
CYCLICITY OF (Z/(p))×

KEITH CONRAD

1. Introduction

For any prime p, the group (Z/(p))× is cyclic. We will give six proofs of this funda-
mental result. A common feature of the proofs that (Z/(p))× is cyclic is that they are
non-constructive. Up to this day, there is no algorithm known for finding a generator of
(Z/(p))× other than a brute force search: try a = 2, 3, . . . until you find an element with
order p− 1.

While the proof that a generator of (Z/(p))× exists is non-constructive, in practice it
does not take long to find a generator by a brute-force search. The non-constructive proof
that a generator exists gives us the confidence that our search for a generator will be
successful before we even begin. By comparison, for most (but not all) non-prime m the
group (Z/(m))× is not cyclic. For example, (Z/(12))× is not cyclic: it has size 4 but each
element has order 1 or 2.

While the cyclicity of (Z/(p))× is important in algebra, it also has practical significance.
A choice of generator of (Z/(p))× is one of the ingredients in two public key cryptosystems:
Diffie-Hellman (this is the original public key system, if we discount earlier classified work
by British intelligence) and ElGamal. You can find out how these cryptosystems work by
doing a web search on their names.

The following result is needed in all but one proof that (Z/(p))× is cyclic, so we state it
first.

Theorem 1.1. For any r ≥ 1, there are at most r solutions to the equation ar = 1 in
Z/(p).

A proof of Theorem 1.1 is given in Appendix A. Theorem 1.1 is a special case of a
broader result on polynomials: any polynomial with coefficients in Z/(p) has no more roots
in Z/(p) than its degree. (The link to Theorem 1.1 is that the equation ar = 1 is satisfied
by the roots of the polynomial T r − 1, whose degree is r.) This upper bound breaks down
in Z/(m) for non-prime m, e.g., the polynomial T 2 − 1 has four solutions in Z/(8).

2. First Proof: A ϕ-identity

For our first proof that (Z/(p))× is cyclic, we are going to count the elements with various
orders. In (Z/(p))×, which has size p− 1, the order of any element divides p− 1. For each
positive divisor of p− 1, say d, let Np(d) be the number of elements of order d in (Z/(p))×.
For instance, Np(1) = 1 and the cyclicity of (Z/(p))×, which we want to prove, is equivalent
to Np(p− 1) > 0. Every element has some order, so counting the elements of the group by
order yields

(2.1)
∑

d|(p−1)

Np(d) = p− 1.

1



2 KEITH CONRAD

Theorem 2.1. Let d|p− 1. If Np(d) > 0, then Np(d) = ϕ(d).

Proof. When Np(d) > 0, there is an element of order d in (Z/(p))×, say a. Then the different

solutions to xd = 1 are 1, a, a2, . . . , ad−1. There are at most d solutions, by Theorem 1.1,
and there are d different powers of a, so the powers of a provide all the solutions to xd = 1
in Z/(p). Any element of order d is a solution to xd = 1, and therefore the elements of order
d in (Z/(p))× are exactly the powers ak which have order d. Since ak has order d/(k, d),
which is d exactly when (k, d) = 1, Np(d) is the number of k from 1 to d which are relatively
prime to d. That number is ϕ(d). �

Now we can say, for any d dividing p− 1, that

(2.2) Np(d) ≤ ϕ(d).

Indeed, Theorem 2.1 tells us that Np(d) = 0 or Np(d) = ϕ(d). We now feed (2.2) into (2.1):

(2.3) p− 1 =
∑

d|(p−1)

Np(d) ≤
∑

d|(p−1)

ϕ(d).

We have obtained an inequality for any prime p:

(2.4) p− 1 ≤
∑

d|(p−1)

ϕ(d).

If the inequality in (2.2) is strict (that is, <) for some d dividing p− 1, then the inequality
in (2.3) is strict, and thus the inequality in (2.4) is strict. How sharp is (2.4)? Let’s look at
some examples.

Example 2.2. If p = 5, then
∑

d|4 ϕ(d) = ϕ(1) + ϕ(2) + ϕ(4) = 1 + 1 + 2 = 4.

Example 2.3. If p = 11, then
∑

d|10 ϕ(d) = ϕ(1)+ϕ(2)+ϕ(5)+ϕ(10) = 1+1+4+4 = 10.

Example 2.4. If p = 29, then
∑

d|28 ϕ(d) = ϕ(1) + ϕ(2) + ϕ(4) + ϕ(7) + ϕ(14) + ϕ(28) =
1 + 1 + 2 + 6 + 6 + 12 = 28.

It appears that (2.4) might be an equality! This inspires us to prove it, and the number
being of the form p− 1 is completely irrelevant.

Theorem 2.5. For any n ≥ 1,
∑

d|n ϕ(d) = n. In particular, for a prime p we have∑
d|(p−1) ϕ(d) = p− 1.

Proof. We will count the n fractions

(2.5)
1

n
,

2

n
, · · · n− 1

n
,
n

n
according to their denominator when put in reduced form.

For such a fraction m/n with denominator n, its reduced form denominator is a divisor
of n. How many of these reduced form fractions have a given denominator? Writing
m/n = a/d, where (a, d) = 1, the condition 1 ≤ m ≤ n is equivalent to 1 ≤ a ≤ d.
Therefore the number of fractions in (2.5) with reduced form denominator d is the number
of a between 1 and d with (a, d) = 1. There are ϕ(d) such numbers. Thus, counting the
fractions in (2.5) according to the reduced form denominator, we get

n =
∑
d|n

ϕ(d).

�
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Theorem 2.5 tells us (2.4) is an equality, so the inequalities in (2.2) must all be equalities:
we can’t have Np(d) = 0 at all. (Reread the discussion right after (2.4) if you don’t see this.)
In particular, Np(p−1) > 0, so there is an element of order p−1. We’ve (non-constructively)
proved the existence of a generator!

Let’s summarize the argument again.

Theorem 2.6. For any prime p, the group (Z/(p))× is cyclic.

Proof. For d|(p − 1), let Np(d) be the number of elements of order d in (Z/(p))×. By
Theorem 2.1, Np(d) ≤ ϕ(d). Therefore

p− 1 =
∑

d|(p−1)

Np(d) ≤
∑

d|(p−1)

ϕ(d).

By Theorem 2.5, the sum on the right is p − 1, so the ≤ is an equality. That means the
inequalities Np(d) ≤ ϕ(d) for all d have to be equalities. In particular, Np(p−1) = ϕ(p−1),
which is positive, so there is an element of (Z/(p))× with order p− 1. �

3. Second Proof: One Subgroup per Size

We begin our second proof by establishing a divisibility property among orders of elements
which is peculiar to finite abelian groups. In any finite group, all elements have order
dividing the size of the group. In the abelian setting all orders also divide something else:
the maximal order.

Lemma 3.1. Let G be a finite abelian group. If n is the maximal order among the elements
in G, then the order of every element divides n.

For example, in (Z/(56))×, which has size 24, the orders of elements turn out to be 1,
2, 3, and 6. All orders divide the maximal order 6. In S4, also of size 24, the orders of
elements are 1, 2, 3, and 4. Note 3 does not divide the maximal order 4. (Lemma 3.1 does
not apply to S4, as S4 is non-abelian.)

The reader might want to jump ahead to Theorem 3.3 to see how Lemma 3.1 gets used,
before diving into the proof of Lemma 3.1.

Proof. Let g have the maximal order n. Pick any other h ∈ G, and let h ∈ G have order
m. We want to show m|n. We will assume m does not divide n (this forces m > 1) and
use this non-divisibility to construct an element with order exceeding n. That would be a
contradiction, so m|n.

For instance, if (m,n) = 1, then gh has order mn > n. But that is too easy: we can’t
expect m to have no factors in common with n. How can we use g and h to find an element
with order larger than n just from knowing m (the order of h) does not divide n (the order
of g)? The following example will illustrate the idea before we carry it out in general.

Example 3.2. Suppose n = 96 and m = 18. (That is, g has order 96 and h has order 18.)
Look at the prime factorizations of these numbers:

96 = 25 · 3, 18 = 2 · 32.
Here m does not divide n because there are more 3’s in m than in n. The least common
multiple of m and n is 25 · 32, which is larger than n. We can get an element of that order
by reduction to the relatively prime order case: kill the 3 in 96 by working with g3 and kill
the 2 in 18 by working with h2. That is, g3 has order 96/3 = 25 and h2 has order 18/2 = 9.
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These orders are relatively prime, and the group is abelian, so the product g3h2 has order
25 · 9 > 96. Thus, 96 is not the maximal order in the group.

Now we return to the general case. If m does not divide n, then there is some prime
p whose multiplicity (exponent) as a factor of m exceeds that of n. Let pe be the highest
power of p in m and pf be the highest power of p in n, so e > f . (Quite possibly f = 0,
although in Example 3.2 both e and f were positive.)

Now consider gp
f

and hm/p
e
. The first has order n/pf , which is not divisible by p, and

the second has order pe, which is a pure p-power. These orders are relatively prime. Since

G is abelian, the product gp
f
hm/p

e
has order

n

pf
pe = npe−f > n.

This contradicts the maximality of n as an order in G, so we have reached a contradiction.
�

The following will be our criterion for showing a group is cyclic. Recall that in a cyclic
group there is just one subgroup of any size. Assuming the group is abelian, the converse
holds.

Theorem 3.3. Let G be a finite abelian group with at most one subgroup of any size. Then
G is cyclic.

Proof. Let n be the maximal order among the elements of G, and let g ∈ G be an element
with order n. We will show every element of G is a power of g, so G = 〈g〉.

Pick any h ∈ G, and say h has order d. Since d|n by Lemma 3.1, we can write down

another element of order d: gn/d. Thus we have two subgroups of size d: 〈h〉 and 〈gn/d〉.
By hypothesis, these subgroups are the same: 〈h〉 = 〈gn/d〉. In particular, h ∈ 〈gn/d〉 ⊂ 〈g〉,
so h is a power of g. Since h was arbitrary in G, G = 〈g〉. �

Remark 3.4. Is the abelian hypothesis in Theorem 3.3 necessary? That is, are there any
non-abelian groups with one subgroup of each size? No. A finite group with at most one
subgroup of each size must be cyclic, even if we don’t assume at first that the group is
abelian. However, to prove this without an abelian hypothesis is quite a bit more involved
than the proof of Theorem 3.3. (Where did we use the abelian hypothesis in the proof of
Theorem 3.3?)

Now we are ready to show (Z/(p))× is cyclic.

Theorem 3.5. For any prime p, the group (Z/(p))× is cyclic.

Proof. We will show (Z/(p))× satisfies the hypothesis of Theorem 3.3: it has at most one
subgroup of any size. Let H ⊂ (Z/(p))× be a subgroup, with size (say) d. Then every
a ∈ H satisfies ad = 1 in Z/(p), so every element of H is a d-th root of unity: H is a subset
of the solutions to xd = 1. By Theorem 1.1, there are at most d solutions to xd = 1 in
Z/(p). Since d is the size of H (by definition), we filled up the d-th roots of unity using H:

H = {x ∈ Z/(p) : xd = 1}.

The right side is completely determined by d. We have shown there is at most one subgroup
of (Z/(p))× with size d, for any d, so Theorem 3.3 applies. �
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4. Third Proof: Bounding with the Maximal Order

Our third proof that (Z/(p))× is cyclic will apply Lemma 3.1 from the second proof,
but in a different way. That lemma says that in any finite abelian group, the order of any
element divides the maximal order of the elements in the group. Review Lemma 3.1 after
seeing how it gets used here.

Theorem 4.1. For any prime p, the group (Z/(p))× is cyclic.

Proof. Let n be the maximal order among the elements in (Z/(p))×. We want to show
n = p − 1, so there is an element of order p − 1. Obviously n ≤ p − 1. (More precisely,
n|(p− 1), but the crude inequality will suffice.)

Every element has order dividing n, by Lemma 3.1, so each a ∈ (Z/(p))× satisfies an = 1.
Theorem 1.1 says the equation xn = 1 has at most n solutions in Z/(p). We already
produced p− 1 different solutions (namely all of (Z/(p))×), so p− 1 ≤ n.

Comparing the two inequalities, n = p − 1. Thus there is an element of order p − 1, so
(Z/(p))× is cyclic. �

5. Fourth Proof: Prime-Power Subgroups are Cyclic

Our next proof that (Z/(p))× is cyclic is going to use the theory of polynomials over Z/(p)
in a more substantial manner than just Theorem 1.1. We will need to know that polynomials
with coefficients in Z/(p) have unique factorization into irreducible polynomials.

Example 5.1. With coefficients in Z/(3), the irreducible factorization of T 7 + 2T 6 + T 5 +
T 4 + T + 2 is

(T 2 + T + 2)2(T 3 + 2T + 2).

This is analogous to the unique factorization of integers into primes; both are conse-
quences of the division theorem (for integers or for polynomials). Find a proof of unique
factorization in the integers in a book and check the proof carries over almost verbatim
to the case of polynomials with coefficients in Z/(p). (We are not saying there is unique
factorization in Z/(p), but in polynomials with coefficients in Z/(p), like T 2 + T + 3 and
so on.) While the proof for unique factorization uses induction on the size of integers, the
proof for polynomials uses induction on the degree of polynomials. That is about the only
difference between the two proofs.

We start our study of (Z/(p))× with a polynomial factorization.

Theorem 5.2. Working with coefficients in Z/(p), the polynomial T p−1− 1 is a product of
linear factors:

T p−1 − 1 = (T − 1)(T − 2)(T − 3) · · · (T − (p− 1)).

Proof. For every a 6≡ 0 mod p, ap−1 ≡ 1 mod p, or ap−1 = 1 in Z/(p). Therefore the
polynomial T p−1 − 1, considered over Z/(p), has a as a root. Since a is a root, T − a is a
factor (see Lemma A.2). Thus, T p−1− 1 is divisible by each T − a as a runs over (Z/(p))×.
This gives us factors T − 1, T − 2, . . . , T − (p− 1). These p− 1 factors are relatively prime
to each other (they’re linear, with different roots), so (by a polynomial analogue of Bezout)
their product is a factor:

T p−1 − 1 = (T − 1)(T − 2)(T − 3) · · · (T − (p− 1))h(T )

for some polynomial h(T ). Comparing degrees on both sides, we see h(T ) has degree 0,
so h(T ) is a constant. Now comparing leading coefficients on both sides, we must have
h(T ) = 1. �
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Example 5.3. Take p = 7. Treating coefficients as elements of Z/7Z, the polynomial
(T − 1)(T − 2)(T − 3)(T − 4)(T − 5)(T − 6) can be rewritten as

(T − 1)(T − 2)(T − 3)(T + 3)(T + 2)(T + 1) = (T 2 − 1)(T 2 − 4)(T 2 − 9)

= (T 4 − 5T 2 + 4)(T 2 − 9)

= T 6 − 14T 4 + 49T 2 − 36

= T 6 − 1.

Corollary 5.4. If d|(p− 1), there are exactly d solutions to the equation T d = 1 in Z/(p).

Notice this strengthens Theorem 1.1, and it could be used in place of Theorem 1.1 to
shorten the first two proofs that (Z/(p))× is cyclic.

Proof. Since d|(p−1), the polynomial T d−1 is a factor of T p−1−1. Indeed, write p−1 = dm.
Then we have a polynomial identity

Tm − 1 = (T − 1)(Tm−1 + Tm−2 + · · ·+ T + 1).

Replace T with T d in this identity; Tm−1 becomes T p−1−1 and T −1 becomes T d−1. The
other factor on the right side becomes another polynomial. We have an equation showing
T d − 1 is a factor of T p−1 − 1.

Over Z/(p), T p−1 − 1 breaks up into distinct linear factors by Theorem 5.2. Therefore,
by unique factorization of polynomials over Z/(p), its factor T d − 1 must be a product of
some of those linear factors. Counting degrees, T d − 1 must be a product of d of those
linear factors. The linear factors all have different roots, so T d − 1 has d different solutions
in Z/(p) when d|(p− 1). �

Corollary 5.4 tells us T d = 1 has d solutions in Z/(p), but it does not tell us there is an
element of order d. For the case of prime power d, however, we will now derive exactly such
a result.

Corollary 5.5. If qe is a prime power dividing p− 1, with e ≥ 1, then there is an element
of order qe in (Z/(p))×.

Proof. By Corollary 5.4, the polynomial T q
e−1 has qe different roots in Z/(p) and T q

e−1−1
has qe−1 different roots (this would be nonsense if e = 0; we really do need e > 0). Since
qe > qe−1, our count of roots shows there must be a root, say a, of T q

e − 1 which is not a

root of T q
e−1 − 1. That means aq

e
= 1 but aq

e−1 6= 1, so a has order qe in (Z/(p))×. �

Theorem 5.6. For any prime p, the group (Z/(p))× is cyclic.

Proof. Write p− 1 as a product of primes:

p− 1 = qe11 q
e2
2 · · · q

em
m .

By Corollary 5.5, for each i from 1 to m there is an element ai of (Z/(p))× with order qeii .
These orders are relatively prime, and (Z/(p))× is abelian, so the product of the ai’s has
order equal to the product of the qeii ’s, which is p − 1. Thus, the product a1a2 · · · am is a
generator of (Z/(p))×. �
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6. Fifth proof: the Chinese Remainder Theorem

The fifth proof that (Z/(p))× is cyclic will, like the fourth proof, focus on prime power
factors of p− 1.

Our new tool is the following theorem about finite abelian groups whose order is a prime
power.

Theorem 6.1. Let A be a finite abelian group of order qs, where q is a prime. If A is not
cyclic, then there are more than q solutions in A to the equation xq = 1.

Proof. All elements of A have q-power order. Since A is not cyclic, s ≥ 2. Let the maximal
order of an element of A be qt, so t < s. Pick g ∈ A with this order:

#〈g〉 = qt.

The element gq
t−1

has order q, and its powers provide q solutions to the equation xq = 1.
We now aim to find an element of A outside of the subgroup 〈g〉 which also has order q.
This will provide another solution to xq = 1, and thus prove the theorem.

For any h ∈ A with h 6∈ 〈g〉, there is some q-power hq
k

which lies in 〈g〉. After all, h
has q-power order, so at the very least some q-power of h is the identity (which is in 〈g〉).
Necessarily k ≥ 1. It may happen that the first q-power of h which lands in 〈g〉 is not the
identity. After all, a q-power of h could land inside 〈g〉 before we run through every possible
power of h (hitting the identity at the last exponent).

Let ` be the smallest integer ≥ 1 such that some element in A outside of 〈g〉 has its q`-th
power inside 〈g〉. We claim ` = 1. That is, some element outside 〈g〉 has its q-th power

inside 〈g〉. Indeed, suppose ` > 1 and let h0 be an element outside of 〈g〉 with hq
`

0 ∈ 〈g〉.
Then hq

`−1

0 6∈ 〈g〉 by minimality of `, yet this element itself satisfies (hq
`−1

0 )q ∈ 〈g〉, so there
is an element whose ‘`’ is 1. Thus ` = 1.

Take h1 to be such an element outside 〈g〉 with hq1 ∈ 〈g〉, say hq1 = gn. Since h1 has (like
all elements of A) order dividing qt, the order of hq1 is at most qt−1. Then gn has order at
most qt−1, so q must divide n. (Otherwise n is relatively prime to the order of g, which
would imply gn = hq1 has order qt, and that is not correct.) Setting n = qr, we have

hq1 = gqr.

Then (h1g
−r)q = 1 and h1g

−r 6∈ 〈g〉 (after all, h1 6∈ 〈g〉), so h1g
−r is an element of order q

in A which lies outside of 〈g〉. �

Remark 6.2. In Remark 3.4, it was noted that Theorem 3.3 is true (but harder to prove)
without an abelian hypothesis. What about Theorem 6.1? Is its conclusion correct if we
don’t make an initial abelian hypothesis? Yes if q is an odd prime, but no if q = 2. For
instance, Q8 is not cyclic but it has only two solutions to x2 = 1. This is not a quirk about
Q8: there are infinitely many non-abelian groups of 2-power order having only two solutions
to x2 = 1.

Theorem 6.3. For any prime p, the group (Z/(p))× is cyclic.

Proof. Write p − 1 = qe11 q
e2
2 · · · qemm , where the qi’s are different primes (and each ei is

positive). Set

Ai = {a ∈ (Z/(p))× : aq
ei
i = 1}.

This is a subgroup of (Z/(p))×, and all of its elements have qi-power order, so #Ai is a
power of qi by Cauchy’s theorem.
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If Ai is not cyclic, then Theorem 6.1 says Ai has more than qi solutions to the equation
xqi = 1. However, we know this equation has no more than qi solutions in Z/(p) by Theorem
1.1. Thus we have reached a contradiction, so Ai is cyclic. (We do not yet, however, know
the order of Ai, except that it is a qi-power. We may expect, though, that #Ai = qeii .)

Write Ai = 〈ai〉. We are going to show a1, a2, . . . , am together generate (Z/(p))×. Then
we will show the single product a1a2 · · · am is a generator of the group.

Dividing p− 1 by each of qe11 , . . . , q
em
m , we get the integers

p− 1

qe11
,
p− 1

qe22
, . . . ,

p− 1

qemm
.

These have no collective common prime factor, so some Z-combination of them is equal to
1 (iterated Bezout?):

m∑
i=1

ci
p− 1

qeii
= 1,

where ci ∈ Z. Then any a ∈ (Z/(p))× can be written as

a = a1 = a
∑

i ci(p−1)/q
ei
i =

m∏
i=1

aci(p−1)/q
ei
i .

Since the i-th factor has order dividing qeii (raise it to the qeii -th power as a check), it lies
in Ai and thus the i-th factor is a power of ai. Therefore a is a product of powers of the
ai’s, which means

(Z/(p))× = 〈a1, a2, . . . , am〉.
To end the proof, we show that any product of powers an1

1 a
n2
2 · · · anm

m is equal to a single
power (a1a2 · · · am)n. Considering that each ai has order dividing qeii , we could find such
an n by trying to solve the simultaneous congruences

n ≡ n1 mod qe11 , n ≡ n2 mod qe22 , . . . , n ≡ nm mod qemm .

(Then ani
i = ani .) Can we solve all of these congruences with a common n? Absolutely: the

moduli are pairwise relatively prime, so just use the Chinese Remainder Theorem. �

Remark 6.4. The arguments in this proof really showed something quite general about
finite abelian groups. If A is a finite abelian group and p is any prime, let Ap be the
subgroup of elements with p-power order. Then A is cyclic if and only if Ap is cyclic for
every p. (If p does not divide A, then Ap is trivial.)

7. Sixth Proof: Cyclotomic Polynomials

In our final proof that (Z/(p))× is cyclic, we will actually write down a polynomial factor
of T p−1 − 1 whose roots in Z/(p) are (precisely) the generators of (Z/(p))×! It almost
sounds like a constructive proof of cyclicity. But there is a catch: while we will construct
this special polynomial and show it has roots in Z/(p), the proof of the existence of these
roots will give no recipe for finding them (and thus no recipe for finding generators). So
this proof is just as non-constructive as the other proofs. Like the fourth proof, we will use
unique factorization for polynomials with coefficients in Z/(p).

The new polynomials we now meet are the cyclotomic polynomials. We will define them
first as polynomials with complex coefficients. Then we will prove that the coefficients of
are in fact integers, so it makes sense to reduce the coefficients modulo p. Finally we will
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show one of the cyclotomic polynomials, when reduced modulo p, decomposes into linear
factors and its roots in Z/(p) are generators of (Z/(p))×.

In the complex numbers, let ρn be the basic n-th root of unity cos(2π/n) + i sin(2π/n) =

e2πi/n. It has order n and the other roots of unity with order n are ρjn where 1 ≤ j ≤ n and
(j, n) = 1. Define the n-th cyclotomic polynomial Φn(T ) to be the polynomial having for
its roots the roots of unity in C with order n:

(7.1) Φn(T ) :=
n∏

j=1
(j,n)=1

(T − ρjn).

For instance, Φ1(T ) = T − 1, Φ2(T ) = T + 1, and Φ4(T ) = (T − i)(T + i) = T 2 + 1.
Since (7.1) is a product of linear polynomials, indexed by integers from 1 to n which are

relatively prime to n, Φn(T ) has degree ϕ(n) (hence the notation for the polynomial itself;
Φ is a capital Greek ϕ). While the definition of Φn(T ) involves complex linear factors,
the polynomials themselves, after all the factors are multiplied out, actually have integer
coefficients. Here is a table listing the first 12 cyclotomic polynomials.

n Φn(T )
1 T − 1
2 T + 1
3 T 2 + T + 1
4 T 2 + 1
5 T 4 + T 3 + T 2 + T + 1
6 T 2 − T + 1
7 T 6 + T 5 + T 4 + T 3 + T 2 + T + 1
8 T 4 + 1
9 T 6 + T 3 + 1
10 T 4 − T 3 + T 2 − T + 1
11 T 10 + T 9 + T 8 + T 7 + T 6 + T 5 + T 4 + T 3 + T 2 + T + 1
12 T 4 − T 2 + 1

There are evidently a lot of patterns worth exploring here. For instance, Φ8 resembles
Φ4, which resembles Φ2, Φ10 is similar to Φ5, Φ12 seems related to Φ6, which is close to Φ3.
The constant term of Φn(T ), for n > 1, seems to be 1. Maybe the most striking pattern,
which persists for the first 100 cyclotomic polynomials, is that the coefficients are all 0, 1,
or −1. We will not determine whether or not this is always true (life needs some tantalizing
mysteries), but let’s show at least that all the coefficients are integers. First a factorization
lemma is needed.

Lemma 7.1. For n ≥ 1, Tn − 1 =
∏
d|n Φd(T ).

Proof. The roots of Tn − 1 are the n-th roots of unity, so (by the same reasoning as in
Theorem 5.2) we can write

(7.2) Tn − 1 =
∏
ρn=1

(T − ρ),

where the product runs over the n-th roots of unity ρ ∈ C. Every n-th root of unity has
some order dividing n. For each d dividing n, collect together the linear factors T − ρ
corresponding to roots of unity with order d. The product of these factors is Φd(T ), by the
definition of Φd(T ). Thus, we have transformed (7.2) into the desired formula. �
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Example 7.2. Taking n = 4,∏
d|4

Φd(T ) = Φ1(T )Φ2(T )Φ4(T ) = (T − 1)(T + 1)(T 2 + 1) = T 4 − 1.

Example 7.3. Taking n = p a prime number, T p − 1 = (T − 1)Φp(T ). Thus, we can
explicitly compute

Φp(T ) =
T p − 1

T − 1
= 1 + T + T 2 + · · ·+ T p−1.

Notice the coefficients here all equal 1.

Theorem 7.4. For every n ≥ 1, the coefficients of Φn(T ) are in Z.

Proof. We will argue by induction on n. Since Φ1(T ) = T − 1, we can take n > 1 and
assume Φm(T ) has integer coefficients for m < n. In Lemma 7.1, we can pull out the term
at d = n:

(7.3) Tn − 1 =
∏
d|n
d6=n

Φd(T ) · Φn(T ).

Let Bn(T ) =
∏
d|n,d 6=n Φd(T ), so

(7.4) Tn − 1 = Bn(T )Φn(T ).

By induction, Φd(T ) has integer coefficients when d is a proper divisor of n, so Bn(T ) has
integer coefficients. Each Φd(T ) has leading coefficient 1, so Bn(T ) does as well. All we
know about Φn(T ) is that it has complex coefficients. We want to deduce from (7.4) that
its coefficients are integers.

Let’s cook up a second divisibility relation between Tn−1 and Bn(T ) in a completely dif-
ferent way: the usual division of (complex) polynomials, leaving a quotient and remainder.
We have

(7.5) Tn − 1 = Bn(T )Q(T ) +R(T ),

where R(T ) = 0 or 0 ≤ degR < degBn. When we divide one polynomial by another and
both have integer coefficients, the quotient and remainder may not have integer coefficients.
For instance,

T 2 + 1 = (2T + 1)

(
1

2
T − 1

4

)
+

5

4
.

However, if the divisor has leading coefficient 1, then everything stays integral, e.g., T 2+1 =
(T + 1)(T − 1) + 2. Briefly, the source of all denominators in the quotient and remainder
comes from the leading coefficient of the divisor, so when it is 1, no denominators are
introduced. Thus, since Bn(T ) has integer coefficients and leading coefficient 1, Q(T ) and
R(T ) have integer coefficients.

We now compare our two relations (7.4) and (7.5). Since division of polynomials (with,
say, complex coefficients) has unique quotient and remainder, we must have Φn(T ) = Q(T )
and 0 = R(T ). In particular, since Q(T ) has integer coefficients, we have proved Φn(T ) has
integer coefficients! �

Theorem 7.5. For any prime p, the group (Z/(p))× is cyclic.
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Proof. Consider the factorization

(7.6) T p−1 − 1 =
∏

d|(p−1)

Φd(T ).

All polynomials appearing here have integer coefficients. Collect the Φd(T ) with d 6= p− 1
into a single term:

(7.7) T p−1 − 1 = Φp−1(T )H(T ),

where H(T ) has integer coefficients.
Reducing the coefficients in (7.7) modulo p lets us view (7.7) as a polynomial identity

over Z/(p). By Theorem 5.2, the left side of (7.7) breaks up into distinct linear factors over
Z/(p). Therefore, by unique factorization for polynomials with coefficients in Z/(p), the
two factors on the right side of (7.7) are products of linear polynomials over Z/(p) (as many
linear polynomials as the degree of the factor). Therefore Φp−1(T ) does have a root (in
fact, ϕ(p− 1) roots) in Z/(p). Let a ∈ Z/(p) be a root of Φp−1(T ). Certainly a 6= 0, since
0 is not a root of T p−1 − 1. Thus a ∈ (Z/(p))×. We will show the order of a in (Z/(p))× is
p− 1, so it is a generator.

Let d be the order of a in (Z/(p))×, so d|p − 1. Could we have d < p − 1? Assume so.
(We will get a contradiction and then we will be done.) Since d is the order of a, ad− 1 = 0
in Z/(p). Now consider the factorization of T d − 1 given by Theorem 7.1:

T d − 1 =
∏
k|d

Φk(T ).

This identity between polynomials with integer coefficients can be viewed as an identity
between polynomials with coefficients in Z/(p) by reducing all the coefficients modulo p.
Setting T = a in this formula, the left side vanishes (in Z/(p)), so Φk(a) is 0 for some k
dividing d. (In fact, it is Φd(a) which vanishes, but we don’t need to know that.) Once
Φk(a) vanishes, Lemma A.2 tells us T − a is a factor of Φk(T ). Thus, in (7.6), T − a is
a factor twice: once in Φp−1(T ) (that is how we defined a) and also as a factor in Φk(T )
for some k dividing d. But the factorization of T p−1 − 1 in Theorem 5.2 has distinct linear
factors. We have a contradiction with unique factorization, so our assumption that d < p−1
was in error: d = p− 1, so a is a generator of (Z/(p))×. �

Example 7.6. Taking p = 7, Φp−1(T ) = Φ6(T ) = T 2 − T + 1. Its roots in Z/7Z are 3 and
5 (note Φ6(3) = 7 and Φ6(5) = 21, which both vanish modulo 7). These are the generators
of (Z/7Z)×, as you can check directly.

Appendix A. Proof of Theorem 1.1

Theorem 1.1 says that, for any integer r ≥ 1, there are at most r solutions to the equation
xr = 1 in Z/(p). We are going to prove this as a special case of a more general result.

Theorem A.1. Let f(T ) be a non-constant polynomial with coefficients in Z/(p), of degree
d. Then f(T ) has at most d roots in Z/(p).

Theorem 1.1 is the special case f(T ) = T r − 1.
To prove Theorem A.1, we will need a preliminary lemma connecting roots and linear

factors. (We state the theorem with coefficients in either C or Z/(p) because both versions
are needed in different proofs that (Z/(p))× is cyclic.)
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Lemma A.2. Let f(T ) be a non-constant polynomial with coefficients in C or in Z/(p).
For a in C or Z/(p), f(a) = 0 if and only if T − a is a factor of f(T ).

Proof. If T −a is a factor of f(T ), then f(T ) = (T −a)h(T ) for some polynomial h(T ), and
substituting a for T shows f(a) = 0.

Conversely, suppose f(a) = 0. Write the polynomial as

(A.1) f(T ) = cnT
n + cn−1T

n−1 + · · ·+ c1T + c0,

where cj ∈ C or Z/(p). Then

(A.2) 0 = cna
n + cn−1a

n−1 + · · ·+ c1a+ c0.

Subtracting (A.2) from (A.1), the terms c0 cancel and we get

(A.3) f(T ) = cn(Tn − an) + cn−1(T
n−1 − an−1) + · · ·+ c1(T − a).

Since

T j − aj = (T − a)(T j−1 + aT j−2 + · · ·+ aiT j−1−i + · · ·+ aj−2T + aj−1),

each term on the right side of (A.3) has a factor of T − a. Factor this out of each term, and
we obtain f(T ) = (T − a)g(T ), where g(T ) is another polynomial with coefficients in C or
Z/(p). �

Now we prove Theorem A.1.

Proof. We induct on the degree d of f(T ). Note d ≥ 1.
A polynomial of degree 1 has the form f(T ) = aT + b, where a and b are in Z/(p) and

a 6= 0. This has exactly one root in Z/(p), namely −b/a, and thus at most one root in
Z/(p). That settles the theorem for d = 1.

Now assume the theorem is true for all polynomials with coefficients in Z/(p) of degree
d. We verify the theorem for all polynomials with coefficients in Z/(p) of degree d+ 1.

A polynomial of degree d+ 1 is

(A.4) f(T ) = cd+1T
d+1 + cdT

d + · · ·+ c1T + c0,

where cj ∈ Z/(p) and cd+1 6= 0. If f(T ) has no roots in Z/(p), then we’re done, since
0 ≤ d+ 1. If f(T ) has a root in Z/(p), say r, then Lemma A.2 tells us f(T ) = (T − r)g(T ),
where g(T ) is another polynomial with coefficients in Z/(p), of degree d (why degree d?).
We can therefore apply the inductive hypothesis to g(T ) and conclude that g(T ) has at
most d roots in Z/(p). Since f(a) = (a − r)g(a), and a product of numbers in Z/(p) is 0
only when one of the factors is 0 (this would be false if our modulus was composite rather
than prime!), we see that any root of f(T ) in Z/(p) is either r or is a root of g(T ). Thus,
f(T ) has at most d+ 1 roots in Z/(p). As f(T ) was an arbitrary polynomial of degree d+ 1
with coefficients in Z/(p), we are done with the inductive step. �

Remark A.3. There were two cases considered in the inductive step: when f(T ) has a
root in Z/(p) and when it does not. Certainly one of those cases must occur, but in any
particular example we don’t know which occurs without actually searching for roots. This
is why the theorem is not effective. It gives us an upper bound on the number of roots,
but does not give us any tools to decide if there is even one root in Z/(p) for a particular
polynomial.


