Data Structures and Algorithms

(CS210A)
Semester | — 2014-15

Lecture 10:

Arithmetic expression evaluation: Complete algorithm using stack
Two interesting problems

Quick Recap of last lecture

Stack: a new data structure

A special kind of list
where all operations (insertion, deletion, query) take place at one end only,

called the top.

top

Evaluation of an arithmetic expression

Question: How does a computer/calculator evaluate an arithmetic expression
given in the form of a string of symbols ?

8+3*5n2-9

Evaluation of an arithmetic expression

Question: How does a computer/calculator evaluate an arithmetic expression

given in the form of a string of sxrg\ekggtlg'.}’s

AN
V4

operands

* What about expressions involving parentheses: 3+4*(5-6/(8+9/2)+33) ?
 What about associativity of the operators ?

Overview of our solution

1. Focusing on a simpler version of the problem:
1. Expressions without parentheses
2. Every operator is left associative

2. Solving the simpler version

3. Transforming the solution of simpler version to generic

Incorporating precedence of operators
through priority number

*,- 1

*,/ 2
2 3

Insight into the problem

Let 0; : the operator at position i/ in the expression.

Aim: To determine an order in which to execute the operators.

8+3*‘<7*67

Position of an operator does matter

Question: Under what conditions can we execute operator 0; immediately?
Answer: if
e priority(0;) > priority(0;_1)

e priority(0;) > priority(0;4+q)

Expression: n,o0, n,0, n3 03 ny 0, N 0 Ng O ...

We keep two stacks:

N-stack O-stack
for operands for operators

Expression: n,0, n,0, n3 03 Ny 04 N 0c Ng O ...

—) /I_\

We keep two stacks:

0
Ng 5
n5 04-
Ny o
n3 3
nz 02
nl 01

N-stack O-stack

for operands for operators

Expression: n101 N,0, N3 03 Ny Oy

We keep two stacks:

ny

N-stack
for operands

3

01

O-stack
for operators

11

Expression: n,o0, n,0, n; o5
I

We keep two stacks:

ny

N-stack
for operands

01

O-stack
for operators

12

A simple algorithm

While (?) do
{ x < next_token();
Two cases:
X is number : push(x,N-stack);

X is operator :
while(PRIORITY(TOP(O-stack) s— PRIORITY(x))

{ o € POP(O-stack);
* POP two numbers from N-stack and apply
Execute(o); <« operator x on them

} * place the result back into N-stack

push(x,0-stack);

13

Next step

Transforming the solution to Solve
the most general case

How to handle parentheses ?

3+44(5 - 6/2)

Question: What do we do whenever we encounter (in the expression ?
Answer:

Evaluate the expression enclosed by this parenthesis
before any other operator currently present in the O-stack.

=>» So we must push (into the O-stack.

Observation 1: While (is the current operator encountered in the expression,

it must have higher priority than every other operator in the stack

How to handle parentheses ?
3+44(5 - 6/2)

Question: What needs to be done when (is at the top of the O-stack ?

Answer:
The (at the top of the stack should act as an artificial bottom of the O-stack .
=>» every other operator that follows (should be allowed to sit on the top of (in the stack .

Observation 2 : while (is inside the stack, it must have less priority than every other
operator that follows.

A CONTRADICTION !!

Observation 1: While (is the current operator encountered in the expression,
it must have higher priority than every other operator in the stack

Take a pause for a few minutes to realize surprisingly that
the contradicting requirements for the priority of (
in fact hints at a suitable solution for handling (.

How to handle parentheses ?

Using two types of priorities of each operator e.

InsideStack priority OutsideStack priority
The priority of an operator @ when it is The priority of an operator @ when it is
inside the stack. encountered in the expression.

N101 N0, N3 03y @ Ng 05 Ng 0g

— ﬂ

fon)@

O-stack O-stack

18

How to handle parentheses ?

Using two types of priorities of each operator.

__

+,- 1 1
*,/ 2 2
A 3 3
(0 4

Does it take care of nested parentheses ? Check it yourself.

19

How to handle parentheses ?

3+44(5 - 6/2)

Question: What needs to be done whenever we encounter) in the expression ?

Answer: Keep popping O-stack and evaluating the operators until we get its matching (.

The algorithm generalized to handle
parentheses

While(?)do
x € next_token();
Cases:
X is number: push(x,N-stack);
Xis) . while(TOP(O-stack)<>()
{ o < Pop(O-stack);
Execute(o);
}
Pop(O-stack); //popping the matching (
otherwise : while(insideStackPriority(TOP(O-stack)) >= outsideStackPriority(x))
{ o < Pop(O-stack);
Execute(o);

}
Push(x,O-stack);

Practice exercise

Execute the algorithm on 3+4*((5+6*(3+4)))*2 and convince
yourself through proper reasoning that the algorithm handles
parentheses suitably.

How to handle associativity of operators ?

Associativity of arithmetic operators

Left associative operators : +, -, *, /
* a+b+c=(a+b)+c

* a-b-c =(a-b)-c

* a*b*c=(a*b)*c

 a/b/c =(a/b)/c

Right associative operators: /A
e 2A3N2 =2M(3M2)=512.

What we need is the following:

We have already handled left associativity
in our algorithm.

How to handle right associativity ?

If A is current operator of the expression, and ”* is on top of stack,

then ™ should be evaluated before

How to incorporate it ?| Play with the priorities ©

How to handle associativity of operators ?

Using two types of priorities of each right associative operator.

__

+, - 1 1
*,/ 2 2
N 3 4

(0 5

The general Algorithm

It is the same as the algorithm to handle parentheses :-)

While(?)do
x € next_token();
Cases:
X is number: push(x,N-stack);
Xis) . while(TOP(O-stack)<>()
{ o < Pop(O-stack);
Execute(o);
}
Pop(O-stack); //popping the matching (
otherwise : while(insideStackPriority(TOP(O-stack)) >= outsideStackPriority(x))
{ o < Pop(O-stack);
Execute(o);

}
Push(x,O-stack);

Homeworks

1. Execute the general algorithm on 3+4*((4+6)"2)/2 and convince yourself
through proper reasoning that the algorithm handles nested parentheses
suitably.

2. Execute the general algorithm on 3+472/2*3 and convince yourself
through proper reasoning that the algorithm takes into account the right
associativity of operator *.

3. Oursimple (as well as general) algorithm does not consider the case
when the O-stack is empty. How can you take care of this small technical
thing without changing the while loop of the algorithm ?

Hint: Introduce a new operator S with both its priorities -1 and push it into O-stack
before the while loop.

4. How to take care of the end of the expression ?

Hint: Introduce a new operator symbol # so that upon seeing #, we do very much like
what we do on seeing).

Proof of correctness of iterative algorithms

Computing sum of first n positive integers.
Computing maximum-sum subarray.
Local Minima in an array.

Binary search
Fully internalize these proofs.

28

Two interesting problems

Applications of simple data
structures

8 queen problem

Place 8 queens on a chess board so that no two of them attack each other.

ol NN NN BN BN N AN

o0 Qo000 O

e 00 ° —] =
With this sketch/hint,

® o |® try to design the

@) o ® o complete algorithm

® using stack or

® ® ® | otherwise.)

o |© o ®

@ @ @

30

Shortest route in a grid

From a cell in the grid, we can move to any of its neighboring cell in one step.

From top left corner, find shortest route to each green cell avoiding obstacles.

=

—

Ponder over this
beautiful problem

©

31

