
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 13:
• Algorithm paradigms

• Algorithm paradigm of Divide and Conquer

• Majority element : Proof of correctness of the algorithm from last class

1

Algorithm Paradigms

2

Algorithm Paradigm

Motivation:
• Many problems whose algorithms are based on a common approach.

• A need of a systematic study of the characteristics of such widely used
approaches.

Algorithm Paradigms:

• Divide and Conquer

• Greedy Strategy

• Dynamic Programming

• Local Search

3

Divide and Conquer paradigm for
Algorithm Design

4

Divide and Conquer paradigm
An Overview

A problem in this paradigm is solved in the following way.

1. Divide the problem instance into two or more instances of the same problem.

2. Solve each smaller instances recursively (base case suitably defined).

3. Combine the solutions of the smaller instances to get the solution of the
original instance.

5

This is usually the main nontrivial step
in the design of an algorithm using

divide and conquer strategy

Example 1

6

Sorting

A problem in Practice sheet 1 (8 August)

Merging two sorted arrays:
Given two sorted arrays A and B storing 𝒏 elements each, Design an O(𝒏)
time algorithm to output a sorted array C containing all elements of A and B.

Example: If A={1,5,17,19} B={4,7,9,13}, then output is

C={1,4,5,7,9,13,17,19}.

7

B A

Merging two sorted arrays A and B

8

1 5 13 9 7 17 19 4

C 5 7 9 13 1 4

17 19

Pesudo-code for Merging two sorted arrays

Merge(A[0..𝑛-1],B[0..𝑚-1], C) // Merging two sorted arrays A and B into array C.

{ i 0; j 0;

 k 0;

 While(i<𝑛 and j<𝑚)

 { If(A[i]< B[j]) { ? }

 Else { ? }

 }

 While(i<𝑛) { C[k]  A[i]; k++; i++ }

 While(j<𝑚) { C[k]  B[j]; k++; j++ }

 return C;

}

9

Time Complexity =
O(𝒏+𝒎)

Correctness : An exercise

C[k]  A[i]; k++; i++

C[k]  B[j]; k++; j++

Divide and Conquer based sorting algorithm

MSort(A,𝑖,𝑗)

{ If (?)

 { mid(𝑖+𝑗)/2;

 MSort(A,𝑖,mid);

 MSort(A,mid+1,𝑗);

 Create temporarily C[0..𝑗 − 𝑖]

 Merge(A[𝑖..mid], A[mid+1..𝑗], C);

 Copy C[0..𝑗 − 𝑖] to A[𝑖..𝑗]

}

10

Divide step

Combine/conquer step

This is Merge Sort
algorithm

i< j

// Sorting the subarray A[𝑖..𝑗].

Divide and Conquer based sorting algorithm

MSort(A,𝑖,𝑗)

{ If (?)

 { mid(𝑖+𝑗)/2;

 MSort(A,𝑖,mid);

 MSort(A,mid+1,𝑗);

 Create temporarily C[0..𝑗 − 𝑖]

 Merge(A[𝑖..mid], A[mid+1..𝑗], C);

 Copy C[0..𝑗 − 𝑖] to A[𝑖..𝑗]

}

Time complexity:

If 𝒏 = 1,

 T(𝒏) = c for some constant c

If 𝒏 > 1,

 T(𝒏) = c 𝒏 + 2 T(𝒏/2)

 = c 𝒏 + c 𝒏 + 𝟐𝟐 T(𝒏/𝟐𝟐)

 = c 𝒏 + c 𝒏 + c 𝒏 + 𝟐𝟑 T(𝒏 /𝟐𝟑)

 = c 𝒏 + …(log 𝒏 terms)…+ c 𝒏

 = O(𝒏 log 𝒏)

11

c 𝒏

i< j

// Sorting the subarray A[𝑖..𝑗].

T(𝒏/2)

T(𝒏/2)

Proof of correctness of Merge-Sort

MSort(A,𝑖,𝑗)

{ If (?)

 { mid(𝑖+𝑗)/2;

 MSort(A,𝑖,mid);

 MSort(A,mid+1,𝑗);

 Create temporarily C[0..𝑗 − 𝑖]

 Merge(A[𝑖..mid], A[mid+1..𝑗], C);

 Copy C[0..𝑗 − 𝑖] to A[𝑖..𝑗]

}

Question: What is to be proved ?

Answer: MSort(A,𝑖,𝑗) sorts the
subarray A[𝑖..𝑗]

Question: How to prove ?

Answer:

• By induction on the length
(𝑗 − 𝑖 + 1) of the subarray.

• Use correctness of the
algorithm Merge.

12

i< j

// Sorting the subarray A[𝑖..𝑗].

Example 2

13

Faster algorithm for multiplying two
integers

Addition is faster than multiplication

Given: any two 𝑛-bit numbers X and Y

Question: how many bit-operations are required to compute X+Y ?

Answer: O(𝑛)

Question: how many bit-operations are required to compute X* 𝟐𝒏 ?

Answer: O(𝑛) [left shift the number X by 𝑛 places, (do it carefully)]

Question: how many bit-operations are required to compute X*Y ?

Answer: O(𝑛2) (why ??)

14

Can we compute
X*Y faster ??

Pursuing Divide and Conquer approach

Question: how to express X*Y in terms of multiplication/addition of

{A,B,C,D} ?

Hint: First Express X and Y in terms of {A,B,C,D}.

 X = A* 𝟐𝒏/𝟐 + B and Y = C* 𝟐𝒏/𝟐 + D
Hence …

 X*Y = (A*C)* ?? + (A*D + B*C)* ?? + B*D

15

X

Y

MSB LSB

n-1 n-2…......………………n/2.............................2 1 0

A B

C D

𝟐𝒏 𝟐𝒏/𝟐

4 multiplications

Pursuing Divide and Conquer approach

X*Y = (A*C)* ?? + (A*D + B*C)* ?? + B*D
Let T(𝒏) : time complexity of multiplying X and Y using the above equation.

 T(𝒏) = c 𝒏 + 4 T(𝒏 /2) for some constant c

 = c 𝒏 + 2c 𝒏 + 𝟒𝟐 T(𝒏 /𝟐𝟐)

 = c 𝒏 + 2c 𝒏 + 4c 𝒏+ 𝟒𝟑 T(𝒏 /𝟐𝟑)

 = c 𝒏 + 2c 𝒏 + 4c 𝒏+ 8c 𝒏+ … + 𝟒𝐥𝐨𝐠𝟐𝒏T(𝟏)

 = c 𝒏 + 2c 𝒏 + 4c 𝒏+ 8c 𝒏+ … + c 𝒏𝟐

16

X

Y

MSB LSB

n-1 n-2…......………………n/2.............................2 1 0

A B

C D

𝟐𝒏 𝟐𝒏/𝟐

O(𝒏𝟐) time algo

Pursuing Divide and Conquer approach

X*Y = (A*C)* ?? + (A*D + B*C)* ?? + B*D

Observation: A*D + B*C = (A-B)*(D-C) + A*C + B*D

Question: How many multiplications do we need now to compute X*Y ?

Answer: 3 multiplications :

• A*C

• B*D

• (A-B)*(D-C) .

17

X

Y

MSB LSB

n-1 n-2…......………………n/2.............................2 1 0

A B

C D

𝟐𝒏 𝟐𝒏/𝟐

Pursuing Divide and Conquer approach

X*Y = (A*C)* ?? + ((A-B)*(D-C) + A*C + B*D)* ?? + B*D
Let T(𝒏) : time complexity of the new algo for multiplying two 𝒏-bit numbers

 T(𝒏) = c 𝒏 + 3 T(𝒏 /2) for some constant c

 = c 𝒏 + 3 c
𝒏

𝟐
 + 𝟑𝟐 T(𝒏 /𝟐𝟐)

 = c 𝒏 + 3c
𝒏

𝟐
 + 9c

𝒏

𝟒
+ + … + ?

 = O(𝒏𝐥𝐨𝐠𝟐𝟑) = O(𝒏𝟏.𝟓𝟖)

18

X

Y

MSB LSB

n-1 n-2…......………………n/2.............................2 1 0

A B

C D

𝟐𝒏 𝟐𝒏/𝟐

𝟑𝐥𝐨𝐠𝟐𝒏 T(𝟏)

Conclusion

Theorem: There is a divide and conquer based algorithm for multiplying any

two 𝒏-bit numbers in O(𝒏𝟏.𝟓𝟖) time (bit operations).

Note:
The fastest algorithm for this problem runs in almost O(𝒏 log 𝒏) time.

One such algorithm was designed in 2008 at CSE, IIT Kanpur.

By (Dey, Kurur, Saha, and Saptharishi).

19

Example 3

20

Counting the number of “inversions”
in an array

Counting Inversions in an array
Problem description

Definition (Inversion): Given an array A of size n, a pair (i,j), 0≤i<j<n is

called an inversion if A[i]>A[j].

Example:

Inversions are : (1,2), (1,4), (3,4), (1,6), (3,6), (5,6), (5,7)

AIM: An efficient algorithm to count the number of inversions in an array A.

21

A 3 15 8 19 9 67 11 27

0 1 2 3 4 5 6 7

Counting Inversions in an array
Problem familiarization

Trivial-algo(A[0..n-1])

{ count  0;

 For(j=1 to n-1) do

 { For(i=0 to j-1)

 { If (A[i]>A[j]) count  count + 1;

 }

 }

}

Time complexity: O(𝒏𝟐)

Question: What can be the max. no. of inversions in an array A ?

Answer: 𝒏
𝟐

, which is O(𝒏𝟐).

Question: Is the algorithm given above optimal ?

Answer: No, our aim is not to report all inversions but to report the count.
22

Ponder over the divide and
conquer algorithm for this

problem. We shall discuss it
in the next class.

Proof of correctness

Algorithm for majority element

23

Algorithm for majority element
 Algo-majority(A){

 count 0;

 for(i=0 to n-1)

 { if (count=0)

 { x A[i];

 count 1;

 }

 else if(x<> A[i])

 count  count - 1;

 else

 count count + 1;

 }

 if x appears more than n/2, then

 print(x is majority element)

 else print(no majority element)

Question: What is to be proved ?

Answer: For every possible instance of
A, the output of algorithm is correct.

Observation: If A does not have any
majority element, the output of the
algorithm is correct.



Inference: To prove correctness, it
suffices to prove the following:

24

If A has a majority element, say α, then at
the end of the For loop, x=α

Algorithm for majority element
 Algo-majority(A){

 count 0;

 for(i=0 to n-1)

 { if (count=0)

 { x A[i];

 count 1;

 }

 else if(x<> A[i])

 count  count - 1;

 else

 count count + 1;

 }

 if x appears more than n/2, then

 print(x is majority element)

 else print(no majority element)

Inference: To prove correctness, it
suffices to prove the following:

25

If A has a majority element, say α, then at
the end of the For loop, x=α

Question: What assertion holds at the end of 𝒊th iteration ?

 answer: x is a majority element of {A[0],A[1],…,A[𝒊-1]} ?

26

Single scan algorithm
𝒊

𝑨

NO
A wrong

Question: What assertion holds at the end of 𝒊th iteration ?

Answer:

 P(𝒊) : α is a majority element of {x,…count times…,x, A[𝒊],…,A[𝒏-1]} ?

Question: What is P(𝒏) ?

Answer:

  x = α

27

Single scan algorithm
𝒊

𝑨

α is a majority element of {x,…count times…,x}

This is what we
required 

As a homework exercise,
prove assertion P(𝒊) by

induction on 𝒊.

