
CONJUGATION IN A GROUP

KEITH CONRAD

1. Introduction

A reflection across one line in the plane is, geometrically, just like a reflection across any
other line. That is, any two reflections in the plane have the same type of effect on the plane.
Similarly, two permutations of a set that are both transpositions (swapping two elements
while fixing everything else) look the same except for the choice of the pairs getting moved.
So all transpositions have the same type of effect on the elements of the set. The concept
that makes this notion of “same except for the point of view” precise is called conjugacy.

In a group G, two elements g and h are called conjugate when

h = xgx−1

for some x ∈ G. The relation is symmetric, since g = yhy−1 with y = x−1. When
xgx−1 = h, we say x conjugates g to h. (Warning: when some people say “x conjugates g
to h” they mean x−1gx = h instead of xgx−1 = h.)

Example 1.1. In S3, what are the conjugates of (12)? We make a table of σ(12)σ−1 for
all σ ∈ S3.

σ (1) (12) (13) (23) (123) (132)
σ(12)σ−1 (12) (12) (23) (13) (23) (13)

The conjugates of (12) are in the second row: (12), (13), and (23). Notice the redundancy
in the table: each conjugate of (12) arises in two ways.

We will see in Theorem 4.4 that in Sn any two transpositions are conjugate. In Appendix
A is a proof that the reflections across any two lines in the plane are conjugate within the
group of all isometries of the plane.

It is useful to collect all conjugate elements in a group together, and these are called con-
jugacy classes. We’ll look at some examples of this in Section 2, and some general theorems
about conjugate elements in a group are proved in Section 3. Conjugate permutations in
symmetric and alternating groups are described in Section 4. In Section 5 we will introduce
some subgroups that are related to conjugacy and use them to prove some theorems about
finite p-groups, such as a classification of groups of order p2 and the existence of a normal
(!) subgroup of every order dividing the order of a p-group.

2. Conjugacy classes: definition and examples

For an element g of a group G, its conjugacy class is the set of elements conjugate to it:

Kg = {xgx−1 : x ∈ G}.

Example 2.1. When G is abelian, each element is its own conjugacy class.
1
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Example 2.2. The conjugacy class of (12) in S3 is {(12), (13), 23)}, as we saw in Example
1.1. Similarly, the reader can check the conjugacy class of (123) is {(123), (132)}. The
conjugacy class of (1) is just {(1)}. So S3 has three conjugacy classes:

{(1)}, {(12), (13), (23)}, {(123), (132)}.

Example 2.3. In D4 = 〈r, s〉, there are five conjugacy classes:

{1}, {r2}, {s, r2s}, {r, r3}, {rs, r3s}.

The geometric effect on a square of the members of a conjugacy class of D4 is the same: a
90 degree rotation in some direction, a reflection across a diagonal, or a reflection across an
edge bisector.

Example 2.4. There are five conjugacy classes in Q8:

{1}, {−1}, {i,−i}, {j,−j}, {k,−k}.

Example 2.5. There are four conjugacy classes in A4:

{(1)}, {(12)(34), (13)(24), (14)(23)},

{(123), (243), (134), (142)}, {(132), (234), (143), (124)}.
Notice the 3-cycles (123) and (132) are not conjugate in A4. All 3-cycles are conjugate in
the larger group S4, e.g., (132) = (23)(123)(23)−1 and the conjugating permutation (23) is
not in A4.

In these examples, different conjugacy classes in a group are disjoint: they don’t overlap
at all. This will be proved in general in Section 3. Also, the sizes of different conjugacy
classes in a single group vary, but these sizes all divide the size of the group. We will see in
Section 5 why this is true in any group.

Conjugation can be extended from elements to subgroups. If H ⊂ G is a subgroup and
g ∈ G, the set

gHg−1 = {ghg−1 : h ∈ H}
is a subgroup of G, called naturally enough a conjugate subgroup to H.

Example 2.6. While D4 has 5 conjugacy classes of elements (Example 2.3), it has 8
conjugacy classes of subgroups. There are 10 subgroups of D4:

〈1〉, 〈s〉, 〈rs〉, 〈r2s〉, 〈r3s〉, 〈r〉, 〈r2〉, 〈r2, s〉, 〈r2, rs〉, D4.

The subgroups 〈s〉 and 〈r2s〉 are conjugate, as are 〈rs〉 and 〈r3s〉. All other subgroups are
conjugate only to themselves.

We will not discuss conjugate subgroups further, but the concept is important. For
instance, a subgroup is conjugate only to itself precisely when it is a normal subgroup.

3. Some basic properties of conjugacy classes

Theorem 3.1. Any two elements of a conjugacy class have the same order.

Proof. This is saying g and xgx−1 have the same order. That follows from the formula
(xgx−1)n = xgnx−1, which shows (xgx−1)n = 1 if and only if gn = 1 (check!). �
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A naive converse to Theorem 3.1 is false: elements of the same order in a group need not
be conjugate. This is clear in abelian groups, where different elements are never conjugate.
Looking at the nonabelian examples in Section 2, in D4 there are five elements of order two
spread across 3 conjugacy classes. Similarly, there are examples of non-conjugate elements of
equal order in Q8 and A4. But in S3, elements of equal order in S3 are conjugate. Amazingly,
this is the largest example of a finite group where this property holds: up to isomorphism,
the only nontrivial finite groups where all elements of equal order are conjugate are Z/(2)
and S3. A proof is given in [1] and [2], and depends on the classification of finite simple
groups. A conjugacy problem about S3 that remains open, as far as I know, is the conjecture
that S3 is the only nontrivial finite group (up to isomorphism) in which different conjugacy
classes always have different sizes.

Let’s verify the observation in Section 2 that different conjugacy classes in a group are
disjoint.

Theorem 3.2. Let G be a group and g, h ∈ G. If the conjugacy classes of g and h overlap,
then the conjugacy classes are equal.

Proof. We need to show every element conjugate to g is also conjugate to h, and vice versa.
Since the conjugacy classes overlap, we have xgx−1 = yhy−1 for some x and y in the group.
Therefore

g = x−1yhy−1x = (x−1y)h(x−1y)−1,

so g is conjugate to h. Any element conjugate to g is zgz−1 for some z ∈ G, and

zgz−1 = z(x−1y)h(x−1y)−1z−1 = (zx−1y)h(zx−1y)−1,

which shows any element conjugate to g is conjugate to h. To go the other way, write
h = (y−1x)g(y−1x)−1 and carry out a similar calculation. �

Theorem 3.2 says each element of a group belongs to just one conjugacy class. We call
any element of a conjugacy class a representative of that class.

A conjugacy class consists of all xgx−1 for fixed g and varying x. Instead we can look
at all xgx−1 for fixed x and varying g. That is, instead of looking at all the elements
conjugate to g we look at all the ways x can conjugate the elements of the group. This
“conjugate-by-x” function is denoted γx : G→ G, so γx(g) = xgx−1.

Theorem 3.3. Each conjugation function γx : G→ G is an automorphism of G.

Proof. For any g and h in G,

γx(g)γx(h) = xgx−1xhx−1 = xghx−1 = γx(gh),

so γx is a homomorphism. Since h = xgx−1 if and only if g = x−1hx, the function γx has
inverse γx−1 , so γx is an automorphism of G. �

Theorem 3.3 explains why conjugate elements in a group are “the same except for the
point of view”: there is an automorphism of the group taking an element to any of its
conjugates, namely one of the maps γx.

Automorphisms of G having the form γx are called inner automorphisms. That is, an
inner automorphism of G is a conjugation-by-x operation on G, for some x ∈ G. Inner
automorphisms are about the only examples of automorphisms that can be written down
without knowing extra information about the group (such as being told the group is abelian
or that it is a particular matrix group). For some groups every automorphism is an inner
automorphism. This is true for the groups Sn when n 6= 2, 6 (that’s right: S6 is the only
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nonabelian symmetric group with an automorphism that isn’t conjugation by a permuta-
tion). The groups GLn(R) when n ≥ 2 have extra automorphisms: since (AB)> = B>A>

and (AB)−1 = B−1A−1, the function f(A) = (A>)−1 on GLn(R) is an automorphism and
it is not inner.

Here is a simple result where inner automorphisms tell us something about all automor-
phisms of a group.

Theorem 3.4. If G is a group with trivial center, then the group Aut(G) also has trivial
center.

Proof. Let ϕ ∈ Aut(G) and assume ϕ commutes with all other automorphisms. We will see
what it means for ϕ to commute with an inner automorphism γx. For g ∈ G,

(ϕ ◦ γx)(g) = ϕ(γx(g)) = ϕ(xgx−1) = ϕ(x)ϕ(g)ϕ(x)−1

and
(γx ◦ ϕ)(g) = γx(ϕ(g)) = xϕ(g)x−1,

so having ϕ and γx commute means, for all g ∈ G, that

ϕ(x)ϕ(g)ϕ(x)−1 = xϕ(g)x−1 ⇐⇒ x−1ϕ(x)ϕ(g) = ϕ(g)x−1ϕ(x),

so x−1ϕ(x) commutes with every value of ϕ. Since ϕ is onto, x−1ϕ(x) ∈ Z(G). The center
of G is trivial, so ϕ(x) = x. This holds for all x ∈ G, so ϕ is the identity automorphism.
We have proved the center of Aut(G) is trivial. �

4. Conjugacy classes in Sn and An

The following tables list a representative from each conjugacy class in symmetric and
alternating groups in degrees 3 through 6, along with the size of the conjugacy classes.
Conjugacy classes disjointly cover a group, by Theorem 3.2, so the conjugacy class sizes
add up to n! for Sn and n!/2 for An.

S3 A3

Rep. (1) (123) (12) (1) (123) (132)
Size 1 2 3 1 1 1

S4 A4

Rep. (1) (12)(34) (12) (1234) (123) (1) (12)(34) (123) (132)
Size 1 3 6 6 8 1 3 4 4

S5

Rep. (1) (12) (12)(34) (123) (12)(345) (12345) (1234)
Size 1 10 15 20 20 24 30

A5

Rep. (1) (12345) (21345) (12)(34) (123)
Size 1 12 12 15 20
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S6

Rep. (1) (12) (12)(34)(56) (123) (123)(456) (12)(34)
Size 1 15 15 40 40 45
Rep. (1234) (12)(3456) (123456) (12)(345) (12345)
Size 90 90 120 120 144

A6

Rep. (1) (123) (123)(456) (12)(34) (12345) (23456) (1234)(56)
Size 1 40 40 45 72 72 90

Notice elements of An can be conjugate in Sn while not being conjugate in An, such as
(123) and (132) for n = 3 and n = 4. (See Example 2.5.) Any permutation in S3 or S4

that conjugates (123) to (132) is not even, so (123) and (132) are not conjugates in A3 or
A4 but are conjugate in S3 and S4.

As a first step in understanding conjugacy classes in Sn, we compute the conjugates of a
cycle, say a k-cycle.

Theorem 4.1. For any cycle (i1i2 . . . ik) in Sn and any σ ∈ Sn,

σ(i1i2 . . . ik)σ−1 = (σ(i1)σ(i2) . . . σ(ik)).

Before proving this formula, let’s look at two examples to understand how the formula
works.

Example 4.2. In S5, let σ = (13)(254). Then

σ(1432)σ−1 = (σ(1)σ(4)σ(3)σ(2)) = (3215)

since σ(1) = 3, σ(4) = 2, σ(3) = 1, and σ(2) = 5.

Example 4.3. In S7, let σ = (13)(265). Then

σ(73521)σ−1 = (71263)

since σ(7) = 7, σ(3) = 1, σ(5) = 2, σ(2) = 6, and σ(1) = 3.

Proof. Let π = σ(i1i2 . . . ik)σ−1. We want to show π is the cyclic permutation of the
numbers σ(i1), σ(i2), . . . , σ(ik). That means two things:

• Show π sends σ(i1) to σ(i2), σ(i2) to σ(i3), . . . , and finally σ(ik) to σ(i1).
• Show π does not move any number other than σ(i1), . . . , σ(ik).

The second step is essential. Just knowing a permutation cyclically permutes certain num-
bers does not mean it is the cycle built from those numbers, since it could move other
numbers we haven’t looked at yet. (For instance, if π(1) = 2 and π(2) = 1, π need not be
(12). The permutation (12)(345) also has that behavior.)

What does π do to σ(i1)? The effect is

π(σ(i1)) = (σ(i1i2 . . . ik)σ−1)(σ(i1)) = ((σ(i1i2 . . . ik)σ−1σ)(i1) = σ(i1i2 . . . ik)(i1) = σ(i2).

(The “(i1)” at the ends is not a 1-cycle, but denotes the point where a permutation is being
evaluated.) Similarly, π(σ(i2)) = σ(i1i2 . . . ik)(i2) = σ(i3), and so on up to π(σ(ik)) =
σ(i1i2 . . . ik)(ik) = σ(i1).

Now pick a number a that is not any of σ(i1), . . . , σ(ik). We want to show π(a) = a.
That means we want to show σ(i1i2 . . . ik)σ−1(a) = a. Since a 6= σ(ij) for any j = 1, . . . , k,
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σ−1(a) is not ij for j = 1, . . . , k. Therefore the cycle (i1i2 . . . ik) does not move σ−1(a), so
its effect on σ−1(a) is to keep it as σ−1(a). Hence

π(a) = σ(i1i2 . . . ik)σ−1(a) = σ(σ−1(a)) = a.

�

We now know that any conjugate of a cycle is also a cycle of the same length. Is the
converse true, i.e., if two cycles have the same length are they conjugate?

Theorem 4.4. All cycles of the same length in Sn are conjugate.

Proof. Pick two k-cycles, say

(a1 a2 . . . ak), (b1 b2 . . . bk).

Choose σ ∈ Sn so that σ(a1) = b1, . . . , σ(ak) = bk, and let σ be an arbitrary bijection from
the complement of {a1, . . . , ak} to the complement of {b1, . . . , bk}. Then, using Theorem
4.1, we see conjugation by σ carries the first k-cycle to the second. �

For instance, the transpositions (2-cycles) in Sn form a single conjugacy class, as we saw
in the introduction.

Now we consider the conjugacy class of an arbitrary permutation in Sn, not necessarily
a cycle. It will be convenient to introduce some terminology. Writing a permutation as a
product of disjoint cycles, arrange the lengths of those cycles in increasing order, including
1-cycles if there are any fixed points. These lengths are called the cycle type of the permuta-
tion.1 For instance, in S7 the permutation (12)(34)(567) is said to have cycle type (2, 2, 3).
When discussing the cycle type of a permutation, we include fixed points as 1-cycles. For
instance, (12)(35) in S5 is (4)(12)(35) and has cycle type (1, 2, 2). If we view (12)(35) in S6

then it is (4)(6)(12)(35) and has cycle type (1, 1, 2, 2).
The cycle type of a permutation in Sn is just a set of positive integers that add up to n,

which is called a partition of n. There are 7 partitions of 5:

5, 1 + 4, 2 + 3, 1 + 1 + 3, 1 + 2 + 2, 1 + 1 + 1 + 2, 1 + 1 + 1 + 1 + 1.

Thus, the permutations of S5 have 7 cycle types. Knowing the cycle type of a permutation
tells us its disjoint cycle structure except for how the particular numbers fall into the cycles.
For instance, a permutation in S5 with cycle type (1, 2, 2) could be (1)(23)(45), (2)(35)(14),
and so on. This cycle type of a permutation is exactly the level of detail that conjugacy
measures in Sn: two permutations in Sn are conjugate precisely when they have the same
cycle type. Let’s understand how this works in an example first.

Example 4.5. We consider two permutations in S5 of cycle type (2, 3):

π1 = (24)(153), π2 = (13)(425).

To conjugate π1 to π2, let σ be the permutation in S5 that sends the terms appearing in π1

to the terms appearing in π2 in exactly the same order: σ =
(
24153
13425

)
= (14352). Then

σπ1σ
−1 = σ(24)(153)σ−1 = σ(24)σ−1σ(153)σ−1 = (σ(2)σ(4))(σ(1)σ(5)σ(3)) = (13)(425),

so σπ1σ
−1 = π2.

If we had written π1 and π2 differently, say as

π1 = (42)(531), π2 = (13)(542),

1A more descriptive label might be “disjoint cycle structure”, but people use the term “cycle type”.
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then π2 = σπ1σ
−1 where σ =

(
42531
13542

)
= (1234).

Lemma 4.6. If π1 and π2 are disjoint permutations in Sn, then σπ1σ
−1 and σπ2σ

−1 are
disjoint permutations for any σ ∈ Sn.

Proof. Being disjoint means no number is moved by both π1 and π2. That is, there is no i
such that π1(i) 6= i and π2(i) 6= i. If σπ1σ

−1 and σπ2σ
−1 are not disjoint, then they both

move some number, say j. Then (check!) σ−1(j) is moved by both π1 and π2, which is a
contradiction. �

Theorem 4.7. Two permutations in Sn are conjugate if and only if they have the same
cycle type.

Proof. Pick π ∈ Sn. Write π as a product of disjoint cycles. By Theorem 3.3 and Lemma
4.6, σπσ−1 will be a product of the σ-conjugates of the disjoint cycles for π, and these
σ-conjugates are disjoint cycles with the same respective lengths. Therefore σπσ−1 has the
same cycle type as π.

For the converse direction, we need to explain why permutations π1 and π2 with the same
cycle type are conjugate. Suppose the cycle type is (m1,m2, . . . ). Then

π1 = (a1 a2 . . . am1︸ ︷︷ ︸
m1 terms

)(am1+1 am1+2 . . . am1+m2︸ ︷︷ ︸
m2 terms

) · · ·

and
π2 = (b1 b2 . . . bm1︸ ︷︷ ︸

m1 terms

)(bm1+1 bm1+2 . . . bm1+m2︸ ︷︷ ︸
m2 terms

) · · · ,

where the cycles here are disjoint. To carry π1 to π2 by conjugation in Sn, define the
permutation σ ∈ Sn by: σ(ai) = bi. Then σπ1σ

−1 = π2 by Theorems 3.3 and 4.4. �

Since the conjugacy class of a permutation in Sn is determined by its cycle type, which is
a certain partition of n, the number of conjugacy classes in Sn is the number of partitions
of n. The number of partitions of n is denoted p(n). Here is a table of some values. Check
the numbers at the start of the table for n ≤ 6 agree with the number of conjugacy classes
listed earlier in this section.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
p(n) 1 2 3 5 7 11 15 22 30 42 56 77 101 135

The function p(n) grows quickly, e.g., p(100) = 190, 569, 292.
Let’s look at conjugacy classes in An. If π is an even permutation, then σπσ−1 is also

even, so a conjugacy class in Sn that contains one even permutation contains only even
permutations. However, two permutations π1 and π2 in An can have the same cycle type
(and thus be conjugate in the larger group Sn) while being non-conjugate in An. The point
is that we might be able to get π2 = σπ1σ

−1 for some σ ∈ Sn without being able to do this
for any σ ∈ An.

Example 4.8. The 3-cycles (123) and (132) in A3 are conjugate in S3: (23)(123)(23)−1 =
(132). However, (123) and (132) are not conjugate in A3 because A3 is abelian: an element
of A3 is conjugate in A3 only to itself.

Example 4.9. The 3-cycle (234) and its inverse (243) are conjugate in S4 but they are not
conjugate in A4. To see this, let’s determine all possible σ ∈ S4 that conjugate (234) to
(243). For σ ∈ S4, the condition σ(234)σ−1 = (243) is the same as (σ(2)σ(3)σ(4)) = (243).
There are three possibilities:



8 KEITH CONRAD

• σ(2) = 2, so σ(3) = 4 and σ(4) = 3, and necessarily σ(1) = 1. Thus σ = (34).
• σ(2) = 4, so σ(3) = 3 and σ(4) = 2, and necessarily σ(1) = 1. Thus σ = (24).
• σ(2) = 3, so σ(3) = 2 and σ(4) = 4, and necessarily σ(1) = 1. Thus σ = (23).

Therefore the only possible σ’s are transpositions, which are not in A4.

While it would be nice if conjugacy classes in An are determined by cycle type as in Sn,
we have seen that this is false: (123) and (132) are not conjugate in A3 (and A4). How
does a conjugacy class of even permutations in Sn break up when thinking about conjugacy
classes in An? There are two possibilities: the conjugacy class stays as a single conjugacy
class within An or it breaks up into two conjugacy classes of equal size in An. A glance
at the earlier tables of conjugacy classes in An with small n shows this happening. For
instance,

• there is one class of 8 3-cycles in S4, but two classes of 4 3-cycles in A4,
• there is one class of 24 5-cycles in S5, but two classes of 12 5-cycles in A5,
• there is one class of 144 5-cycles in S6, but two classes of 72 5-cycles in A6.

A rule that describes when each possibility occurs is as follows, but a proof is omitted.

Theorem 4.10. For π ∈ An, its conjugacy class in Sn remains as a single conjugacy class
in An or it breaks into two conjugacy classes in An of equal size. The conjugacy class breaks
up if and only if the lengths in the cycle type of π are distinct odd numbers.

Here is a table showing the cycle types in An that fall into two conjugacy classes for
4 ≤ n ≤ 14. For example, the permutations in A6 of cycle type (1, 5) but not (3, 3) fall into
two conjugacy classes and the permutations in A8 of cycle type (1, 7) and (3, 5) each fall
into two conjugacy classes.

n 4 5 6 7 8 9 10 11 12 13 14
Cycle (1,3) (5) (1,5) (7) (1,7) (9) (1,9) (11) (1,11) (13) (1,13)
type (3,5) (1,3,5) (3,7) (1,3,7) (3,9) (1,3,9) (3,11)
in An (5,7) (1,5,7) (5,9)
The following table lists the number c(n) (nonstandard notation) of conjugacy classes in

An for small n.
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
c(n) 1 1 3 4 5 7 9 14 18 24 31 43 55 72

5. Centralizers and the class equation

We saw in Theorem 3.2 that different conjugacy classes do not overlap. Thus, they
provide a way of covering the group by disjoint sets. This is analogous to the left cosets of
a subgroup providing a disjoint covering of the group. If the different conjugacy classes are
Kg1 ,Kg2 , . . . ,Kgr , then

(5.1) #G = #Kg1 + #Kg2 + · · ·+ #Kgr .

Equation (5.1) plays the role for conjugacy classes in G that the formula #G = (#H)[G : H]
plays for cosets of H in G.

Let’s see how (5.1) looks for some groups from Section 2.

Example 5.1. For G = S3, (5.1) says

6 = 1 + 2 + 3.
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Example 5.2. For G = D4,

8 = 1 + 1 + 2 + 2 + 2.

Example 5.3. For G = Q8,

8 = 1 + 1 + 2 + 2 + 2.

Example 5.4. For G = A4,

12 = 1 + 3 + 4 + 4.

The reason (5.1) is important is that each number #Kgi divides the size of the group.
We saw this earlier in examples. Now we will prove it in general.

Theorem 5.5. If G is a finite group then each conjugacy class in G has size dividing #G.

Theorem 5.5 is not an immediate consequence of Lagrange’s theorem, because conjugacy
classes are not subgroups. For example, no conjugacy class contains the identity except
for the one-element conjugacy class containing the identity by itself. However, while a
conjugacy class is not a subgroup, its size does equal the index of a subgroup, and that will
explain why its size divides the size of the group.

Definition 5.6. For a group G, its center Z(G) is the set of elements of G commuting with
everything:

Z(G) = {g ∈ G : gx = xg for all x ∈ G}.

For g ∈ G, its centralizer Z(g) is the set of elements of G commuting with g:

Z(g) = {x ∈ G : xg = gx}.

The notation Z comes from German: center is Zentrum and centralizer is Zentralisator.
Some English language books use the letter C, so C(G) = Z(G) and C(g) = Z(g). The
center of the group and the centralizer of each element of the group are subgroups. The
connection between them is the center is the intersection of all the centralizers: Z(G) =⋂
g∈G Z(g).

Theorem 5.7. For each g ∈ G, its conjugacy class has the same size as the index of its
centralizer:

#{xgx−1 : x ∈ G} = [G : Z(g)].

Proof. Consider the function f : G→ Kg where f(x) = xgx−1. This function is onto, since
by definition every element of Kg is xgx−1 for some x ∈ G. We will now examine when f
takes the same value at elements of G.

For x and x′ in G, we have xgx−1 = x′gx′−1 if and only if

gx−1x′ = x−1x′g.

Therefore x−1x′ commutes with g, i.e., x−1x′ ∈ Z(g), so x′ ∈ xZ(g). Although x and x′

may be different, they lie in the same left coset of Z(g):

(5.2) f(x) = f(x′) =⇒ xZ(g) = x′Z(g).
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Conversely, suppose xZ(g) = x′Z(g). Then x = x′z for some z ∈ Z(g), so zg = gz.
Therefore x and x′ conjugate g in the same way:

f(x) = xgx−1

= (x′z)g(x′z)−1

= x′zgz−1x′−1

= x′gzz−1x′−1

= x′gx′−1

= f(x′).

Since we have shown that the converse of (5.2) is true, the function f : G → Kg takes
the same value at two elements precisely when they are in the same left coset of Z(g).
Therefore the number of different values of f is the number of different left cosets of Z(g)
in G, and by definition that is the index [G : Z(g)]. Since f is surjective, we conclude that
#Kg = [G : Z(g)]. �

Now we can prove Theorem 5.5.

Proof. By Theorem 5.7, the size of the conjugacy class of g is the index [G : Z(g)], which
divides #G. �

Returning to (5.1), we rewrite it in the form

(5.3) #G =
r∑
i=1

[G : Z(gi)] =
r∑
i=1

#G
#Z(gi)

.

The conjugacy classes of size 1 are exactly those containing elements of the center of G (i.e.,
those gi such that Z(gi) = G). Combining all of these 1’s into a single term, we get

(5.4) #G = #Z(G) +
∑
i′

#G
#Z(gi′)

,

where the sum is now carried out only over those conjugacy classes Kgi′ with more than
one element. In the terms of this sum, #Z(gi′) < #G. Equation (5.4) is called the class
equation. The difference between the class equation and (5.1) is that we have combined the
terms contributing to the center of G into a single term.

Here is a good application of the class equation.

Theorem 5.8. When G is a nontrivial finite p-group it has a nontrivial center: some
element of G other than the identity commutes with every element of G.

Proof. Let #G = pn, where n > 0. Consider a term [G : Z(gi′)] in the class equation, where
gi′ does not lie in Z(G). Then Z(gi′) 6= G, so the index [G : Z(gi′)] is a factor of #G other
than 1. It is one of {p, p2, . . . , pn}, and hence is divisible by p. In the class equation, all
terms in the sum over i′ are multiples of p.

Also, the left side of the class equation is a multiple of p, since #G = pn. So the class
equation forces p|#Z(G). Since the center contains the identity, and has size divisible by
p, it must contain non-identity elements as well. �

With a little extra work we can generalize Theorem 5.8.

Theorem 5.9. If G is a nontrivial finite p-group and N is a nontrivial normal subgroup
of G then N ∩ Z(G) 6= {e}.
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Proof. Since N is a normal subgroup of G, any conjugacy class in G that meets N lies
entirely inside of N (that is, if g ∈ N then xgx−1 ∈ N for any x ∈ G). Let Kg1 , . . . ,Kgs be
the different conjugacy classes of G that lie inside N , so

(5.5) #N = #Kg1 + · · ·+ #Kgs .

(Note that elements of N can be conjugate in G without being conjugate in N , so breaking
up N into its G-conjugacy classes in (5.5) is a coarser partitioning of N than breaking it into
N -conjugacy classes.) The left side of (5.5) is a power of p greater than 1. Each term on
the right side is a conjugacy class in G, so #Kgi = [G : Z(gi)], where Z(gi) is the centralizer
of gi in G. This index is a power of p greater than 1 except when gi ∈ Z(G), in which case
#Kgi = 1. The gi’s in N with #Kgi = 1 are elements of N ∩Z(G). Therefore if we reduce
(5.5) modulo p we get

0 ≡ #(N ∩ Z(G)) mod p,
so #(N∩Z(G)) is divisible by p. Since #(N∩Z(G)) ≥ 1 the intersection N∩Z(G) contains
a non-identity term. �

Remark 5.10. The finiteness assumption in Theorem 5.8 is important. There are infinite
p-groups with trivial center! Here is an example. Consider the set G of infinite mod p
square matrices (M O

O I∞ ) where I∞ is an infinite identity matrix and M is a finite upper
triangular square matrix of the form

1 a12 · · · a1n

0 1 · · · a2n

0 0
. . .

...
0 0 · · · 1


where there are 1’s on the main diagonal and the entries aij above the main diagonal are
in Z/(p). Because each row or column of a matrix in G has only finitely many nonzero
elements, matrix multiplication in G makes sense. To show G is a group under matrix
multiplication, by borrowing the upper left 1 in I∞ we can write(

M O
O I∞

)
=

 M O O
O 1 O
O O I∞


and thereby view the infinite matrix as having an (n+ 1)× (n+ 1) upper left part instead
of an n × n upper left part. In this way any two matrices (M O

O I∞ ) and (N O
O I∞ ) in G can

be considered to have M and N of the same size. Then we obtain a block multiplication
formula (check!) (M O

O I∞ )(N O
O I∞ ) = (MN O

O I∞ ). Since the n × n upper triangular mod p
matrices with 1’s on the main diagonal form a group, it now follows that G is a group.
Since M has p-power order, every element of G has p-power order. Thus G is an “infinite
p-group.”

To show the center of G is trivial, a non-identity element of G has the form (M O
O I∞ ),

where M is n × n for some n and M 6= In. We have the following equations in 2n × 2n
matrices: (

M O
O In

)(
In In
O In

)
=
(
M M
O In

)
,(

In In
O In

)(
M O
O In

)
=
(
M In
O In

)
.
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These are not equal since M 6= In. Now embed the 2n × 2n matrices A = (M O
O In

) and
B = ( In In

O In
) in G as ( A O

O I∞ ) and (B O
O I∞ ). These do not commute. Note ( A O

O I∞ ) = (M O
O I∞ )

in G, so (M O
O I∞ ) 6∈ Z(G).

The following corollary is the standard first application of Theorem 5.8.

Corollary 5.11. For any prime p, every group of order p2 is abelian. More precisely, a
group of order p2 is isomorphic to Z/(p2) or to Z/(p)× Z/(p).

Proof. Let G be such a group. By Lagrange, the order of any non-identity element is 1, p,
or p2.

If there is an element of G with order p2, then G is cyclic and therefore isomorphic to
Z/(p2) (in many ways). We may henceforth assume G has no element of order p2. That
means any non-identity element of G has order p.

From Theorem 5.8, there is a non-identity element in the center of G. Call it a. Since a
has order p, 〈a〉 is not all of G. Choose b ∈ G− 〈a〉. Then b also has order p. We are going
to show powers of a and powers of b provide an isomorphism of G with Z/(p)×Z/(p). Let
f : Z/(p)× Z/(p)→ G by

f(i, j) = aibj .

This is well-defined since a and b have order p. It is a homomorphism since powers of a are
in the center:

f(i, j)f(i′, j′) = (aibj)(ai
′
bj
′
)

= aiai
′
bjbj

′

= ai+i
′
bj+j

′

= f(i+ i′, j + j′)
= f((i, j) + (i′, j′)).

The kernel is trivial: if f(i, j) = e then ai = b−j . This is a common element of 〈a〉 ∩ 〈b〉,
which is trivial. Therefore ai = bj = e, so i = j = 0 in Z/(p).

Since f has trivial kernel it is injective. The domain and target have the same size, so f
is surjective and thus is an isomorphism. �

Corollary 5.12. A finite p-group 6= {e} has a normal subgroup of order p.

Proof. Let G be a finite p-group with #G > 1. By Theorem 5.8, Z(G) is a nontrivial
p-group. Pick g ∈ Z(G) with g 6= e. The order of g is pr for some r ≥ 1. Therefore gp

r−1

has order p, so Z(G) contains a subgroup of order p, which must be normal in G since every
subgroup of Z(G) is a normal subgroup of G. �

We can bootstrap Corollary 5.12 to non-prime sizes by inducting on a stronger hypothesis.

Corollary 5.13. If G is a nontrivial finite p-group with size pn then there is a normal
subgroup of size pj for every j = 0, 1, . . . , n.

Proof. We argue by induction on n. The result is clear if n = 1. Suppose n ≥ 2 and the
theorem is true for p-groups of size pn−1. If #G = pn then it has a normal subgroup N of
size p by the preceding corollary. Then #(G/N) = pn−1, so for 0 ≤ j ≤ n − 1 there is a
normal subgroup of G/N with size pj . The pullback of this subgroup to G is normal and
has size pj ·#N = pj+1. �
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Example 5.14. Let G = D4. Its subgroups of size 2 are 〈s〉, 〈rs〉, 〈r2s〉, 〈r3s〉, and 〈r2〉.
The last one is normal. The subgroups of size 4 are 〈r〉 and 〈r2, s〉. Both are normal.

Appendix A. Conjugacy in plane geometry

We will show that all reflections in R2 are conjugate to reflection across the x-axis in an
appropriate group of transformations of the plane.

Definition A.1. An isometry of R2 is a function f : R2 → R2 that preserves distances: for
any points P and Q in R2, the distance between f(P ) and f(Q) is the same as the distance
between P and Q.

Isometries include: reflections, rotations, and translations. Isometries are invertible (this
requires proof, or include it in the definition if you want to be lazy about it), and under
composition isometries form a group.

There are two ways to describe points of the plane algebraically, using vectors or complex
numbers. We will work with points as complex numbers. The point (a, b) is considered as
the complex number a + bi. We measure the distance to a + bi from 0 with the absolute
value

|a+ bi| =
√
a2 + b2,

and the distance between a+ bi and c+ di is the absolute value of their difference:

|(a+ bi)− (c+ di)| =
√

(a− c)2 + (b− d)2.

To each complex number z = a + bi, we have its complex conjugate z = a − bi. By an
explicit calculation, complex conjugation respects sums and products:

z + z′ = z + z′, zz′ = zz′.

Two important algebraic properties of the absolute value on C are its behavior on prod-
ucts and on complex conjugates:

|zz′| = |z||z′|, |z| = |z|.
In particular, if |w| = 1 then |wz| = |z|.

An example of a reflection across a line in the plane is complex conjugation:

s(z) = z.

This is reflection across the x-axis. It preserves distance:

|s(z)− s(z′)| = |z − z′| = |z − z′| = |z − z′|.
We will compare this reflection with the reflection across any other line, first treating

other lines through the origin and then treating lines that may not pass through the origin.
Pick a line through the origin that makes an angle, say θ, with respect to the positive

x-axis. We can rotate the x-axis onto that line by rotating the x-axis counterclockwise
around the origin through an angle of θ. A rotation around the origin, in terms of complex
numbers, is multiplication by the number cos θ + i sin θ, which has absolute value 1. Let’s
denote counterclockwise rotation around the origin by θ by rθ:

(A.1) rθ(z) = (cos θ + i sin θ)z, | cos θ + i sin θ| = 1.

Every rotation rθ preserves distances:

|rθ(z)− rθ(z′)| = |(cos θ + i sin θ)(z − z′)| = |(cos θ + i sin θ)||z − z′| = |z − z′|.
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Composing rotations around the origin amounts to adding angles: rθ ◦ rϕ = rθ+ϕ. In
particular, r−1

θ = r−θ since rθ ◦ r−θ = r0, which is the identity (r0(z) = z).
Now let’s think about some reflections besides complex conjugation. Let sθ be the reflec-

tion across the line through the origin making an angle of θ with the positive x-axis. (In
particular, complex conjugation is s0.) Draw some pictures to convince yourself visually
the reflection sθ is the composite of

• rotation of the plane by an angle of −θ to bring the line of reflection onto the x-axis,
• reflection across the x-axis,
• rotation of the plane by θ to return the line to its original position.

This says

(A.2) sθ = rθsr−θ = rθsr
−1
θ .

So we see, in this algebraic formula, that a reflection across any line through the origin
is conjugate, in the group of isometries of the plane, to reflection across the x-axis. The
conjugating isometry is the rotation rθ that takes the line through the origin at angle θ to
the x-axis.

In order to compare complex conjugation to reflection across an arbitrary line, which need
not pass through the origin, we bring in additional isometries: translations. A translation
in the plane can be viewed as adding a particular complex number, say w, to every complex
number: tw(z) = z + w. This is an isometry since

|tw(z)− tw(z′)| = |(z + w)− (z′ + w)| = |z − z′|.
Note tw ◦ tw′ = tw+w′ , and the inverse of tw is t−w: t−1

w = t−w.
In order to describe reflection across an arbitrary line in terms of complex conjugation,

we need to describe an arbitrary line. A line makes a definite angle with respect to the
positive x-direction (how far it tilts). Call that angle θ. Now pick a point on the line. Call
it, say, w. Our line is the only line in the plane that passes through w at an angle of θ
relative to the positive x-direction.

We can carry out reflection across this line in terms of reflection across the line parallel
line to it through the origin by using translations, in 3 steps:

• translate back by w (that is, apply t−w) to carry the original line to a line through
the origin at the same angle θ,
• reflect across this line through the origin (apply sθ),
• translate by w to return the line to its original position (apply tw).

Putting this all together, with (A.2), reflection across the line through w that makes an
angle of θ with the positive x-direction is the composite

(A.3) twsθt−w = tw(rθsr−1
θ )t−1

w = twrθs(twrθ)−1.

This is a conjugate of complex conjugation s in the group of isometries in the plane.
Let’s summarize what we have shown.

Theorem A.2. In the group of isometries of the plane, reflection across any line is conju-
gate to reflection across the x-axis.

Example A.3. Reflection across the horizontal line y = b corresponds to θ = 0 and w = bi.
That is, this reflection is tbist−bi: translate down by b, reflect across the x-axis, and then
translate up by b.
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Appendix B. Bounding Size by Number of Conjugacy Classes

Obviously there are only a finite number of groups, up to isomorphism, with a given
size. What might be more surprising is that there is also a finite number of groups, up to
isomorphism, with a given number of conjugacy classes.

Theorem B.1. The size of a finite group can be bounded above from knowing the number
of its conjugacy classes.

Proof. When there is only one conjugacy class, the group is trivial. Now fix a positive
integer k > 1 and let G be a finite group with k conjugacy classes represented by g1, . . . , gk
(this includes gi’s in the center). We exploit the class equation, written as

(B.1) #G =
k∑
i=1

#G
#Z(gi)

.

Dividing (B.1) by #G,

(B.2) 1 =
1
n1

+
1
n2

+ · · ·+ 1
nk
,

where ni = #Z(gi). Note each ni exceeds 1 when G is nontrivial. We write the ni’s in
increasing order:

n1 ≤ n2 ≤ · · · ≤ nk.
Since each ni is at least as large as n1, (B.2) implies

1 ≤ k

n1
,

so

(B.3) n1 ≤ k.
Then, using ni ≥ n2 for i ≥ 2,

1 ≤ 1
n1

+
k − 1
n2

.

Thus 1− 1/n1 ≤ (k − 1)/n2, so

(B.4) n2 ≤
k − 1

1− 1/n1
.

By induction,

(B.5) nm ≤
k + 1−m

1− ( 1
n1

+ · · ·+ 1
nm−1

)

for m ≥ 2.
Since (B.3) bounds n1 by k and (B.5) bounds each of n2, . . . , nk in terms of earlier ni’s,

there are only a finite number of such k-tuples. The ones that satisfy (B.2) can be tabulated.
The largest value of nk is #G (since 1 has centralizer G), so the solution with the largest
value for nk gives an upper bound on the size of a finite group with k conjugacy classes. �

Example B.2. Taking k = 2, the only solution to (B.2) satisfying (B.3) and (B.5) is n1 = 2,
n2 = 2. Thus G ∼= Z/(2).

Example B.3. When k = 3, the solutions n1, n2, n3 to (B.2) satisfying (B.3) and (B.5) are
2,4,4 and 2,3,6. Thus #G ≤ 6 and S3 has size 6 with 3 conjugacy classes.
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Example B.4. When k = 4, there are 14 solutions, such as 4,4,4,4 and 2,3,7,42. The
second 4-tuple is actually the one with the largest value of n4, so a group with 4 conjugacy
classes has size at most 42. In actuality, the groups with 4 conjugacy classes are Z/(4),
(Z/(2))2, D10, and A4.

Example B.5. When k = 5, there are 148 solutions, and the largest n5 that occurs is 1806.
Groups with 5 conjugacy classes include Z/(5), D4, Q8, Aff(Z/(5)), the nonabelian group
of size 21, S4, and A5. I’m not sure if these are all the possibilities.

References

[1] A. Bensaid and R. W. van der Waall, On finite groups all of whose elements of equal order are conjugate,
Simon Stevin 65 (1991), 361–374.

[2] P. Fitzpatrick, Order conjugacy in finite groups, Proc. Roy. Irish Acad. Sect. A 85 (1985), 53–58.


