Data Structures and Algorithms

(CS210A)
Semester | — 2014-15

Lecture 1:
* An overview and motivation for the course
* some concrete examples.

The website of the course

moodle.cse.iitk.ac.in

—>Courses
—(CS210: Data Structures and Algorithms
(guest login allowed)

Close your notebook. (Slides will be provided for each lecture)
Let us start the course with fresh mind.

Prerequisite of this course

* A good command on Programming in C
— Programs involving arrays
— Recursion
— Linked lists (preferred)

e Fascination for solving Puzzles

] =
2 This course will be taught differently.

—— -

Recall your JEE preparation days

What is this difference ?

 We shall re-invent every concept in the class itself.

 We shall solve each problem in the class through discussion.

* You will realize that solution will emerge naturally if we ask
right set of questions and then try to find their answers.

* Most importantly we shall so everything together.

... 50 that finally it is a concept/solution derived by yourself and
not concept from some scientist/book/teacher.

Isn’t that nice ©

Let us open your desktop

A processor (CPU)
speed = few GHz
(a few nanoseconds to execute an instruction)

Internal memory (RAM)
size = a few GB (Stores few million bytes/words)
speed = a few GHz(a few nanoseconds to read a byte/word)

External Memory (Hard Disk Drive)

size = a few tera bytes
speed : seek time = miliseconds
transfer rate= around billion bits per second

6

A simplifying assumption for the rest of the
lecture

It takes around a few nanoseconds to execute an instruction.

(This assumption is well supported by the modern day computers)

EFFICIENT ALGORITHMS

What is an algorithm ?

Definition: A finite sequence of well defined instructions
required to solve a given computational problem.

(We shall see more precise definition soon)

WHY DO WE CARE FOR EFFICIENT
ALGORITHMS WHEN WE HAVE PROCESSORS
RUNNING AT GIGAHERTZ?

10

Revisiting problems from ESC101

Problem 1:
Bit-sum-prime numbers

Definition: A positive integer is said to be bit-sum-prime if the sum of its
bits is a prime number.

Examples: 6 (110) is bit-sum prime.
7 (111) is bit-sum prime.

29 (11101) is not bit-sum prime.

Algorithmic problem:
Input: positive integer n,
Output: the count of all bit-sum-prime numbers less than n.

Homework 1: Write a C program for bit-sum prime problem with n as long
long int (64 bit integer), and execute it for some large value of n.

For example, execute the program for n =123456789123456789.

12

Problem 2;:
Fibonacci numbers

Fibonacci numbers
F(0) = 0;
F(1) = 1;
F(n) = F(n-1) + F(n-2) forall n >1;
n—2
Exercise : Using induction or otherwise, show that F(n)>2T

Algorithms you must have implemented for computing F(n) :
* |terative
* recursive

Iterative Algorithm for F(n)

IFib(n)

if n=0 return O;
else if n=1 return 1;
else { a€< 0, b&1;
For(i=2 to n) do
{ temp < b;
b& a+b;
a< temp;

return b;

Recursive algorithm for F(n)

Rfib(n)
{ if n=0 return 0O;

else if n=1 return 1;
else return(Rfib(n-1) + Rfib(n-2))

Problem 2;:
Fibonacci numbers

Homework 2: Write a program for the following problem:

Input: Two numbers n,m (long long int (64 bit integer)),
Output: F(nn) mod m

Experimentally find the range of numbers n and m for which your (iterative
and recursive) programs takes less than a minute. The results will be very
disappointing ®

— —

Interestingly, there is an algorithm that will run in
a few micro seconds for the whole range of n and m.
We shall discuss it soon in some class.

— —

Problem 3:
Subset-sum problem

Input: An array A storing n numbers, and a number s

Output: Determine if there is a subset of numbers from A whose sum is s.

The fastest existing algorithm has to execute 2™/2 instructions.
Hence, on the fastest existing computer, it will take

e At least an year for n=100

e At least 1000 years for n=120

Problem 4:
Sorting

Input: An array A storing n numbers.
Output: Sorted A

A fact:

A significant fraction of the code of all the software is for sorting or searching
only.

To sort 10 million numbers on the present day computers
* Selection sort will take at least a few hours.

* Merge sort will take only a few seconds.

How to design efficient algorithm for a problem ?

Design of algorithms and data structures is also
an Art

Requires:

* Creativity

 Hard work

* Practice

* Perseverance (mostimportant)

19

Summary of Algorithms

There are many practically relevant problems for which there
does not exist any efficient algorithm till date.

Efficient algorithms are important for theoretical as well as
practical purposes.

Algorithm design is an art which demands a lot of creativity,
intuition, and perseverance.

More and more applications in real life require efficient
algorithms

— Search engines like Google exploits many clever algorithms.

THE DATA STRUCTURES

An Example

Given: a telephone directory storing telephone no. of hundred million persons.
Aim: to answer a sequence of queries of the form
“what is the phone number of a given person ?”.

Solution 1:
Keep the directory in an array.
do sequential search for each query.

Time per query: around 1/10t of a second

Solution 2:
Keep the directory in an array, and sort it according to names,
do binary search for each query.

Time per query: less than 100 nanoseconds

Aim of data structure ?

To store/organize a given data in the memory of computer so that

each subsequent operation (query/update) can be performed quickly ?

Range-Minima Problem

A Motivating example
to realize the importance of data structures

24

Range-Minima Problem

Given: an array A storing n numbers,
Aim: a data structure to answer a sequence of queries of the following type
Range-minima(i,j) : report the smallest element from A[i],...,A[j]

Let A store one million numbers
Let the number of queries be 10 millions

Range-Minimal(i,j) = -6

| |
A [3151|819]0|-130099|-6 10| 2|40 27/24| 67

]]

i=4 j=11

Range-Minima Problem
Applications:

* Computational geometry
e String matching

* As an efficient subroutine in a variety of algorithms

(we shall discuss these problems sometime in this course or the next level
course CS345)

Range-Minima Problem

Solution 1: Answer each query in a brute force manner using A itself.

Range-minima-trivial(i,))
{ temp < i+1;
min < A[i];
While(temp <= j)
{ if (min > A[temp])

min < A[temp];
temp < temp+1;
}

return min

a few hours

}

Time taken to answer a query. few milliseconds

27

Range-Minima Problem

Solution 2: Compute and store answer for each possible query in a n x n matrix B.
j

Solution 2 is
Theoretically efficient but
practically impossible

Size of B is too large to be

B kept in RARM. So we shall
have to kg t of it in the
Hard dis ence it will
take a few milliseconds per
B[i][j] stores the smallest element from A[i],...,Alj] O
Space : O(n?) Oo

28

Range-Minima Problem

QUEStiOh: Does there exist a data structure for Range-minima which is

* Compact

(nearly the same size as the input array A)

 Can answer each query efficiently ?

(a few nanoseconds per query)

Homework 3: Ponder over the above question.

(we shall solve it soon)

29

Data structures to be covered in this

course
Elementary Data Structures
— Array
— List
— Stack
— Queue

Hierarchical Data Structures
— Binary Heap
— Binary Search Trees

Most fascinating and
powerful data structures

Augmented Data Structures

30

