
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 1:

• An overview and motivation for the course

• some concrete examples.

1

The website of the course

moodle.cse.iitk.ac.in

Courses

CS210: Data Structures and Algorithms

 (guest login allowed)

Close your notebook. (Slides will be provided for each lecture)

Let us start the course with fresh mind.

2

Prerequisite of this course

• A good command on Programming in C
– Programs involving arrays

– Recursion

– Linked lists (preferred)

• Fascination for solving Puzzles

3

This course will be taught differently.

Recall your JEE preparation days

4

What is this difference ?

• We shall re-invent every concept in the class itself.

• We shall solve each problem in the class through discussion.

• You will realize that solution will emerge naturally if we ask
right set of questions and then try to find their answers.

• Most importantly we shall so everything together.

 … so that finally it is a concept/solution derived by yourself and
not concept from some scientist/book/teacher.

5

Isn’t that nice

Let us open your desktop

6

A processor (CPU)
speed = few GHz
(a few nanoseconds to execute an instruction)

 External Memory (Hard Disk Drive)
 size = a few tera bytes
 speed : seek time = miliseconds
 transfer rate= around billion bits per second

 Internal memory (RAM)
size = a few GB (Stores few million bytes/words)
speed = a few GHz(a few nanoseconds to read a byte/word)

A simplifying assumption for the rest of the
lecture

It takes around a few nanoseconds to execute an instruction.

(This assumption is well supported by the modern day computers)

7

8

What is an algorithm ?

Definition: A finite sequence of well defined instructions
required to solve a given computational problem.

(We shall see more precise definition soon)

9

10

Revisiting problems from ESC101

11

Problem 1:
Bit-sum-prime numbers

Definition: A positive integer is said to be bit-sum-prime if the sum of its
bits is a prime number.

Examples: 6 (110)

 7 (111)

 29 (11101)

Algorithmic problem:

Input: positive integer 𝒏,

Output: the count of all bit-sum-prime numbers less than 𝒏.

Homework 1: Write a C program for bit-sum prime problem with 𝒏 as long
long int (64 bit integer), and execute it for some large value of 𝒏.

For example, execute the program for 𝒏 =123456789123456789.

12

is bit-sum prime.

is bit-sum prime.

is not bit-sum prime.

Problem 2:
Fibonacci numbers

Fibonacci numbers
 F(0) = 0;

 F(1) = 1;

 F(n) = F(n-1) + F(n-2) for all n >1;

Exercise : Using induction or otherwise, show that F(n)>2
𝑛−2

2

Algorithms you must have implemented for computing F(n) :

• Iterative

• recursive

 13

Iterative Algorithm for F(n)

IFib(n)
if n=0 return 0;

 else if n=1 return 1;

 else { a 0; b 1;

 For(i=2 to n) do

 { temp b;

 b a+b;

 a temp;

 }

 }

 return b;

14

Recursive algorithm for F(n)

Rfib(n)
{ if n=0 return 0;

 else if n=1 return 1;

 else return(Rfib(n-1) + Rfib(n-2))

}

15

Problem 2:
Fibonacci numbers

Homework 2: Write a program for the following problem:

Input: Two numbers 𝒏,𝒎 (long long int (64 bit integer)),

Output: F(𝒏) mod 𝒎

Experimentally find the range of numbers 𝒏 and 𝒎 for which your (iterative
and recursive) programs takes less than a minute. The results will be very
disappointing

16

Interestingly, there is an algorithm that will run in
 a few micro seconds for the whole range of 𝒏 and 𝒎.

We shall discuss it soon in some class.

Problem 3:
Subset-sum problem

Input: An array A storing n numbers, and a number s

Output: Determine if there is a subset of numbers from A whose sum is s.

The fastest existing algorithm has to execute 𝟐𝒏/𝟐 instructions.
Hence, on the fastest existing computer, it will take

• At least an year for n=100

• At least 1000 years for n=120

17

Problem 4:
Sorting

Input: An array A storing n numbers.

Output: Sorted A

A fact:
A significant fraction of the code of all the software is for sorting or searching
only.

To sort 10 million numbers on the present day computers

• Selection sort will take at least a few hours.

• Merge sort will take only a few seconds.

18

How to design efficient algorithm for a problem ?

19

Design of algorithms and data structures is also
 an Art

Requires:
• Creativity
• Hard work
• Practice
• Perseverance (most important)

Summary of Algorithms

• There are many practically relevant problems for which there
does not exist any efficient algorithm till date.

• Efficient algorithms are important for theoretical as well as
practical purposes.

• Algorithm design is an art which demands a lot of creativity,
intuition, and perseverance.

• More and more applications in real life require efficient
algorithms
– Search engines like Google exploits many clever algorithms.

20

21

An Example

Given: a telephone directory storing telephone no. of hundred million persons.

Aim: to answer a sequence of queries of the form

 “what is the phone number of a given person ?”.

Solution 1 :

Keep the directory in an array.

do sequential search for each query.

Solution 2:

Keep the directory in an array, and sort it according to names,

do binary search for each query.

22

Time per query: around 1/10th of a second

Time per query: less than 100 nanoseconds

Aim of data structure ?

To store/organize a given data in the memory of computer so that

each subsequent operation (query/update) can be performed quickly ?

23

Range-Minima Problem

A Motivating example

to realize the importance of data structures

24

i=4 j=11

3 5 1 8 19 0 -1 30 99 -6 10 2 40 27 44 67 A

Range-Minima Problem

Given: an array A storing 𝒏 numbers,

Aim: a data structure to answer a sequence of queries of the following type

 Range-minima(i,j) : report the smallest element from A[i],…,A[j]

Let A store one million numbers

Let the number of queries be 10 millions

 Range-Minima(i,j) = -6

Range-Minima Problem

Applications:

• Computational geometry

• String matching

• As an efficient subroutine in a variety of algorithms

(we shall discuss these problems sometime in this course or the next level
course CS345)

26

Range-Minima Problem

Solution 1: Answer each query in a brute force manner using A itself.

Range-minima-trivial(i,j)

{ temp i+1;

 min A[i];

 While(temp <= j)

 { if (min > A[temp])

 min A[temp];

 temp temp+1;

 }

 return min

}

Time taken to answer a query:

27

Time for answering all queries:
a few hours

few milliseconds

28

Range-Minima Problem

Solution 2: Compute and store answer for each possible query in a 𝒏 × 𝒏 matrix B.

B[i][j] stores the smallest element from A[i],…,A[j]

Space : O(𝒏𝟐)

Size of B is too large to be
kept in RAM. So we shall

have to keep most of it in the
Hard disk drive. Hence it will
take a few milliseconds per

query.

3 i

j

B

Solution 2 is
Theoretically efficient but

practically impossible

Range-Minima Problem

Question: Does there exist a data structure for Range-minima which is

• Compact

 (nearly the same size as the input array A)

• Can answer each query efficiently ?

 (a few nanoseconds per query)

Homework 3: Ponder over the above question.

(we shall solve it soon)

29

Data structures to be covered in this
course

Elementary Data Structures
– Array

– List

– Stack

– Queue

Hierarchical Data Structures
– Binary Heap

– Binary Search Trees

Augmented Data Structures

30

Most fascinating and
powerful data structures

