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1 Definitions

We start with some definitions.

1.1 Noetherian Rings

Definition 1.1. A commutative ring R is Noetherian if every ideal of R is finitely generated. In
other words, for every ideal I of R, there exist a finite number of elements of I, say a1, aq, ..., ag
such that I = (a1) + (a2) + - - - + (a). Elements a1, aq, ..., a; are called generators of I.

The following property of Noetherian rings would be useful for us.

Lemma 1.2. A commutative ring R is Noetherian iff every strictly increasing sequence of ideals,
I C I, ClI3C---, is finite.

Proof. Suppose R is Noetherian. Suppose R has an infinite strictly increasing sequence of ideals
Iy CIy C I3 C---. Define I =J,~, I;. Set I is also an ideal of R:

e If a,b € I then there exists a j such that a,b € I;. And thena+bec I; CI.

e If a € I then there exists a j such that a € I;. Then b-a € I; C I for any b € R.

Sicne R is Noetherian, I is finitely generated. Let its generators be a1, ao, ..., ag. Then there
exists a j such that ai, as, ..., ap € I;. Then I = (a1) + (a2) + -+ (ar) € I;. Hence I = I;, a
contradiction.

Conversely, suppose every strictly increasing sequence of ideals in R is finite. Let I be an ideal of
R. Pick a1 € I, a; # 0. Then ideal Iy = (a1) C I. If the equality holds, then I is finitely generated.
Otherwise, there exists ag € I\I;. Then ideal Iy = (a1) + (a2) € I. Again, if equality holds, [ is
finitely generated. Otherwise, there exists ag € I'\I,. Continuing this way, we construct a strictly
increasing sequence of ideals Iy C Iy C I ---. This must be finite, which gives that I = I}, for some
k. Thus [ is finitely generated. O

1.2 Integral Domains and Fraction Fields

Definition 1.3. A commutative ring R is an integral domain if for every a,b € R\{0}, a-b # 0.



An example of integral domain is the ring Z. An integral domain naturally gives rise to a field,
called its field of fractions or fraction field. Intuitively, it is the set of elements of the form ¢ for a
and b in the integral domain with b # 0. For example, Q is the field of fractions of Z. To define it
formally, we need some work though.

Let R be an integral domain. Define ring R as:
R={(a,b) | a,b € R and b # 0}.

The operations in R are defined as follows: (a1,b1) + (ag,b2) = (a1 - ba + az - b1,by - ba), and
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(a1,b1) - (a2,b2) = (a1 - az,b1 - b2). It is easy to verify that under these two operations, R is a

commutative ring when R is an integral domain. Discerning eyes would realize that the addition

and multiplication operations as defined above are capturing operations on fractions ‘;—11 and ‘;—;.

The problem is that there are multiple elements that should be the same: § and ¢ for any ¢ # 0.
We fix this by removing multiple copies. Let

I={(0,b) | b€ R and b # 0}.
Set I is an ideal of R: (0,b1) + (0,b2) = (0,b1 - by) and (a,b) - (0,b1) = (0,b-b1). In fact,
Lemma 1.4. [ is a maximal ideal of R.

Proof. Let J be an ideal of R containing I. If J # I, then (a,b) € J for some (a,b) € R with a # 0.
Then (b,a) € R and so (a,b) - (b,a) = (a-b,a-b) € J. We have:

(@ -bya-b)—(1,1)=(a-b—a-b,a-b) =(0,a-b) € J.
Hence, (1,1) € J, and therefore, J = R. O

Define F = R/I. Since I is a maximal ideal, F is a field. An element of F is a class (a, b) + I which
contains precisely the elements (a - ¢,b - c) for ¢ # 0. We will write elements of F' as ¢, b # 0, with
elements 37 treated as equal for ¢ # 0. This corresponds nicely to the elements of Q. F'is the field
of fractions of R.

1.3 Integrally Closed Rings

Let R and R be commutative rings with R C R.

Definition 1.5. Element e € R is integral over R if e +ag_1e 1+ +aje+ap = 0 for some
d >0 and ag,a1,...,aq-1 € R.

Integral elements over R in the ring R are, in a sense, “close” to the elements of R as they can
be defined purely in terms of R. This notion allows us to extend the definition of integers to rings
bigger than Z. For example, in the field Q[iv/3], elements of the form a 4 iv/3b with a,b € Z are
integral over Z:

(a+iV3b)* = a® — 32 + 2a - (a +iV3b) — 2a* = 2a - (a + iV/3b) — a® — 3b°.
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Thus, elements of the ring Z[iv/3] are all integral over Z. These can be viewed as “integers” of the
field Q[iv/3]. In fact, even LQ\/E is integral:

(1+4v3)*  —24+2V3  14+iV/3-2 1+iV3
4 4 2 2

1.

It can be shown that integral elements of Q[i1/3] are precisely a + b%ﬁ for a,b € Z.

An integrally closed ring is one that cannot be extended in this way.

Definition 1.6. Ring R is integrally closed in R if for every e € R, if e is integral over R then
e € R

For example, Z is integrally closed in Q: if (%)d—i—z‘f:—(} ai(§)" =0 for a;, ¢, ¢ € Z with ged(c, ¢) =1,

then ¢ + Z?:_ol a;c'¢?=t = 0. Therefore, ¢? is divisible by ¢. Since ged(c, &) = 1, é = 1.

1.4 Dedekind Domains

We can now define our the main objects of study.
Definition 1.7. Commutative ring R is a Dedekind domain if:
1. R is Noetherian,
2. R is an integral domain,
3. R is integrally closed in F, its field of fractions, and
4. Every prime ideal of R is maximal.

Dedekind domains admit unique factorization of ideals, as we show in the next section.

2 Unique Factorization in Dedekind Domains

Let R be a Dedekind domain and R its field of fractions. We first show a key property of Dedekind
domains.

Theorem 2.1. Let I be an ideal of R and a € I, a # 0. Then there exists an ideal J such that
I-J=/(a).
Proof of Theorem 2.1

Proof of this theorem is a bit involved, and uses all the properties of Dedekind domains. Define J
as:
J={b|be R and bl C (a)}.

Clearly, J is an ideal and I - J C (a). We now show that I - J = (a). Let us start with a lemma:

Lemma 2.2. Fvery ideal of R contains a product of prime ideals.
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Proof. Suppose not. Let S be the set of all ideals of R that do not contain a product of prime
ideals. Since R is Noetherian, set S has a maximal element, say I. Observe that [ is not a prime
ideal and I # (1) (as (1) contains prime ideals). Hence, there exist elements a,b € R such that
a-b el butab¢gl. Consider ideals I} = (a) + I and Iy = (b) + I. Both are strictly bigger than
I and hence do not belong to the set S. Therefore, both contain products of prime ideals. But
I; - I, C I and hence I also contains a product of prime ideals. Contradiction. O

Let F' be the field of fractions of R. The next lemma shows an intersting properties of proper ideals
of R that we will use repeatedly.

Lemma 2.3. Let I be a proper ideal of R. Then there exists prime ideals Py, Ps, ..., Py such that
PP---P,CICP.

Proof. By Lemma 2.2, there exist prime ideals Py, P, ..., P, such that PP --- P, C I. Further,
since [ is a proper ideal, I is contained in a maximal ideal P, which is also a prime ideal. Hence,
we have Plpgpk g P.

We show that P = P; for some 1 < ¢ < k. Assume that P; € P for 1 <4 < k. Then there exists
a; € P;\P. However, Hle a; € P which contradicts the fact that P is prime. Therefore, P; C P
for some 1 < i < k. Since P; is a prime ideal, and R is a Dedekind domain, P; is also maximal.
Hence P = P;. By renumbering, we can get P = P. O

Multiplying an ideal with any element of R keeps the resulting element in the ideal. We show that
multiplying a proper ideal of R by an appropriate element of F'\ R keeps the result in R.

Lemma 2.4. Let I be an ideal of R, I # (1). Then there exists « € F\R such that ol C R.

Proof. Let b € I. By the above lemma, ideal (b) contains a product of prime ideals. Choose such
a product in (b) with smallest number of prime ideals. Let it be Py Py --- Py. Since I # (1), by
Lemma 2.3, we have P1 Py --- P, C (b) C I C P;. By minimality of k, we have that P/ = Py--- P, €
(b). Let c € P'\(b) and v = §. We have v € F\R, and vI C vP; = tPic C 3(b) C R. O

We now resume the proof of theorem. Let A = 1(I'-J). Since I-J C (a), A € R, and can be
easily verified to be an ideal. If A = (1), then I -J = aA = (a), and we are done. Otherwise, A is
a proper ideal of R. Therefore, there exists v € F\R such that yA C R. Since a € I, we get that
J C A. Hence, vJ C vA C R. Multiplying by a, we get ayJ CyaA=~(I-J)=1-~vJ C (a). By
definition of J, therefore, vJ C J.

Since R is Noetherian, J has a finite number of generators. Let these by g1, g2, ..., ¢ Since
~vJ C J, we have ~vg; = Zzzl ciege for ¢;p € R, 1 <14 <t. In other words, letting

C1,1 C1,2 -+ Clt
C2,1 C22 -+ Cat

= )
Ct1 Ct2 - Cit
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and

gt
we get

where I is the identity matrix. Therefore, det(yI — C) = 0. This gives a polynomial of degree
t over R satisfied by . Hence, v is integral over R, and since R is a Dedekind domain, v € R.
This contradicts that fact that v € F'\ R. Going back in the argument, we find that A cannot be a
proper ideal of R, hence A = (1), or equivalently, I - J = (a). This completes the proof of theorem.

2.1 Fractional Ideals

By Theorem 2.1, for every ideal I of R, there exists an ideal J such that I-J = (a). We can rewrite
this as /- 17 = (1). Thus, 17 is “inverse” of I. However, 1.J ¢ R. To handle this, we observe that
éJ € F', and define the notion of fractional ideals.

Definition 2.5. Set ] C F is a fractional ideal if there exists a € R and ideal J of R such that
=1
a

Fractional ideals have similar properties as ideals:

Lemma 2.6. A fractional ideal I is a commutative group under addition and R - Icl.

Proof. Follows immediately from the fact that I= %J and J is an ideal of R. O
Note that every ideal of R is also a fractional ideal. Let

J ={J | J is a fractional ideal}.

Multiplication of ideals can be naturally extended to multiplication of fractional ideals: if J; = i[ 1

and Jy = é[g are two fractional ideals, then J; - J5 = a11a2 I - Is.

Lemma 2.7. J is a commutative group under multiplication.

Proof. Closure, associativity, and commutativity are immediate from the definition and above
discussion. Ideal (1) is the identify of multiplication as J - (1) = J for every fractional ideal. For
inverse of fractional ideal J = %I , I an ideal of R, Theorem 2.1 gives an ideal J of R and element
a € R such that I - %j = (1). Hence,

A 1 b+
J—J=—1--J=(1).
gl =0)



2.2 Unique Factorization Theorem
We are now ready to prove the unique factorization theorem.
Theorem 2.8. Every proper ideal I of R can be uniquely written as product of prime ideals of R.

Proof. We will first prove existence of prime factorization. By Lemma 2.2, I contains a product of
prime ideals P; Ps - -- P;. Since [ is a proper ideal, by Lemma 2.3, P, Py --- P, C I C P;. Now the
proof is by induction on k.

Base case is when kK = 1. Then, P; C I C P;, and hence I = P;.

For induction step, assume that if an ideal contains a product of up to k — 1 primes, then it equals
the product. Now suppose
PPy P, CIC P

Let P, be the inverse of P; in J. Multiplying it to the above containments, we get:
P,Py---P, C P -1C(1).

Fractional ideal P - I is contained in R, and hence is an ideal of R that contains a product of &k — 1
prime ideals. By induction hypothesis,

~

P, .I=PPy P,

Multiplying it by P;, we get:
I =P PPs - Py,

completing the existence proof.

Now we show uniqueness. Let I be a proper ideal with I = P; Ps - - - Py, for prime ideals ;. Suppose
we can also write I = Q1Q2 - - - @, for prime ideals @);. The proof is by induction on &.

Base case is K = 1. Then P = I = Q1Q2---Q,. As argued earlier, P; equals one of @);, say
Q@1. Multiplying with inverse of P; on both sides, we get Q2 ---Q, = (1) which is only possible if

Q2:"':Qr:(1)'

For induction step, assume the uniqueness for products of up to k — 1 ideals. For I = PPy --- P, =
Q1Q3 - Q,, we have, as before,

P1 QI:PLP?P/{::QIQQQT
Arguing as before, P; must equal one of (), say 1. Then, multiplying with inverse of P, we get:
Py Po=Qay Q.

By induction hypothesis, P - - - P, has unique factorization and so r = k and each of (); equals one
of P;. Since P; = D1, the uniqueness follows. O

Corollary 2.9. Every fractional ideal in J can be uniquely written as a product P{"* Py"* --- P"*
where P; are prime ideals of R, m; € Z, and Pi_1 denotes the inverse of P; in J.
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Proof. Let J € J. Then J = 1I. In other words, I = aJ = (a) - J. By the above theorem, both I
and (a) can be written uniquely as a product of prime ideals.Therefore, J can be written uniquely
as a product of prime ideals and their inverses. ]
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