Data Structures and Algorithms

(CS210A)

Semester I – **2014-15**

Lecture 12:

- Majority element : an efficient and practical algorithm
- word RAM model of computation: further <u>refinements.</u>

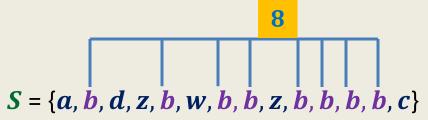
Definition: Given a multiset S of n elements,

 $x \in S$ is said to be majority element if it appears more than n/2 times in S.

$$S = \{a, b, d, z, b, w, b, b, z, b, b, b, b, c\}$$

Definition: Given a multiset S of n elements,

 $x \in S$ is said to be majority element if it appears more than n/2 times in S.



Problem: Given a **multiset** S of n elements, find the majority element, if any, in S.

Trivial algorithms:

Algorithm 1:

- 1. Count occurrence of each element
- 2. If there is any element with count > , report it.

Running time: $O(n^2)$ time

Trivial algorithms:

Algorithm 2:

- Sort the set S to find its median
- Let x be the median
- 3. Count the occurrence of x, and
- 4. return x if its count is more than $\frac{n}{2}$

Running time: $O(n \log n)$ time

Critical assumption underlying Algorithm 2:

elements of set S can be compared under some total order (=,<,>)

A real life application

Slots for inserting any two cards

Card-matching machine

Problem:

Given *n* credit cards, determine if the using minimum no. of operations on ca

This machine takes two cards and determines whether they are identical or not.

Some observations

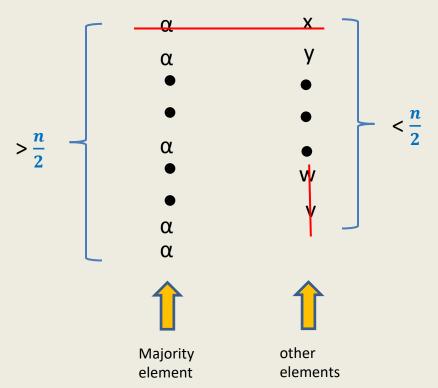
Problem: Given a **multiset** S of n elements, where the only relation between any two elements is \neq or =, find the majority element, if any, in S.

Question: How much time does it take to determine if an element $x \in S$ is majority?

Answer: O(n) time

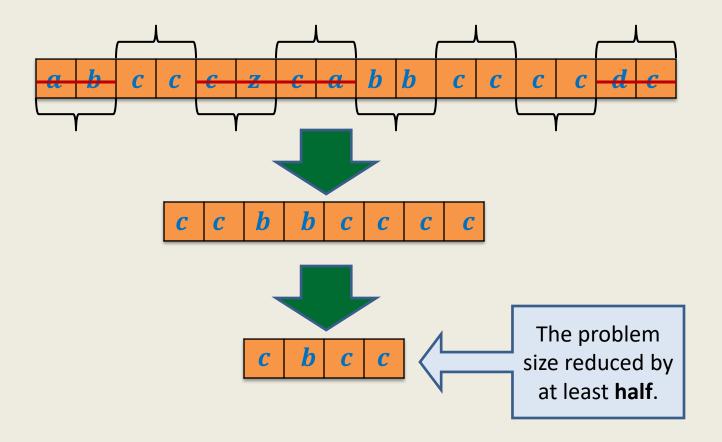
Observation 1: It is easy to verify whether an element is a majority

Some observations



Observation 2: whenever we cancel a pair of <u>distinct</u> elements from the array, the majority element of the array <u>remains preserved</u>.

Some observations



Observation 3: If there are m pairs of identical elements, then majority elements is preserved if we keep one element per pair.

Algorithm for 2-majority element

Repeat

- 1. Pair up the elements; Take care if the no. of elements is odd
- Eliminate all pairs of <u>distinct elements</u>;
- 3. Keep one element per pair of identical elements.

Until only one element is left.

Verify if the last element is a majority element.

Time complexity:

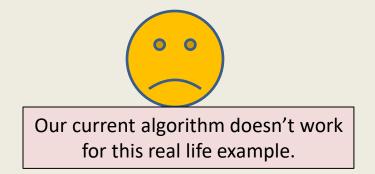
$$T(n) = c n + c \frac{n}{2} + c \frac{n}{4} + ...$$
 O(n) time

Extra/working space requirement (assuming input is "read only")

Further restrictions on the problem

Restrictions:

- We are allowed to make <u>single scan</u>.
- We have very <u>limited extra space</u>.



Real life example:

There are 10^{12} numbers stored on hard disk.

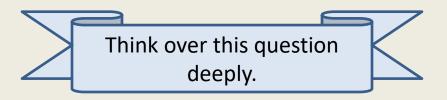
RAM can't provide O(n) extra (working) space in this case.

Designing algorithm for 2-majority element single scan and using O(1) extra space

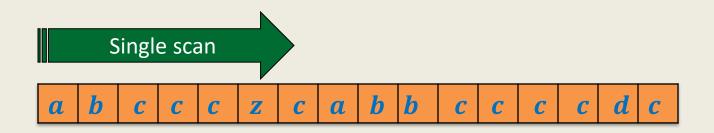
Question: Should we design algorithm from scratch to meet these constraints?

Answer: No! We should try to adapt or current algorithm to meet these constraints.

Question: How crucial is pairing of elements in our current algorithm?



Designing algorithm for 2-majority element single scan and using O(1) extra space



Insights:

We will never need to keep more than <u>one</u> element.

Just **cancel suitably** whenever encounter two elements

We need not keep multiple copies of an element explicitly.

Just keeping its **count** will suffice

Ponder over these insights and make an attempt to design the algorithm before moving ahead ©

Algorithm for 2-majority element single scan and using O(1) extra space

```
Algo-2-majority(A)
{ count \leftarrow 0;
   for(i=0 \text{ to } n-1)
      if ( count=0 ){
                          count \leftarrow 1;
        else if(x<> A[i])
                            count ← count - 1
              else
                            count ← count + 1
   Count the occurrences of x in A, and if it is more than n/2, then
   print(x is 2-majority element) else print(there is no majority element in A)
```

Algorithm for 2-majority element single scan and using O(1) extra space

Theorem: There is an algorithm that makes just a single scan and uses O(1) extra space to compute majority element for a given multi-set.

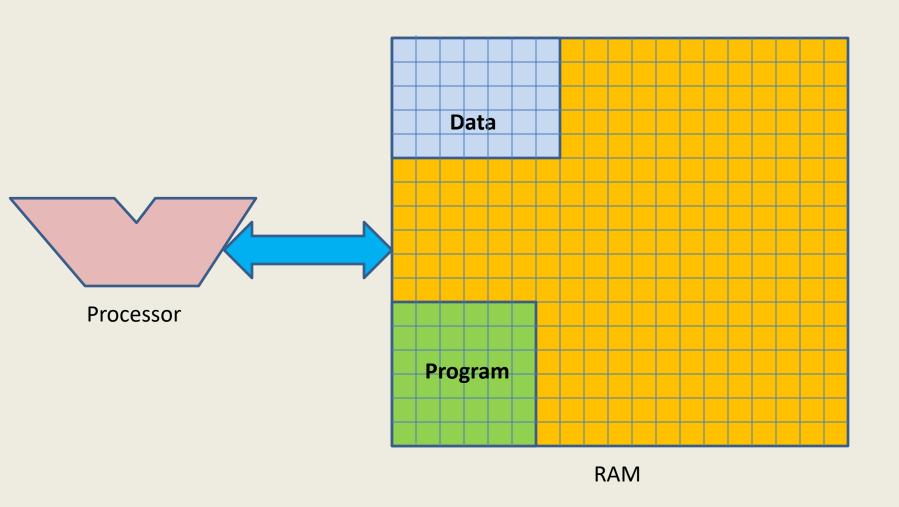
Proving correctness of algorithm for 2majority element

Home work Exercise to be solved in the next class

Word RAM model of computation

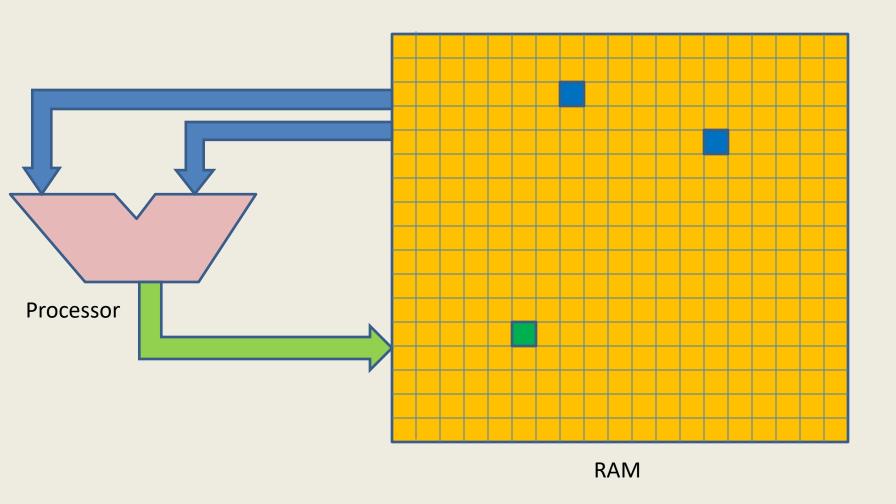
Further refinements

word RAM: a model of computation



Execution of a instruction

(fetching the operands, arithmetic/logical operation, storing the result back into RAM)



word RAM model of computation: Characteristics

- Word is the <u>basic storage</u> unit of RAM. Word is a collection of few bytes.
- Each input item (number, name) is stored in <u>binary format</u>.
- RAM can be viewed as a huge array of words. Any arbitrary location of RAM can be <u>accessed</u> in the same time <u>irrespective</u> of the location.
- Data as well as Program <u>reside fully</u> in RAM.
- Each arithmetic or logical operation (+,-,*,/,or, xor,...) involving O(log n) bits take a constant number of steps by the CPU, where n is the number of bits of input instance.

Justification for the extension

Question: How many bits are needed to access an input item from RAM?

Answer: At least $\log n$. (k bits can be used to create at most 2^k different addresses)

Current-state-of-the-art computers:

RAM of size 4GB

Hence 32 bits to address any item in RAM.

Support for 64-bit arithmetic

Ability to perform arithmetic/logical operations on any two 64-bit numbers.