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The converse of Lagrange’s theorem is false in general: when d|#G, G doesn’t have to
contain a subgroup of size d. There is a converse when d is prime. This is Cauchy’s theorem.

Theorem. (Cauchy 1845) Let G be a finite group and p be a prime factor of #G. Then
G contains an element of order p. Equivalently, G contains a subgroup of size p.

The equivalence of the existence of an element of order p and a subgroup of size p is
easy: an element of order p generates a subgroup of size p, while conversely any nonidentity
element of a subgroup of order p has order p because p is prime.

Before treating Cauchy’s theorem, let’s see that the special case for p = 2 can be proved
in a simple way. If #G is even, consider the set of pairs {g, g−1}, where g 6= g−1. This
takes into account an even number of elements of G. Those g’s that are not part of such a
pair are the ones satisfying g = g−1, i.e., g2 = e. Therefore if we count #G mod 2, we can
ignore the pairs {g, g−1} where g 6= g−1 and we obtain #G ≡ #{g ∈ G : g2 = e} mod 2.
One solution to g2 = e is e. If it were the only solution, then #G ≡ 1 mod 2, which is false.
Therefore some g0 6= e satisfies g20 = e, which gives us an element of order 2.

Now we prove Cauchy’s theorem.

Proof. We will use induction on #G,1 Let n = #G. Since p|n, n ≥ p. The base case is
n = p. When #G = p, any nonidentity element of G has order p because p is prime. Now
suppose n > p, p|n, and the theorem is true for all groups or order less than n that is
divisible by p. We will treat separately abelian G (using homomorphisms) and nonabelian
G (using conjugacy classes).

Case 1: G is abelian. Assume no element of G has order p. Then no element has order
divisible by p: if g ∈ G has order r and p|r then gr/p would have order p.

Let G = {g1, g2, . . . , gn} and let gi have order mi, so mi is not divisible by p. Set m to
be the least common multiple of the mi’s, so m is not divisible by p and gmi = e for all i.
Because G is abelian, the function f : (Z/(m))n → G given by f(a1, . . . , an) = ga11 · · · garr is
a homomorphism:2

f(a1, . . . , an)f(b1, . . . , bn) = f(a1 + b1, . . . , an + bn).

That is,
ga11 · · · g

an
n gb11 · · · g

bn
n = ga11 gb11 · · · g

an
n gbnn = ga1+b1

1 · · · gan+bn
n

from commutativity of the gi’s. This homomorphism is surjective (each element of G is a
gi, and if ai = 1 and other aj ’s are 0 then f(a1, . . . , an) = gi) and the elements where f
takes on each value is a coset of ker f , so

#G = number of cosets of ker f = factor of #(Z/(m))n = factor of mn.

But p divides #G and mn is not divisible by p, so we have a contradiction.

1Proving a theorem on groups by induction on the size of the group is a very fruitful idea in group theory.
2This function is well-defined because gmi = e for all i, so ga+mk

i = gai for any k ∈ Z.
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Case 2: G is nonabelian.
If a proper subgroup H of G has order divisible by p, then by induction there is an element

of order p in H, which gives us an element of order p in G. Thus we may assume no proper
subgroup of G has order divisible by p. For any proper subgroup H, #G = (#H)[G : H]
and #H is not divisible by p, so p|[G : H] for every proper subgroup H.

Let the conjugacy classes in G with size greater than 1 be represented by g1, g2, . . . , gk.
The conjugacy classes of size 1 are the elements in Z(G). Since the conjugacy classes are a
partition of G, counting #G by counting conjugacy classes implies

(1) #G = #Z(G) +
k∑

i=1

(size of conj. class of gi) = #Z(G) +
k∑

i=1

[G : Z(gi)],

where Z(gi) is the centralizer of gi. Since the conjugacy class of each gi has size greater than
1, [G : Z(gi)] > 1, so Z(gi) 6= G. Therefore p|[G : Z(gi)]. In (1), the left side is divisible by
p and each index in the sum on the right side is divisible by p, so #Z(G) is divisible by p.
Since proper subgroups of G don’t have order divisible by p, Z(G) has to be all of G. That
means G is abelian, which is a contradiction. �

It is worthwhile reading and re-reading this proof until you see how it hangs together. For
instance, notice that we did not need the nonabelian case to treat the abelian case. In fact,
quite a few books prove Cauchy’s theorem for abelian groups before they develop suitable
material (like conjugacy classes) to handle Cauchy’s theorem for nonabelian groups.


