
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 10:
• Arithmetic expression evaluation: Complete algorithm using stack

• Two interesting problems

1

Quick Recap of last lecture

2

Stack: a new data structure

A special kind of list

where all operations (insertion, deletion, query) take place at one end only,

called the top.

3

𝑎𝑛

𝑎2

𝑎1 top

Evaluation of an arithmetic expression

Question: How does a computer/calculator evaluate an arithmetic expression
given in the form of a string of symbols ?

 8 + 3 * 5 ^ 2 – 9

4

Evaluation of an arithmetic expression

Question: How does a computer/calculator evaluate an arithmetic expression
given in the form of a string of symbols?

 8 + 3 * 5 ^ 2 – 9

• What about expressions involving parentheses: 3+4*(5-6/(8+9^2)+33) ?

• What about associativity of the operators ?

 5

operands

operators

Overview of our solution

1. Focusing on a simpler version of the problem:
1. Expressions without parentheses

2. Every operator is left associative

2. Solving the simpler version

3. Transforming the solution of simpler version to generic

6

Incorporating precedence of operators
through priority number

Operator Priority

+ , - 1

* , / 2

^ 3

7

Insight into the problem

Let 𝑜𝑖 : the operator at position i in the expression.

Aim: To determine an order in which to execute the operators.
 8 + 3 * 5 ^ 2 – 9 * 67

Question: Under what conditions can we execute operator 𝑜𝑖 immediately?

Answer: if

• priority(𝑜𝑖) ?? priority(𝑜𝑖−1)

• priority(𝑜𝑖) ?? priority(𝑜𝑖+1)

8

Position of an operator does matter

 >

 ≥

Expression: 𝑛1𝑜1 𝑛2𝑜2 𝑛3 𝑜3 𝑛4 𝑜4 𝑛5 𝑜5 𝑛6 𝑜6 …

We keep two stacks:

9

 N-stack
for operands

 O-stack
for operators

Expression: 𝑛1𝑜1 𝑛2𝑜2 𝑛3 𝑜3 𝑛4 𝑜4 𝑛5 𝑜5 𝑛6 𝑜6 …

We keep two stacks:

10

 N-stack
for operands

 O-stack
for operators

𝑛5

𝑜1

𝑛6

𝑛1
𝑛2
𝑛3
𝑛4

𝑜5

𝑜3

𝑜2

𝑜4

Expression: 𝑛1𝑜1 𝑛2𝑜2 𝑛3 𝑜3 𝑛4 𝑜4 𝑛’ 𝑜6 …

We keep two stacks:

11

 N-stack
for operands

 O-stack
for operators

𝑛’

𝑜1 𝑛1
𝑛2
𝑛3
𝑛4 𝑜3

𝑜2

𝑜4

Expression: 𝑛1𝑜1 𝑛2𝑜2 𝑛3 𝑜3 𝑛" 𝑜6 …

We keep two stacks:

12

 N-stack
for operands

 O-stack
for operators

𝑛"

𝑜1 𝑛1
𝑛2
𝑛3

𝑜3

𝑜2

𝑜6

A simple algorithm

While (?) do

{ x  next_token();

 Two cases:

 x is number :

 x is operator :

 while(? >= ?)

 { o  POP(O-stack);

 Execute(o);

 }

 push(x,O-stack);

}

13

• POP two numbers from N-stack and apply
operator x on them

• place the result back into N-stack

PRIORITY(TOP(O-stack) PRIORITY(x)

push(x,N-stack);

Next step

Transforming the solution to Solve
the most general case

14

How to handle parentheses ?

 3+4*(5 - 6/2)

Question: What do we do whenever we encounter (in the expression ?

Answer:

Evaluate the expression enclosed by this parenthesis

 before any other operator currently present in the O-stack.

 So we must push (into the O-stack.

Observation 1: While (is the current operator encountered in the expression,

 it must have higher priority than every other operator in the stack

15

How to handle parentheses ?

 3+4*(5 - 6/2)

Question: What needs to be done when (is at the top of the O-stack ?

Answer:

The (at the top of the stack should act as an artificial bottom of the O-stack .

 every other operator that follows (should be allowed to sit on the top of (in the stack .

Observation 2 : while (is inside the stack, it must have less priority than every other
operator that follows.

Observation 1: While (is the current operator encountered in the expression,

 it must have higher priority than every other operator in the stack

16

A CONTRADICTION !!

Take a pause for a few minutes to realize surprisingly that

the contradicting requirements for the priority of (

in fact hints at a suitable solution for handling (.

17

How to handle parentheses ?
Using two types of priorities of each operator ●.

InsideStack priority

The priority of an operator ● when it is
inside the stack.

OutsideStack priority

The priority of an operator ● when it is
encountered in the expression.

18

 O-stack O-stack

top

𝑛1𝑜1 𝑛2𝑜2 𝑛3 𝑜3 𝑛4 𝑛5 𝑜5 𝑛6 𝑜6

How to handle parentheses ?
Using two types of priorities of each operator.

19

Operator InsideStackPriority OutsideStackPriority

+ , - 1 1

* , / 2 2

^ 3 3

(?? ?? 0 4

Does it take care of nested parentheses ? Check it yourself.

How to handle parentheses ?

 3+4*(5 - 6/2)

Question: What needs to be done whenever we encounter) in the expression ?

Answer: Keep popping O-stack and evaluating the operators until we get its matching (.

20

The algorithm generalized to handle
parentheses

While (?) do

 x  next_token();

 Cases:

 x is number : push(x,N-stack);

 x is) : while(TOP(O-stack) <> ()

 { o  Pop(O-stack);

 Execute(o);

 }

 Pop(O-stack); //popping the matching (

 otherwise : while(InsideStackPriority(TOP(O-stack)) >= OutsideStackPriority(x))

 { o  Pop(O-stack);

 Execute(o);

 }

 Push(x,O-stack);

21

Practice exercise

Execute the algorithm on 3+4*((5+6*(3+4)))^2 and convince

yourself through proper reasoning that the algorithm handles
parentheses suitably.

22

How to handle associativity of operators ?

23

Associativity of arithmetic operators
 Left associative operators : +, - , * , /

• a+b+c = (a+b)+c

• a-b-c = (a-b)-c

• a*b*c = (a*b)*c

• a/b/c = (a/b)/c

Right associative operators: ^

• 2^3^2 = 2^(3^2) = 512.

What we need is the following:

If ^ is current operator of the expression, and ^ is on top of stack,

then ^ should be evaluated before ^.

How to incorporate it ?

24

We have already handled left associativity
in our algorithm.

How to handle right associativity ?

Play with the priorities 

How to handle associativity of operators ?
Using two types of priorities of each right associative operator.

25

Operator InsideStackPriority Outside-stack priority

+ , - 1 1

* , / 2 2

^ 3 3

(0 4

4

5

The general Algorithm
It is the same as the algorithm to handle parentheses :-)

While (?) do

 x  next_token();

 Cases:

 x is number : push(x,N-stack);

 x is) : while(TOP(O-stack) <> ()

 { o  Pop(O-stack);

 Execute(o);

 }

 Pop(O-stack); //popping the matching (

 otherwise : while(InsideStackPriority(TOP(O-stack)) >= OutsideStackPriority(x))

 { o  Pop(O-stack);

 Execute(o);

 }

 Push(x,O-stack);

26

Homeworks

1. Execute the general algorithm on 3+4*((4+6)^2)/2 and convince yourself
through proper reasoning that the algorithm handles nested parentheses
suitably.

2. Execute the general algorithm on 3+4^2^2*3 and convince yourself
through proper reasoning that the algorithm takes into account the right
associativity of operator ^.

3. Our simple (as well as general) algorithm does not consider the case
when the O-stack is empty. How can you take care of this small technical
thing without changing the while loop of the algorithm ?

Hint: Introduce a new operator $ with both its priorities -1 and push it into O-stack
before the while loop.

4. How to take care of the end of the expression ?

Hint: Introduce a new operator symbol # so that upon seeing #, we do very much like
what we do on seeing).

27

Proof of correctness of iterative algorithms

• Computing sum of first 𝑛 positive integers.

• Computing maximum-sum subarray.

• Local Minima in an array.

• Binary search

Fully internalize these proofs.

28

Two interesting problems

Applications of simple data
structures

29

8 queen problem

Place 8 queens on a chess board so that no two of them attack each other.

30

Q

Q

With this sketch/hint,
try to design the

complete algorithm
using stack or

otherwise.

Shortest route in a grid

From a cell in the grid, we can move to any of its neighboring cell in one step.

From top left corner, find shortest route to each green cell avoiding obstacles.

31

Ponder over this
beautiful problem



