1. INTRODUCTION

The converse of Lagrange's theorem is false: if G is a finite group and d|#G, then there may not be a subgroup of G with order d. The simplest example of this is the group A_4 , of order 12, which has no subgroup of order 6. The Norwegian mathematician Peter Ludwig Sylow [1] discovered that a converse result is true when d is a prime power: if p is a prime number and $p^k|\#G$ then G must contain a subgroup of order p^k . Sylow also discovered important relations among the subgroups with order the *largest* power of p dividing #G, such as the fact that all subgroups of that order are conjugate to each other.

For example, a group of order $100 = 2^2 \cdot 5^2$ must contain subgroups of order 1, 2, 4, 5, and 25, the subgroups of order 4 are conjugate to each other, and the subgroups of order 25 are conjugate to each other. It is not necessarily the case that the subgroups of order 2 are conjugate or that the subgroups of order 5 are conjugate.

Definition 1.1. Let G be a finite group and p be a prime. Any subgroup of G whose order is the highest power of p dividing #G is called a p-Sylow subgroup of G. A p-Sylow subgroup for some p is called a Sylow subgroup.

In a group of order 100, a 2-Sylow subgroup has order 4, a 5-Sylow subgroup has order 25, and a p-Sylow subgroup is trivial if $p \neq 2$ or 5.

In a group of order 12, a 2-Sylow subgroup has order 4, a 3-Sylow subgroup has order 3, and a p-Sylow subgroup is trivial if p > 3. Let's look at a few examples of Sylow subgroups in groups of order 12.

Example 1.2. In $\mathbb{Z}/(12)$, the only 2-Sylow subgroup is $\{0, 3, 6, 9\} = \langle 3 \rangle$ and the only 3-Sylow subgroup is $\{0, 4, 8\} = \langle 4 \rangle$.

Example 1.3. In A_4 there is one subgroup of order 4, so the only 2-Sylow subgroup is

 $\{(1), (12)(34), (13)(24), (14)(23)\} = \langle (12)(34), (14)(23) \rangle.$

There are four 3-Sylow subgroups:

 $\{(1), (123), (132)\} = \langle (123) \rangle, \quad \{(1), (124), (142)\} = \langle (124) \rangle, \\ \{(1), (134), (143)\} = \langle (134) \rangle, \quad \{(1), (234), (243)\} = \langle (234) \rangle.$

Example 1.4. In D_6 there are three 2-Sylow subgroups:

 $\{1, r^3, s, r^3s\} = \langle r^3, s \rangle, \quad \{1, r^3, rs, r^4s\} = \langle r^3, rs \rangle, \quad \{1, r^3, r^2s, r^5s\} = \langle r^3, r^2s \rangle.$ The only 3-Sylow subgroup of D_6 is $\{1, r^2, r^4\} = \langle r^2 \rangle.$

In a group of order 24, a 2-Sylow subgroup has order 8 and a 3-Sylow subgroup has order 3. Let's look at two examples.

Example 1.5. In S_4 , the 3-Sylow subgroups are the 3-Sylow subgroups of A_4 (an element of 3-power order in S_4 must be a 3-cycle, and they all lie in A_4). We determined the 3-Sylow subgroups of A_4 in Example 1.3; there are four of them.

There are three 2-Sylow subgroups of S_4 , and they are interesting to work out since they can be understood as *copies of* D_4 *inside* S_4 . The number of ways to label the four vertices of a square as 1, 2, 3, and 4 is 4! = 24, but up to rotations and reflections of the square there are really just three different ways of carrying out the labeling, as follows.

Any other labeling of the square is a rotated or reflected version of one of these three squares. For example, the square below is obtained from the middle square above by reflecting across a horizontal line through the middle of the square.

When D_4 acts on a square with labeled vertices, each motion of D_4 creates a permutation of the four vertices, and this permutation is an element of S_4 . For example, a 90 degree rotation of the square is a 4-cycle on the vertices. In this way we obtain a copy of D_4 inside S_4 . The three essentially different labelings of the vertices of the square above embed D_4 into S_4 as three different subgroups of order 8:

- $\{1, (1234), (1432), (12)(34), (13)(24), (14)(23), (13), (24)\} = \langle (1234), (13) \rangle, \langle 13 \rangle \rangle$
- $\{1, (1243), (1342), (12)(34), (13)(24), (14)(23), (14), (23)\} = \langle (1243), (14) \rangle, \langle 14 \rangle \rangle, \langle$
- $\{1, (1324), (1423), (12)(34), (13)(24), (14)(23), (12), (34)\} = \langle (1324), (12) \rangle.$

These are the 2-Sylow subgroups of S_4 .

Example 1.6. The group $SL_2(\mathbb{Z}/(3))$ has order 24. An explicit tabulation of the elements of this group reveals that there are only 8 elements in the group with 2-power order:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix},$$
$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}$$

These form the only 2-Sylow subgroup, which is isomorphic to Q_8 by labeling the matrices in the first row as 1, i, j, k and the matrices in the second row as -1, -i, -j, -k.

There are four 3-Sylow subgroups: $\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle$, $\langle \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \rangle$, $\langle \begin{pmatrix} 0 & 1 \\ 2 & 2 \end{pmatrix} \rangle$, and $\langle \begin{pmatrix} 0 & 2 \\ 1 & 2 \end{pmatrix} \rangle$.

Here are the Sylow theorems. They are often given in three parts. The result we call Sylow III^{*} is not always stated explicitly as part of the Sylow theorems.

Theorem 1.7 (Sylow I). A finite group G has a p-Sylow subgroup for every prime p and any p-subgroup of G lies in a p-Sylow subgroup of G.

Theorem 1.8 (Sylow II). For each prime p, the p-Sylow subgroups of G are conjugate.

Theorem 1.9 (Sylow III). For each prime p, let n_p be the number of p-Sylow subgroups of G. Write $\#G = p^k m$, where p doesn't divide m. Then

$$n_p \equiv 1 \mod p \text{ and } n_p | m$$

Theorem 1.10 (Sylow III^{*}). For each prime p, let n_p be the number of p-Sylow subgroups of G. Then $n_p = [G : N(P)]$, where P is any p-Sylow subgroup and N(P) is its normalizer.

Sylow II says for two *p*-Sylow subgroups H and K of G that there is some $g \in G$ such that $gHg^{-1} = K$. This is illustrated in the table below.

Example	Group	Size	p	H	K	g
1.3	A_4	12	3	$\langle (123) \rangle$	$\langle (124) \rangle$	(243)
1.4	D_6	12	2	$\langle r^3,s angle$	$\langle r^3, rs angle$	r^2
1.5	S_4	24	2	$\langle (1234), (13) \rangle$	$\langle (1243), (14) \rangle$	(34)
1.6	$\operatorname{SL}_2(\mathbf{Z}/(3))$	24	3	$\langle \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right) \rangle$	$\langle \left(\begin{smallmatrix} 1 & 0 \\ 1 & 1 \end{smallmatrix} \right) \rangle$	$\left(\begin{smallmatrix} 0 & 1 \\ 2 & 1 \end{smallmatrix}\right)$

When trying to conjugate one cyclic subgroup to another cyclic subgroup, be careful: not all generators of the two groups have to be conjugate. For example, in A_4 the subgroups $\langle (123) \rangle = \{(1), (123), (132)\}$ and $\langle (124) \rangle = \{(1), (124), (142)\}$ are conjugate, but the conjugacy class of (123) in A_4 is $\{(123), (142), (134), (243)\}$, so there's no way to conjugate (123) to (124) by an element of A_4 ; we must conjugate (123) to (142). The 3-cycles (123) and (124) are conjugate in S_4 , but not in A_4 . Similarly, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ are conjugate in $\operatorname{GL}_2(\mathbf{Z}/(3))$ but not in $\operatorname{SL}_2(\mathbf{Z}/(3))$, so when Sylow II says the subgroups $\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle$ and $\langle \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \rangle$ are conjugate in $\operatorname{SL}_2(\mathbf{Z}/(3))$ a conjugating matrix must send $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ to $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$.

Let's see what Sylow III tells us about the number of 2-Sylow and 3-Sylow subgroups of a group of order 12. For p = 2 and p = 3 in Sylow III, the divisibility conditions are $n_2|3$ and $n_3|4$ and the congruence conditions are $n_2 \equiv 1 \mod 2$ and $n_3 \equiv 1 \mod 3$. The divisibility conditions imply n_2 is 1 or 3 and n_3 is 1, 2, or 4. The congruence $n_2 \equiv 1 \mod 2$ tells us nothing new (1 and 3 are both odd), but the congruence $n_3 \equiv 1 \mod 3$ rules out the option $n_3 = 2$. Therefore n_2 is 1 or 3 and n_3 is 1 or 4 when #G = 12. If #G = 24 we again find n_2 is 1 or 3 while n_3 is 1 or 4. (For instance, from $n_3|8$ and $n_3 \equiv 1 \mod 3$ the only choices are $n_3 = 1$ and $n_3 = 4$.) Therefore as soon as we find more than one 2-Sylow subgroup there must be three of them, and as soon as we find more than one 3-Sylow subgroup there must be four of them. The table below shows the values of n_2 and n_3 in the examples above.

Group	Size	n_2	n_3
${f Z}/(12)$	12	1	1
A_4	12	1	4
D_6	12	3	1
S_4	24	3	4
$\operatorname{SL}_2(\mathbf{Z}/(3))$	24	1	4

2. Proof of the Sylow Theorems

Our proof of the Sylow theorems will use group actions. The table below is a summary. For each theorem the table lists a group, a set it acts on, and the action. We write $\text{Syl}_p(G)$ for the set of *p*-Sylow subgroups of *G*, so $n_p = \# \text{Syl}_p(G)$.

Theorem	Group	Set	Action
Sylow I	p-subgroup H	G/H	left mult.
Sylow II	p-Sylow subgroup Q	G/P	left mult.
Sylow III $(n_p \equiv 1 \mod p)$	$P \in \operatorname{Syl}_p(G)$	$\operatorname{Syl}_p(G)$	conjugation
Sylow III $(n_p m)$	G^{\uparrow}	$\operatorname{Syl}_p(G)$	conjugation
Sylow III^*	G	$\operatorname{Syl}_p(G)$	conjugation

The two conclusions of Sylow III are listed separately in the table since they are proved using different group actions.

Our proofs will usually involve the action of a *p*-group on a set and use the fixed-point congruence for such actions: $\#X \equiv \#\operatorname{Fix}_{\Gamma}(X) \mod p$, where X is a finite set being acted on by a finite *p*-group Γ .

Proof of Sylow I: Let p^k be the highest power of p in #G. The result is obvious if k = 0, since the trivial subgroup is a p-Sylow subgroup, so we can take $k \ge 1$, hence p | #G.

Our strategy for proving Sylow I is to **prove a stronger result**: there is a subgroup of order p^i for $0 \le i \le k$. More specifically, if $\#H = p^i$ and i < k, we will show there is a *p*-subgroup $H' \supset H$ with [H': H] = p, so $\#H' = p^{i+1}$. Then, starting with H as the trivial subgroup, we can repeat this process with H' in place of H to create a rising tower of subgroups

$$\{e\} = H_0 \subset H_1 \subset H_2 \subset \cdots$$

where $\#H_i = p^i$, and after k steps we reach H_k , which is a p-Sylow subgroup of G.

Consider the left multiplication action of H on the left cosets G/H (this need not be a group). This is an action of a finite *p*-group H on the set G/H, so by the fixed-point congruence for actions of nontrivial *p*-groups,

(2.1)
$$\#(G/H) \equiv \#\operatorname{Fix}_H(G/H) \mod p.$$

Let's unravel what it means for a coset gH in G/H to be a fixed point by the group H under left multiplication:

$$hgH = gH \text{ for all } h \in H \iff hg \in gH \text{ for all } h \in H$$
$$\iff g^{-1}hg \in H \text{ for all } h \in H$$
$$\iff g^{-1}Hg \subset H$$
$$\iff g^{-1}Hg = H \text{ because } \#(g^{-1}Hg) = \#H$$
$$\iff g \in \mathcal{N}(H).$$

Thus $\operatorname{Fix}_H(G/H) = \{gH : g \in \operatorname{N}(H)\} = \operatorname{N}(H)/H$, so (2.1) becomes

(2.2)
$$[G:H] \equiv [\mathcal{N}(H):H] \mod p.$$

Because $H \triangleleft N(H)$, N(H)/H is a group.

When $\#H = p^i$ and i < k, the index [G : H] is divisible by p, so the congruence (2.2) implies [N(H) : H] is divisible by p, so N(H)/H is a group with order divisible by p. Thus N(H)/H has a subgroup of order p by Cauchy's theorem. All subgroups of the quotient group N(H)/H have the form H'/H, where H' is a subgroup between H and N(H). Therefore a subgroup of order p in N(H)/H is H'/H such that [H' : H] = p, so $\#H' = p\#H = p^{i+1}$.

Proof of Sylow II: Pick two p-Sylow subgroups P and Q. We want to show they are conjugate.

Consider the action of Q on G/P by left multiplication. Since Q is a finite p-group,

$$\#(G/P) \equiv \#\operatorname{Fix}_Q(G/P) \mod p.$$

The left side is [G:P], which is nonzero modulo p since P is a p-Sylow subgroup. Thus $\#\operatorname{Fix}_Q(G/P)$ can't be 0, so there is a fixed point in G/P. Call it gP. That is, qgP = gP for all $q \in Q$. Equivalently, $qg \in gP$ for all $q \in Q$, so $Q \subset gPg^{-1}$. Therefore $Q = gPg^{-1}$, since Q and gPg^{-1} have the same size.

Proof of Sylow III: We will prove $n_p \equiv 1 \mod p$ and then $n_p | m$.

To show $n_p \equiv 1 \mod p$, consider the action of P on the set $\operatorname{Syl}_p(G)$ by conjugation. The size of $\operatorname{Syl}_p(G)$ is n_p . Since P is a finite p-group,

$$n_p \equiv \#\{\text{fixed points}\} \mod p$$
.

Fixed points for P acting by conjugation on $\operatorname{Syl}_p(G)$ are $Q \in \operatorname{Syl}_p(G)$ such that $gQg^{-1} = Q$ for all $g \in P$. One choice for Q is P. For any such $Q, P \subset \operatorname{N}(Q)$. Also $Q \subset \operatorname{N}(Q)$, so Pand Q are p-Sylow subgroups in $\operatorname{N}(Q)$. Applying Sylow II to the group $\operatorname{N}(Q)$, P and Q are conjugate in $\operatorname{N}(Q)$. Since $Q \triangleleft \operatorname{N}(Q)$, the only subgroup of $\operatorname{N}(Q)$ conjugate to Q is Q, so P = Q. Thus P is the only fixed point when P acts on $\operatorname{Syl}_p(G)$, so $n_p \equiv 1 \mod p$.

To show $n_p|m$, consider the action of G by conjugation on $\operatorname{Syl}_p(G)$. Since the p-Sylow subgroups are conjugate to each other (Sylow II), there is one orbit. A set on which a group acts with one orbit has size dividing the size of the group, so $n_p|\#G$. From $n_p \equiv 1 \mod p$, the number n_p is relatively prime to p, so $n_p|m$.

Proof of Sylow III^{*}: Let P be a p-Sylow subgroup of G and let G act on $Syl_p(G)$ by conjugation. By the orbit-stabilizer formula,

$$n_p = \#\operatorname{Syl}_p(G) = [G : \operatorname{Stab}_{\{P\}}].$$

The stabilizer $\operatorname{Stab}_{\{P\}}$ is

$$\operatorname{Stab}_{\{P\}} = \{g : gPg^{-1} = P\} = \operatorname{N}(P).$$

Thus $n_p = [G : \mathcal{N}(P)].$

3. HISTORICAL REMARKS

Sylow's proof of his theorems appeared in [1]. Here is what he showed (of course, without using the label "Sylow subgroup").

- 1) There exist p-Sylow subgroups. Moreover, $[G : N(P)] \equiv 1 \mod p$ for any p-Sylow subgroup P.
- 2) Let P be a p-Sylow subgroup. The number of p-Sylow subgroups is [G : N(P)]. All p-Sylow subgroups are conjugate.
- 3) Any finite p-group G with size p^k contains an increasing chain of subgroups

$$\{e\} = G_0 \subset G_1 \subset G_2 \subset \cdots \subset G_k \subset G_2$$

where each subgroup has index p in the next one. In particular, $\#G_i = p^i$ for all i. Here is how Sylow phrased his first theorem (the first item on the above list):¹

¹We modify some of his notation: he wrote the subgroup as g, not H, and the prime as n, not p.

Si p^{α} désigne la plus grande puissance du nombre premier p qui divise l'ordre du groupe G, ce groupe contient un autre H de l'ordre p^{α} ; si de plus $p^{\alpha}\nu$ désigne l'ordre du plus grand groupe contenu dans G dont les substitutions sont permutables à H, l'ordre de G sera de la forme $p^{\alpha}\nu(pm+1)$.

In English, using current terminology, this says

If p^{α} is the largest power of the prime p which divides the size of the group G, this group contains a subgroup H of order p^{α} ; if moreover $p^{\alpha}\nu$ is the size of the largest subgroup of G that normalizes H, the size of G is of the form $p^{\alpha}\nu(pm+1)$.

Sylow did not have the abstract concept of a group: all groups for him arise as subgroups of symmetric groups, so groups are always "groupes de substitutions." The condition that an element $x \in G$ is "permutable" with a subgroup H means xH = Hx, or in other words $x \in N(H)$. The end of the first part of his theorem says the normalizer of a Sylow subgroup has index pm + 1 for some m, which means the index is $\equiv 1 \mod p$.

References

[1] L. Sylow, Théorèmes sur les groupes de substitutions, Mathematische Annalen 5 (1872), 584–594.