
Data Structures and Algorithms 
(CS210A) 

Semester I – 2014-15 

Lecture 10: 
• Arithmetic expression evaluation:  Complete algorithm using stack 

• Two interesting problems 

1 



Quick Recap of last lecture 
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Stack: a new data structure 

A special kind of list  

where all operations (insertion, deletion, query) take place at one end only,  

called the top.  
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𝑎𝑛 

𝑎2 

𝑎1 top 



Evaluation of an arithmetic expression 

Question: How does a computer/calculator evaluate an arithmetic expression 
given in the form of a string of symbols ?                      

 

 

                           8 + 3 * 5 ^ 2 – 9 
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Evaluation of an arithmetic expression 

Question: How does a computer/calculator evaluate an arithmetic expression 
given in the form of a string of symbols?                      

 

 

                           8 + 3 * 5 ^ 2 – 9 

 

 
 

• What about expressions involving parentheses: 3+4*(5-6/(8+9^2)+33) ? 

• What about associativity of the operators ? 
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operands 

operators 



Overview of our solution 

 

1. Focusing on a simpler version of the problem:  
1. Expressions without parentheses 

2. Every operator is left associative 

 

2. Solving the simpler version 

 

3. Transforming the solution of simpler version to generic 
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Incorporating precedence of operators 
through priority number 

Operator Priority 

+ , -  1 

* , / 2 

^ 3 
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Insight into the problem 

Let 𝑜𝑖 : the operator at position i in the expression. 

Aim: To determine an order in which to execute the operators. 
                                                          8 + 3 * 5 ^ 2 – 9 * 67 

 

       

 

Question: Under what conditions can we execute operator 𝑜𝑖 immediately? 

Answer: if 

• priority(𝑜𝑖)     ??     priority(𝑜𝑖−1) 

• priority(𝑜𝑖)     ??     priority(𝑜𝑖+1) 
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Position of an operator does matter 

 > 

 ≥ 



Expression:  𝑛1𝑜1 𝑛2𝑜2 𝑛3 𝑜3 𝑛4 𝑜4 𝑛5 𝑜5 𝑛6 𝑜6 … 

 

We keep two stacks: 
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     N-stack 
for operands 

     O-stack 
for operators 



Expression:  𝑛1𝑜1 𝑛2𝑜2 𝑛3 𝑜3 𝑛4 𝑜4 𝑛5 𝑜5 𝑛6 𝑜6 … 

 

We keep two stacks: 
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     N-stack 
for operands 

     O-stack 
for operators 

𝑛5 

𝑜1 

𝑛6 

𝑛1 
𝑛2 
𝑛3 
𝑛4 

𝑜5 

𝑜3 

𝑜2 

𝑜4 



Expression:  𝑛1𝑜1 𝑛2𝑜2 𝑛3 𝑜3 𝑛4 𝑜4      𝑛’       𝑜6 … 

 

We keep two stacks: 
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     N-stack 
for operands 

     O-stack 
for operators 

𝑛’ 

𝑜1 𝑛1 
𝑛2 
𝑛3 
𝑛4 𝑜3 

𝑜2 

𝑜4 



Expression:  𝑛1𝑜1 𝑛2𝑜2 𝑛3 𝑜3             𝑛"           𝑜6 … 

 

We keep two stacks: 
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     N-stack 
for operands 

     O-stack 
for operators 

𝑛" 

𝑜1 𝑛1 
𝑛2 
𝑛3 

𝑜3 

𝑜2 

𝑜6 



A simple algorithm 

 

While  (  ?  ) do 

{     x  next_token(); 

      Two cases: 

           x is number    :  

           x is operator  : 

                                         while(                ?                         >=                     ?             ) 

                                         {  o  POP(O-stack); 

                                             Execute(o);    

                                         } 

                                          push(x,O-stack); 

} 
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• POP two numbers from N-stack and apply 
operator x on them 

• place the result back into N-stack  

PRIORITY(TOP(O-stack) PRIORITY(x) 

push(x,N-stack); 



Next step 

Transforming the solution to Solve 
the most  general case 
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How to handle parentheses ? 

                             3+4*(5 - 6/2) 

 
 

Question: What do we do whenever we encounter  ( in the expression ? 

Answer:   

Evaluate the expression enclosed by  this parenthesis 

 before any other operator  currently present in the O-stack.    

 

 So we must push ( into the O-stack. 

 

Observation 1: While  ( is the current operator encountered in the expression,  

                            it must have higher priority than every other operator in the stack 
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How to handle parentheses ? 

                             3+4*(5 - 6/2) 

 
Question: What needs to be done when  ( is at the top of the O-stack  ?  

Answer:   

The ( at the top of the stack should act as an artificial bottom of the O-stack . 

 every other operator that follows ( should be allowed to sit on the top of ( in the stack . 

 

Observation 2 :  while ( is inside the stack, it must have less priority than every other 
operator that follows. 

 

 

Observation 1: While  ( is the current operator encountered in the expression,  

                            it must have higher priority than every other operator in the stack 
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A CONTRADICTION !! 



 

 
Take a pause for a few minutes to realize surprisingly that  

the contradicting requirements for the priority of (  

in fact hints at a suitable solution for handling (. 
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How to handle parentheses ? 
Using two types of priorities of each operator ●. 

InsideStack priority 

The priority of an operator ● when it is 
inside the stack. 

OutsideStack priority 

The priority of an operator ● when it is 
encountered in the expression. 
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     O-stack      O-stack 

top 

𝑛1𝑜1 𝑛2𝑜2 𝑛3 𝑜3 𝑛4         𝑛5 𝑜5 𝑛6 𝑜6 



How to handle parentheses ? 
Using two types of priorities of each operator. 
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Operator InsideStackPriority OutsideStackPriority 

+ , -  1 1 

* , / 2 2 

^ 3 3 

( ?? ?? 0 4 

Does it take care of nested parentheses ? Check it yourself. 



How to handle parentheses ? 

                             3+4*(5 - 6/2) 
 

Question: What needs to be done whenever we encounter ) in the expression ? 

 

Answer: Keep popping O-stack and evaluating the operators until we get its matching (. 
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The algorithm generalized to handle 
parentheses 

While (     ?     ) do 

   x  next_token(); 

   Cases:  

      x is number :      push(x,N-stack); 

      x is )              :      while(      TOP(O-stack) <> (     ) 

                                    {     o  Pop(O-stack); 

                                          Execute(o);    

                                     }   

                                     Pop(O-stack);             //popping the matching ( 

      otherwise   :         while(InsideStackPriority(TOP(O-stack)) >= OutsideStackPriority(x)) 

                                     {      o  Pop(O-stack); 

                                             Execute(o);    

                                      } 

                                     Push(x,O-stack); 
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Practice exercise 

 
Execute the algorithm on 3+4*((5+6*(3+4)))^2 and convince 

yourself through proper reasoning that the algorithm handles 
parentheses suitably. 
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How to handle associativity of operators ? 
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Associativity of arithmetic operators  
 Left associative operators : +, - , * , / 

• a+b+c = (a+b)+c 

• a-b-c  = (a-b)-c 

• a*b*c = (a*b)*c 

• a/b/c  = (a/b)/c   

 

Right associative operators:  ^ 

• 2^3^2 = 2^(3^2) = 512. 

 

What we need is the following: 

If ^ is current operator of the expression, and ^ is on top of stack,  

then ^ should be evaluated before ^. 

How to incorporate it ? 
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We have already handled left associativity  
in our algorithm. 

How to handle right associativity ? 

Play with the priorities  



How to handle associativity of operators ? 
Using two types of priorities of each right associative operator. 
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Operator InsideStackPriority Outside-stack priority 

+ , -  1 1 

* , / 2 2 

^ 3 3 

( 0 4 

4 

5 



The general Algorithm 
It is the same as the algorithm to handle parentheses :-) 

While (   ?   ) do 

   x  next_token(); 

   Cases:  

      x is number :      push(x,N-stack); 

      x is )              :      while(      TOP(O-stack) <> (     ) 

                                    {     o  Pop(O-stack); 

                                          Execute(o);    

                                     }   

                                     Pop(O-stack);       //popping the matching ( 

      otherwise   :         while(InsideStackPriority(TOP(O-stack)) >= OutsideStackPriority(x)) 

                                     {      o  Pop(O-stack); 

                                             Execute(o);    

                                      } 

                                     Push(x,O-stack); 
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Homeworks 

1. Execute the general algorithm on 3+4*((4+6)^2)/2 and convince yourself 
through proper reasoning that the algorithm handles nested parentheses 
suitably. 

2. Execute the general algorithm on 3+4^2^2*3 and convince yourself 
through proper reasoning that the algorithm takes into account the right 
associativity of operator ^.   

3. Our simple (as well as general) algorithm does not consider the case 
when the O-stack is empty. How can you take care of this small technical 
thing without changing the while loop of the algorithm ? 

Hint: Introduce a new operator $ with both its priorities -1 and push it into O-stack 
before the while loop. 

4. How to take care of the end of the expression ? 

Hint: Introduce a new operator symbol # so that upon seeing #, we do very much like 
what we do on seeing ). 

27 



Proof of correctness of iterative algorithms 

• Computing sum of first 𝑛 positive integers. 

 

• Computing maximum-sum subarray. 

 

• Local Minima in an array. 

 

• Binary search 

Fully internalize these proofs. 
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Two interesting problems 

Applications of simple data 
structures 
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8 queen problem 

Place 8 queens on a chess board so that no two of them attack each other. 
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Q 

Q 

With this sketch/hint,  
try to design the 

complete algorithm  
using stack or 

otherwise. 



Shortest route in a grid 

From a cell in the grid, we can move to any of its neighboring cell in one step. 

From top left corner, find shortest route to each green cell avoiding obstacles. 
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Ponder over this 
beautiful problem 

 


