,6), (5,6), (5,7) 

 

AIM: An efficient algorithm to count  the number of inversions in an array A.  
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A 3       15         8       19       9      67     11       27   

0            1            2           3             4         5           6            7 



Counting Inversions in an array 
Problem familiarization 

Trivial-algo(A[0..n-1]) 

{ count  0; 

   For(j=1  to n-1) do 

   {        For( i=0 to j-1 ) 

             {       If (A[i]>A[j])  count  count + 1; 

             } 

   } 

} 

Time complexity:  O(𝒏𝟐) 

Question: What can be the max. no. of inversions in an array A ? 

Answer: 𝒏
𝟐

, which is O(𝒏𝟐). 

Question: Is the algorithm given above optimal ? 

Answer:  No, our aim is not to report all inversions but to report the count. 
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Ponder over the divide and 
conquer algorithm for this 

problem. We shall discuss it 
in the next class. 



Proof of correctness  

Algorithm for majority element 
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Algorithm for majority element 
 Algo-majority(A){     

     count 0; 

     for(i=0 to n-1) 

     {      if (count=0) 

            {    x A[i]; 

                  count 1; 

            } 

             else if(x<> A[i])   

                      count  count - 1; 

                      else              

                       count count + 1; 

     }  

    if x appears  more than n/2, then  

          print(x is majority element) 

    else print(no majority element) 

 

Question: What is to be proved ? 

Answer: For every possible instance of 
A, the output of algorithm is correct. 

 

Observation: If A does not have any 
majority element, the output of the 
algorithm is correct.   

 

 

Inference: To prove correctness, it 
suffices to prove the following: 
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If A has a majority element, say α, then at 
the end of the For loop, x=α   



Algorithm for majority element 
 Algo-majority(A){     

     count 0; 

     for(i=0 to n-1) 

     {      if (count=0) 

            {    x A[i]; 

                  count 1; 

            } 

             else if(x<> A[i])   

                      count  count - 1; 

                      else              

                       count count + 1; 

     }  

    if x appears  more than n/2, then  

          print(x is majority element) 

    else print(no majority element) 

 

Inference: To prove correctness, it 
suffices to prove the following: 
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If A has a majority element, say α, then at 
the end of the For loop, x=α   



 

 

 
 

Question: What assertion holds at the end of 𝒊th iteration ? 

 

               answer: x is a majority element of {A[0],A[1],…,A[𝒊-1]}   ? 
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Single scan algorithm 
𝒊 

𝑨 

NO 
A wrong 



 

 

 
 

Question: What assertion holds at the end of 𝒊th iteration ? 

Answer: 

               P(𝒊) :  α is a majority element of {x,…count times…,x, A[𝒊],…,A[𝒏-1]}   ? 

Question: What is P(𝒏) ?  

Answer:  

                 x = α 
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Single scan algorithm 
𝒊 

𝑨 

α is a majority element of {x,…count times…,x} 

This is what we 
required  

As a homework exercise, 
prove assertion P(𝒊) by 

induction on 𝒊. 


