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Preface
Group theory is a central part of modern mathematics. Its origins lie in geome-
try (where groups describe in a very detailed way the symmetries of geometric
objects) and in the theory of polynomial equations (developed by Galois, who
showed how to associate a finite group with any polynomial equation in such a
way that the structure of the group encodes information about the process of solv-
ing the equation).

These notes are based on a Masters course I gave at Queen Mary, University
of London. Of the two lecturers who preceded me, one had concentrated on finite
soluble groups, the other on finite simple groups; I have tried to steer a middle
course, while keeping finite groups as the focus. The notes do not in any sense
form a textbook, even on finite group theory.

Finite group theory has been enormously changed in the last few decades by
the immense Classification of Finite Simple Groups. The most important structure
theorem for finite groups is the Jordan–Hölder Theorem, which shows that any
finite group is built up from finite simple groups. If the finite simple groups are
the building blocks of finite group theory, then extension theory is the mortar
that holds them together, so I have covered both of these topics in some detail:
examples of simple groups are given (alternating groups and projective special
linear groups), and extension theory (via factor sets) is developed for extensions
of abelian groups.

In a Masters course, it is not possible to assume that all the students have
reached any given level of proficiency at group theory. So the first chapter of
these notes, “Preliminaries”, takes up nearly half the total. This starts from the
definition of a group and includes subgroups and homomorphisms, examples of
groups, group actions, Sylow’s theorem, and composition series. This material is
mostly without proof, but I have included proofs of some of the most important
results, including the theorems of Sylow and Jordan–Hölder and the Fundamental
Theorem of Finite Abelian Groups.

The fourth chapter gives some basic information about nilpotent and soluble
groups. Much more could be said here; indeed, it could be argued that a goal
of finite group theory is to understand general finite groups as well as we now
understand finite soluble groups.

The final chapter contains solutions to some of the exercises.
I am grateful to students and colleagues for many helpful comments, and es-

pecially to Jiajie Wang, whose project on Sylow’s Theorem led me to realise that
Sylow’s original proof of his first theorem is still the best!
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Chapter 1

Preliminaries

1.1 Groups
This section defines groups, subgroups, homomorphisms, normal subgroups, and
direct products: some of the basic ideas of group theory. The introduction to any
kind of algebraic structure (e.g. rings) would look rather similar: we write down
some axioms and make some deductions from them. But it is important to realise
that mathematicians knew what was meant by a group long before they got around
to writing down axioms. We return to this after discussing Cayley’s Theorem.

1.1.1 Definition
A group consists of a set G with a binary operation ◦ on G satisfying the following
four conditions:

Closure: For all a,b ∈ G, we have a◦b ∈ G.

Associativity: For all a,b,c ∈ G, we have (a◦b)◦ c = a◦ (b◦ c).

Identity: There is an element e ∈ G satisfying e◦a = a◦ e = a for all a ∈ G.

Inverse: For all a ∈ G, there is an element a∗ ∈ G satisfying a ◦ a∗ = a∗ ◦ a = e
(where e is as in the Identity Law).

The element e is the identity element of G. It is easily shown to be unique.
In the Inverse Law, the element a∗ is the inverse of a; again, each element has a
unique inverse.

Strictly speaking, the Closure Law is not necessary, since a binary operation
on a set necessarily satisfies it; but there are good reasons for keeping it in. The
Associative Law is obviously the hardest to check from scratch.

A group is abelian if it also satisfies
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6 CHAPTER 1. PRELIMINARIES

Commutativity: For all a,b ∈ G, we have a◦b = b◦a.

Most of the groups in this course will be finite. The order of a finite group G,
denoted |G|, is simply the number of elements in the group. A finite group can
in principle be specified by a Cayley table, a table whose rows and columns are
indexed by group elements, with the entry in row a and column b being a◦b. Here
are two examples.

◦ e a b c
e e a b c
a a b c e
b b c e a
c c e a b

◦ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

They are called the cyclic group and Klein group of order 4, and denoted by C4
and V4 respectively. Both of them are abelian.

Two groups (G1,◦) and (G2,∗) are called isomorphic if there is a bijective
map f from G1 to G2 which preserves the group operation, in the sense that f (a)∗
f (b) = f (a◦b) for all a,b ∈ G1. We write (G1,◦)∼= (G2,∗), or simply G1 ∼= G2,
to denote that the groups G1 and G2 are isomorphic. From an algebraic point of
view, isomorphic groups are “the same”.

The numbers of groups of orders 1, . . . ,8 (up to isomorphism) are given in the
following table:

Order 1 2 3 4 5 6 7 8
Number 1 1 1 2 1 2 1 5

We have given the definition rather formally. For most of the rest of the course,
the group operation will be denoted by juxtaposition (that is, we write ab instead
of a◦b); the identity will be denoted by 1; and the inverse of a will be denoted by
a−1. Sometimes the group operation will be +, the identity 0, and the inverse of
a is −a. (This convention is particularly used when studying abelian groups.)

If g and a are elements of a group G, we define the conjugate ga of g by a to
be the element a−1ga. If we call two elements g,h conjugate if h = ga for some
a ∈ G, then conjugacy is an equivalence relation, and so the group is partitioned
into conjugacy classes. (If a group is abelian, then two elements are conjugate if
and only if they are equal.)

1.1.2 Subgroups
A subset H of a group G is called a subgroup if it forms a group in its own right
(with respect to the same operation).

Since the associative law holds in G, it automatically holds in H; so we only
have to check the closure, identity and inverse laws to ensure that H is a subgroup.
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(Since the associative law is the hardest to check directly, this observation means
that, in order to show that a structure is a group, it is often better to identify it with
a subgroup of a known group than to verify the group laws directly.)

We write “H is a subgroup of G” as H ≤ G; if also H 6= G, we write H < G.
A subgroup H of a group G gives rise to two partitions of G:

Right cosets: sets of the form Ha = {ha : h ∈ H};

Left cosets: sets of the form aH = {ah : h ∈ H}.

The easiest way to see that, for example, the right cosets form a partition of G
is to observe that they are equivalence classes for the equivalence relation ≡R
defined by a≡ b if and only if ba−1 ∈ H. In particular, this means that Ha = Hb
if and only if b ∈ Ha. In other words, any element of a coset can be used as its
“representative”.

The number of right cosets of H in G is called the index of H in G, written
|G : H|. (The number of left cosets is the same.)

The cardinality of any right coset Ha of H is equal to |H|, since the map
h 7→ ha is a bijection from H to Ha. So G is partitioned into classes of size |H|,
and so |G|= |G : H| · |H|. We conclude:

Theorem 1.1.1 (Lagrange’s Theorem) The order of a subgroup of a group G
divides the order of G.

The term “order” is also used with a different, though related, meaning in
group theory. The order of an element a of a group G is the smallest positive
integer m such that am = 1, if one exists; if no such m exists, we say that a has
infinite order. Now, if a has order m, then the m elements 1,a,a2, . . . ,am−1 are all
distinct and form a subgroup of G. Hence, by Lagrange’s Theorem, we see that
the order of any element of G divides the order of G.

1.1.3 Homomorphisms and normal subgroups
Let G1 and G2 be groups. A homomorphism from G1 to G2 is a map θ which
preserves the group operation. We will write homomorphisms on the right of their
arguments: the image of a under θ will be written as aθ . Thus the condition for
θ to be a homomorphism is

(ab)θ = (aθ)(bθ) for all a,b ∈ G1,

where ab is calculated in G1, and (aθ)(bθ) in G2.
With a homomorphism θ are associated two subgroups:
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Image: Im(θ) = {b ∈ G2 : b = aθ for some a ∈ G1};

Kernel: Ker(θ) = {a ∈ G1 : aθ = 1}.

A subgroup H of G is said to be a normal subgroup if it is the kernel of a
homomorphism. Equivalently, H is a normal subgroup if its left and right cosets
coincide: aH = Ha for all a ∈ G. We write “H is a normal subgroup of G” as
H EG; if H 6= G, we write H CG.

If H is a normal subgroup of G, we denote the set of (left or right) cosets by
G/H. We define an operation on G/H by the rule

(Ha)(Hb) = Hab for all a,b ∈ G.

It can be shown that the definition of this operation does not depend on the choice
of the coset representatives, and that G/H equipped with this operation is a group,
the quotient group or factor group of G by H.

Theorem 1.1.2 (First Isomorphism Theorem) Let θ : G1→G2 be a homomor-
phism. Then

(a) Im(θ) is a subgroup of G2;

(b) Ker(θ) is a normal subgroup of G1;

(c) G1/Ker(θ)∼= Im(θ).

The moral of this theorem is: The best way to show that H is a normal sub-
group of G (and to identify the quotient group) is to find a homomorphism from
G to another group whose kernel is H.

There are two further isomorphism theorems which we will recall if and when
we actually need them. This one is the most important!

1.1.4 Direct products
Here is a simple construction for producing new groups from old. We will see
more elaborate versions later.

Let G1 and G2 be groups. We define the direct product G1×G2 to be the
group whose underlying set is the Cartesian product of the two groups (that is,
G1×G2 = {(g1,g2) : g1 ∈ G1,g2 ∈ G2}), with group operation given by

(g1,g2)(h1,h2) = (g1h1,g2h2) for all g1,h1 ∈ G1,g2,h2 ∈ G2}.

It is not hard to verify the group laws, and to check that, if G1 and G2 are abelian,
then so is G1×G2.
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Note that |G1×G2|= |G1| · |G2|. The Klein group is isomorphic to C2×C2.
The construction is easily extended to the direct product of more factors. The

elements of G1×·· ·×Gr are all r-tuples such that the ith component belongs to
Gi; the group operation is “componentwise”.

This is the “external” definition of the direct product. We also need to describe
it “internally”: given a group G, how do we recognise that G is isomorphic to a
direct product of two groups G1 and G2?

The clue is the observation that, in the direct product G1×G2, the set

H1 = {(g1,1) : g1 ∈ G1}

is a normal subgroup which is isomorphic to G1; the analogously-defined H2 is a
normal subgroup isomorphic to G2.

Theorem 1.1.3 Let G1, G2, G be groups. Then G is isomorphic to G1×G2 if and
only if there are normal subgroups H1 and H2 of G such that

(a) H1 ∼= G1 and H2 ∼= G2;

(b) H1∩H2 = {1} and H1H2 = G.

(Here H1H2 = {ab : a ∈ H1,b ∈ H2}.
There is a similar, but more complicated, theorem for recognising direct prod-

ucts of more than two groups.

1.1.5 Presentations
Another method of describing a group is by means of a presentation, an expression
of the form G = 〈S | R〉. Here S is a set of “generators” of the group, and R a set
of “relations” which these generators must obey; the group G is defined to be the
“largest” group (in a certain well-defined sense) generated by the given elements
and satisfying the given relations.

An example will make this clear. G = 〈a | a4 = 1〉 is the cyclic group of
order 4. It is generated by an element a satisfying a4 = 1. While other groups (the
cyclic group of order 2 and the trivial group) also have these properties, C4 is the
largest such group.

Similarly, 〈a,b | a2 = b2 = 1,ab = ba〉 is the Klein group of order 4.
While a presentation compactly specifies a group, it can be very difficult to

get any information about the group from a presentation. To convince yourself of
this, try to discover which group has the presentation

〈a,b,c,d,e | ab = c,bc = d,cd = e,cd = a,ea = b〉.
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1.2 Examples of groups

In this section we consider various examples of groups: cyclic and abelian groups,
symmetric and alternating groups, groups of units of rings, and groups of symme-
tries of regular polygons and polyhedra.

1.2.1 Cyclic groups

A group G is cyclic if it consists of all powers of some element a ∈G. In this case
we say that G is generated by a, and write G = 〈a〉.

If a has finite order n, then 〈a〉 = {1,a,a2, . . . ,an−1}, and the order of 〈a〉 is
equal to the order of a. An explicit realisation of this group is the set {e2πik/n : k =
0,1, . . . ,n− 1} of all complex nth roots of unity, with the operation of multipli-
cation; another is the set Z/nZ of integers mod n, with the operation of addition
mod n. We denote the cyclic group of order n by Cn.

If a has infinite order, then 〈a〉 consists of all integer powers, positive and
negative, of a. (Negative powers are defined by a−m = (a−1)m; the usual laws of
exponents hold, for example, ap+q = ap · aq.) An explicit realisation consists of
the set of integers, with the operation of addition. We denote the infinite cyclic
group by C∞.

The cyclic group Cn has a unique subgroup of order m for each divisor m of
n; if Cn = 〈a〉, then the subgroup of order m is 〈an/m〉. Similarly, C∞ = 〈a〉 has a
unique subgroup 〈ak〉 of index k for each positive integer k.

A presentation for the cyclic group of order n is Cn = 〈a | an = 1〉.

Proposition 1.2.1 The only group of prime order p, up to isomorphism, is the
cyclic group Cp.

For if |G|= p, and a is a non-identity element of G, then the order of a divides
(and so is equal to) p; so G = 〈a〉.

1.2.2 Abelian groups

Cyclic groups are abelian; hence direct products of cyclic groups are also abelian.
The converse of this is an important theorem, whose most natural proof uses con-
cepts of rings and modules rather than group theory. We say that a group G is
finitely generated if there is a finite set S which is contained in no proper sub-
group of G (equivalently, every element of G is a product of elements of S and
their inverses).
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Theorem 1.2.2 (Fundamental Theorem of Abelian Groups) A finitely generated
abelian group is a direct product of cyclic groups. More precisely, such a group
can be written in the form

Cm1×Cm2×·· ·×Cmr ×C∞×·· ·×C∞,

where mi | mi+1 for i = 1, . . . ,r−1; two groups of this form are isomorphic if and
only if the numbers m1, . . . ,mr and the numbers of infinite cyclic factors are the
same for the two groups.

For example, there are three abelian groups of order 24 up to isomorphism:

C24, C2×C12, C2×C2×C6.

(Write 24 in all possible ways as the product of numbers each of which divides
the next.)

Proof of the FTAG We prove the theorem in the special case of finite abelian
groups.

Theorem 1.2.3 Any finite abelian group G can be written in the form

G∼=Cn1×Cn2×·· ·×Cnr ,

where 1 < n1 | n2 | · · · | nr. Moreover, if also

G∼=Cm1×Cm2×·· ·×Cms,

where 1 < m1 | m2 | · · · | ms, then r = s and ni = mi for i = 1,2, . . . ,r.

Remark 1 We need the divisibility condition in order to get the uniqueness part
of the theorem. For example,

C2×C6 ∼=C2×C2×C3;

the first expression, but not the second, satisfies this condition.

Remark 2 The proof given below is a kludge. There is an elegant proof of
the theorem, which you should meet if you study Rings and Modules, or which
you can read in a good algebra book. An abelian group can be regarded as a
module over the ring Z, and the Fundamental Theorem above is a special case of
a structure theorem for finitely-generated modules over principal ideal domains.
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We need a couple of preliminaries before embarking on the proof. The expo-
nent of a group G is the smallest positive integer n such that gn = 1 for all g ∈ G.
Equivalently, it is the least common multiple of the orders of the elements of G.
Note that the exponent of any subgroup or factor group of G divides the exponent
of G; and, by Lagrange’s Theorem, the exponent of a group divides its order.

For example, the symmetric group S3 contains elements of orders 2 and 3, so
its exponent is 6. However, it doesn’t contain an element of order 6.

Lemma 1.2.4 If G is abelian with exponent n, then G contains an element of
order n.

Proof Write n = pa1
1 · · · par

r , where p1, . . . , pr are distinct primes. Since n is the
l.c.m. of orders of elements, there is an element with order divisible by pai

i , and
hence some power of it (say gi) has order exactly pai

i . Now in an abelian group,
if two (or more) elements have pairwise coprime orders, then the order of their
product is the product of their orders. So g1 · · ·gr is the required element.

Proof of the Theorem We will prove the existence, but not the uniqueness. We
use induction on |G|; so we suppose the theorem is true for abelian groups of
smaller order than G.

Let n be the exponent of G; take a to be an element of order n, and let A = 〈a〉,
so A∼=Cn. Let B be a subgroup of G of largest order subject to the condition that
A∩B = {1}. We claim that

AB = G.

Suppose this is proved. Since A and B are normal subgroups, it follows that G =
A× B. By induction, B can be expressed as a direct product of cyclic groups
satisfying the divisibility condition; and the order of the largest one divides n,
since n is the exponent of G. So we have the required decomposition of G.

Thus it remains to prove the claim. Suppose, for a contradiction, that AB 6= G.
Then G/AB contains an element of prime order p dividing n; so an element x in
this coset satisfies x /∈ AB, xp ∈ AB. Let xp = akb where b ∈ B.

Case 1: p | k. Let k = pl, and let y = xa−l . Then y /∈ B (for if it were, then
x = yal ∈ AB, contrary to assumption.) Now B′ = 〈B,y〉 is a subgroup p times as
large as B with A∩B′ = {1}, contradicting the definition of B. (If A∩B′ 6= 1, then
xa−lb ∈ A for some b ∈ B, whence x ∈ AB.)

Case 2: If p does not divide k, then the order of x is divisible by a higher
power of p than the order of a, contradicting the fact that the order of a is the
exponent of G.
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In either case we have a contradiction to the assumption that AB 6= G. So our
claim is proved.

Using the uniqueness part of the theorem (which we didn’t prove), we can in
principle count the abelian groups of order n; we simply have to list all expressions
for n as a product of factors each dividing the next. For example, let n = 72. The
expressions are:

72
2 ·36
2 ·2 ·18
3 ·24
6 ·12
2 ·6 ·6

So there are six abelian groups of order 72, up to isomorphism.

1.2.3 Symmetric groups

Let Ω be a set. A permutation of Ω is a bijective map from Ω to itself. The set
of permutations of Ω, with the operation of composition of maps, forms a group.
(We write a permutation on the right of its argument, so that the composition f ◦g
means “first f , then g”: that is, α( f ◦g) = (α f )g. Now as usual, we suppress the
◦ and simply write the composition as f g.)

The closure, identity and inverse laws hold because we have taken all the per-
mutations; the associative law holds because composition of mappings is always
associative: α( f (gh)) = α(( f g)h) (both sides mean “apply f , then g, then h”).
The group of permutations of Ω is called the symmetric group on Ω, and is de-
noted by Sym(Ω). In the case where Ω = {1,2, . . . ,n}, we denote it more briefly
by Sn. Clearly the order of Sn is n!.

A permutation of Ω can be written in cycle notation. Here is an example.
Consider the permutation f given by

1 7→ 3,2 7→ 6,3 7→ 5,4 7→ 1,5 7→ 4,6 7→ 2,7 7→ 7

in the symmetric group S7. Take a point of {1, . . . ,7}, say 1, and track its succes-
sive images under f ; these are 1,3,5,4 and then back to 1. So we create a “cycle”
(1,3,5,4). Since not all points have been considered, choose a point not yet seen,
say 2. Its cycle is (2,6). The only point not visited is 7, which lies in a cycle of
length 1, namely (7). So we write

f = (1,3,5,4)(2,6)(7).
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If there is no ambiguity, we suppress the cycles of length 1. (But for the identity
permutation, this would suppress everything; sometimes we write it as (1). The
precise convention is not important.)

The cycle structure of a permutation is the list of lengths of cycles in its cycle
decomposition. (A list is like a sequence, but the order of the entries is not signifi-
cant; it is like a set, but elements can be repeated. The list [apple,apple,orange,apple,orange]
can be summarised as “three apples and two oranges”.)

Any permutation can be written in several different ways in cycle form:

• the cycles can be written in any order, so (1,3,5,4)(2,6) = (2,6)(1,3,5,4).

• each cycle can start at any point, so (1,3,5,4) = (3,5,4,1).

One can show that, if a1,a2, . . . are non-negative integers satisfying ∑ iai = n, then
the number of elements of Sn having ai cycles of length i for i = 1,2, . . . is

n!
∏ iaiai!

For if we write out the cycle notation with blanks for the entries, there are n! ways
of filling the blanks, and the denominator accounts for the ambiguities in writing
a given permutation in cycle form.

The significance of this number is the following:

Proposition 1.2.5 Two elements of the symmetric group Sym(Ω) are conjugate if
and only if they have the same cycle structure.

Hence the numbers just computed are the sizes of the conjugacy classes in Sn.
For example, the following list gives the cycle structures and conjugacy class

sizes in S4:
Cycle structure Class size

[4] 6
[3,1] 8
[2,2] 3
[2,1,1] 6
[1,1,1,1] 1

The cycle structure of a permutation gives more information too.

Proposition 1.2.6 The order of a permutation is the least common multiple of the
lengths of its cycles.

We define the parity of a permutation g∈ Sn to be the parity of n−c(g), where
c(g) is the number of cycles of g (including cycles of length 1). We regard parity
as an element of the group Z/2Z = {even,odd} of integers mod 2 (the cyclic
group of order 2).
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Proposition 1.2.7 For n ≥ 2, parity is a homomorphism from Sn onto the group
C2.

The kernel of this parity homomorphism is the set of all permutations with
even parity. By the First Isomorphism Theorem, this is a normal subgroup of Sn
with index 2 (and so order n!/2), known as the alternating group, and denoted by
An. The above calculation shows that A4 the set of permutations with cycle types
[3,1], [2,2] and [1,1,1,1]; there are indeed 12 such permutations.

1.2.4 General linear groups
The laws for abelian groups (closure, associativity, identity, inverse, and commu-
tativity) will be familiar to you from other parts of algebra, notably ring theory
and linear algebra. Any ring, or any vector space, with the operation of addition,
is an abelian group.

More interesting groups arise from the multiplicative structure. Let R be a ring
with identity. Recall that an element u ∈ R is a unit if it has an inverse, that is,
there exists v ∈ R with uv = vu = 1. Now let U(R) be the set of units of R. Since
the product of units is a unit, the inverse of a unit is a unit, and the identity is a
unit, and since the associative law holds for multiplication in a ring, we see that
U(R) (with the operation of multiplication) is a group, called the group of units of
the ring R.

In the case where R is a field, the group of units consists of all the non-zero
elements, and is usually called the multiplicative group of R, written R×.

A very interesting case occurs when R is the ring of linear maps from V to
itself, where V is an n-dimensional vector space over a field F. Then U(R) con-
sists of the invertible linear maps on V . If we choose a basis for V , then vectors
are represented by n-tuples, so that V is identified with Fn; and linear maps are
represented by n× n matrices. So U(R) is the group of invertible n× n matrices
over F. This is known as the general linear group of dimension n over F, and
denoted by GL(n,F).

Since we are interested in finite groups, we have to stop to consider finite fields
here. The following theorem is due to Galois:

Theorem 1.2.8 (Galois’ Theorem) The order of a finite field is necessarily a
prime power. If q is any prime power, then there is up to isomorphism a unique
field of order q.

For prime power q, this unique field of order q is called the Galois field of
order q, and is usually denoted by GF(q). In the case where q is a prime number,
GF(q) is the field of integers mod q. We shorten the notation GL(n,GF(q)) to
GL(n,q).
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For example, here are the addition and multiplication table of GF(4). We see
that the additive group is the Klein group, while the multiplicative group is C3.

+ 0 1 α β

0 0 1 α β

1 1 0 β α

α α β 0 1
β β α 1 0

· 0 1 α β

0 0 0 0 0
1 0 1 α β

α 0 α β 1
β 0 β 1 α

Note that GL(1,F) is just the multiplicative group F× of F. From linear alge-
bra, we recall that, for any n×n matrices A and B, we have

det(AB) = det(A)det(B);

so the determinant map det is a homomorphism from GL(n,F) to F×. The kernel
of this homomorphism (the set of n× n matrices with determinant 1) is called
the special linear group, and is denoted by SL(n,F). Again, if F = GF(q), we
abbreviate this to SL(n,q).

1.2.5 Dihedral and polyhedral groups
A symmetry of a figure in Euclidean space is a rigid motion (or the combination of
a rigid motion and a reflection) of the space which carries the figure to itself. We
can regard the rigid motion as a linear map of the real vector space, so represented
by a matrix (assuming that the origin is fixed). Alternatively, if we number the
vertices of the figure, then we can represent a symmetry by a permutation.

Let us consider the case of a regular polygon in the plane, say a regular n-gon.
Here are drawings for n = 4 (the square) and n = 5 (the regular pentagon).
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The n-gon has n rotational symmetries, through multiples of 2π/n. In addition,
there are n reflections about lines of symmetry. The behaviour depends on the
parity of n. If n is even, there are two types of symmetry line; one joins opposite
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vertices, the other joins midpoints of opposite sides. If n is odd, then each line of
symmetry joins a vertex to the midpoint of the opposite side.

The group of symmetries of the regular n-gon is called a dihedral group. We
see that it has order 2n, and contains a cyclic subgroup of order n consisting of ro-
tations; every element outside this cyclic subgroup is a reflection, and has order 2.
We denote this group by D2n (but be warned that some authors call it Dn).

In the case n = 4, numbering the vertices 1,2,3,4 in clockwise order from the
top left as shown, the eight symmetries are

(
1 0
0 1

)
,

(
0 1
−1 0

)
,

(
−1 0
0 −1

)
,

(
0 −1
1 0

)
,

(
−1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 −1
−1 0

)
,

and the corresponding permutations are

1,(1,2,3,4),(1,3)(2,4),(1,4,3,2),(1,2)(3,4),(1,4)(2,3),(2,4),(1,3).

(The ordering is: first the rotations, then the reflections in vertical, horizontal, and
diagonal lines.)

The group D2n has a presentation

D2n = 〈a,b | an = 1,b2 = 1,ba = a−1b〉.

I won’t prove this in detail (I haven’t given a proper definition of a presentation!),
but note that every product of as and bs can be reduced to the form am or amb by
using the relations, where 0≤m≤ n−1, so there are just 2n elements in the group
given by the presentation. But the dihedral group does satisfy these relations.

There are only five regular polyhedra in three dimensions: the tetrahedron,
cube, octahedron, dodecahedron, and icosahedron. Apart from the tetrahedron,
they fall into two dual pairs: cube and octahedron, dodecahedron and icosahedron.
If you take six vertices at the face centres of the cube, they are the vertices of an
octahedron; and similarly the face centres of the octahedron are the vertices of a
cube. A similar relation holds for the other pairs. So dual pairs have the same
symmetry group. The following table describes the symmetry groups and the
rotation groups (which are subgroups of index 2 in each case). As usual, Cn, Sn
and An are the cyclic group of order n and the symmetric and alternating groups
of degree n respectively.

Polyhedron Rotation group Symmetry group
Tetrahedron A4 S4

Cube S4 S4×C2
Dodecahedron A5 A5×C2
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1.2.6 Small groups
We have seen in Proposition 1.2.1 a proof that there is a unique group of prime
order (up to isomorphism). Here are proofs that the numbers of groups of orders
4, 6, 8 are 2, 2 and 5 respectively.

Order 4: Let G be an element of order 4. If G contains an element of order 4,
then it is cyclic; otherwise all its elements apart from the identity have order 2.
Let G = {1,x,y,z}. What is xy? By the cancellation laws, xy cannot be 1 (since
xx = 1), or x, or y; so xy = z. Similarly the product of any two of x,y,z is the
third, and the multiplication table is determined. So there is at most one type of
non-cyclic group. But the group C2×C2 realises this case.

Order 6: Again suppose that there is no element of order 6, so that elements of
G have orders 1, 2 and 3 only. All these orders actually appear [why?]. Let a have
order 3 and b order 2. Then it is easy to see that G = {1,a,a2,b,ab,a2b}. We
cannot have ba = ab, since then we would find that this element has order 6. All
other possibilities for ba except ba = a2b are eliminated by the cancellation laws.
So ba = a2b, and then the multiplication table is determined. This case is realised
by the symmetric group S3.

Order 8: If there is an element of order 8, then G is cyclic; if no element has
order greater than 2, then G = C2×C2×C2 (this is a bit harder). So assume
that a is an element of order 4, and let b be an element which is not a power of
a. Then G = {1,a,a2,a3,b,ab,a2b,a3b}. This time we need to know which of
these eight elements is b2, and which is ba, in order to determine the group. We
find that b2 = 1 or b2 = a2, and that ba = ab or ba = a3b. There seem to be
four different possibilities; but two of these turn out to be isomorphic (namely,
the cases b2 = 1,ba = ab and b2 = a2,ba = ab). So there are three different
groups of this form. All of them actually occur: they are C4×C2 and the dihedral
and quaternion groups. These together with the two we already found make five
altogether.

1.3 Group actions
A group is an abstract object, and often we need to represent it in a more concrete
way, for example, by permutations of a set, or by matrices over a field. We want
the multiplication of the permutations or matrices to reflect the operation in the
given group; that is to say, we want to have a homomorphism from the group to
either a symmetric group or a general linear group. Using a homomorphism allows
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us a little extra flexibility: it is possible that the homomorphism is not injective, so
that different group elements are represented by the same permutation or matrix.

In this chapter we look at representations by permutations, describe their struc-
ture, and look briefly at some other counting problems which are developed further
in Enumerative Combinatorics.

1.3.1 Definition
An action of a group G on a set Ω is a homomorphism from G to the symmetric
group Sym(Ω). In other words, to each group element we associate a permuta-
tion, and the product of group elements is associated with the composition of the
corresponding permutations. We will always have in mind a fixed action θ ; so
gθ is a permutation of Ω, and we can talk about α(gθ) for α ∈ Ω. To simplify
notation, we suppress the name of the action, and simply write αg for the image
of α under the permutation corresponding to g.

Alternatively, we can define an action of G on Ω as a map µ from Ω×G to Ω

satisfying the two laws

(a) µ(µ(α,g),h) = µ(α,gh) for all g,h ∈ G, α ∈Ω.

(b) µ(α,1) = α for all α ∈Ω.

Again we simplify notation by suppressing the name µ: we write µ(α,g) as αg.
Then (a) says that (αg)h=α(gh); it follows from (a) and (b) that the map α 7→αg
is a permutation of Ω (its inverse is α 7→ αg−1), and so we do indeed have a
homomorphism from G to Sym(Ω).

Example Let G = S4, and let Ω be the set of three partitions of {1,2,3,4} into
two sets of size 2. Any permutation in G can be used to transform the partitions:
for example, g = (1,3,4) maps 12|34 7→ 23|14 7→ 13|24. This gives an action of G
on a set of size 3, that is, a homomorphism from S4 to S3. It is easily checked that
this homomorphism is onto, and that its kernel is the Klein group V4 consisting of
the identity, (1,2)(3,4), (1,3)(2,4) and (1,4)(2,3). Thus V4 is a normal subgroup
of S4, and S4/V4 ∼= S3 (by the First Isomorphism Theorem).

Example There are several ways of making a group act on itself (that is, we take
Ω = G):

Right multiplication: µ(x,g) = xg.

Left multiplication: µ(x,g) = g−1x (the inverse is needed to ensure that acting
with g and then with h is the same as acting with gh).
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Conjugation: µ(x,g) = g−1xg.

The first of these actions has an important consequence. The action by right
multiplication is faithful: if µ(x,g) = µ(x,h) for all x∈G, then g = h. This means
that the action homomorphism from G into Sym(G) is one-to-one (its kernel is the
identity). By the First Isomorphism Theorem, the image of this map is a subgroup
of Sym(G) which is isomorphic to G. Hence:

Theorem 1.3.1 (Cayley’s Theorem) Every group is isomorphic to a subgroup of
some symmetric group.

As well as motivating the study of symmetric groups and their subgroups, this
theorem has historical importance. As noted earlier, group theory had existed as
a mathematical subject for a century before the group laws were written down by
Walther von Dyck in 1882. In those days the word “group” meant what we would
now describe as a permutation group or transformation group, that is, a subgroup
of the symmetric group. (In detail, a group was a set of transformations of a set
which is closed under composition, contains the identity transformation, and con-
tains the inverse of each of its elements. Since composition of transformations is
associative, we see that every transformation group is a group in the modern sense.
In the other direction, Cayley’s theorem shows that every group is isomorphic to
a transformation group; so, despite the change in foundations, the actual subject
matter of group theory didn’t change at all!

Finally, we note that the permutation group given by Cayley’s Theorem can
be written down from the Cayley table of G: the permutation of G corresponding
to the element g ∈ G is just the column labelled g of the Cayley table. Referring
back to the two Cayley tables on page 6, we see that as permutation groups

C4 = {1,(e,a,b,c),(e,b)(a,c),(e,c,b,a)},
V4 = {1,(e,a)(b,c),(e,b)(a,c),(e,c)(a,b)}.

Both these groups are abelian so we could have used rows rather than columns to
get the same result; but in general it makes a difference.

1.3.2 How many groups?

The number of n× n arrays with entries chosen from a set of size n is nn2
. So

certainly this is an upper bound for the number of groups of order n.
In fact one can do much better, using two results we have met: the theorems

of Lagrange and Cayley.

Theorem 1.3.2 The number of groups of order n is at most nn log2 n.
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Proof By Cayley’s Theorem, every group of order n is isomorphic to a subgroup
of the symmetric group Sn. So if we can find an upper bound for the number
of such subgroups, this will certainly bound the number of groups up to isomor-
phism.

We use Lagrange’s Theorem in the following way. We say that a set {g1, . . . ,gk}
of elements of a group G generates G if no proper subgroup of G contains all these
elements. Equivalently, every element of G can be written as a product of these
elements and their inverses.

Now we have the following:

Proposition 1.3.3 A group of order n can be generated by a set of at most log2 n
elements.

To see this, pick a non-identity element g1 of G, and let G1 be the subgroup
generated by g1. If G1 = G, stop; otherwise choose an element g2 /∈ G1, and let
G2 be the subgroup generated by g1 and g2. Continue in this way until we find
g1, . . . ,gk which generate G.

We claim that |Gi| ≥ 2i for i = 1, . . . ,k. The proof is by induction on i. The
assertion is clear for i = 1, since by assumption |G1| > 1, so |G1| ≥ 2. Now
suppose that |Gi| ≥ 2i. Now Gi is a subgroup of Gi+1, and so |Gi| divides |Gi+1|,
by Lagrange’s Theorem; since Gi 6= Gi+1, we have that |Gi+1| ≥ 2|Gi| ≥ 2i+1. So
the assertion is proved by induction.

Finally, n = |G|= |Gk| ≥ 2k, so k ≤ log2 n.

Thus, to specify a subgroup G of order n of Sn, we only have to pick k =
blog2 nc elements which generate G. There are at most n! choices for each ele-
ment, so the number of subgroups is at most

(n!)k ≤ (nn)log2 n = nn log2 n,

since clearly n!≤ nn.

1.3.3 Orbits and stabilisers
Let G act on Ω. We define a relation ≡ on Ω by the rule that α ≡ β if there is
an element g ∈ G such that αg = β . Then ≡ is an equivalence relation. (It is
instructive to see how the reflexive, symmetric and transitive laws for ≡ follow
from the identity, inverse and closure laws for G.) The equivalence classes of
this relation are called orbits; we say that the action is transitive (or that G acts
transitively on Ω) if there is just one orbit.

We denote the orbit containing a point α by OrbG(α).
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For example, the action of G on itself by right multiplication is transitive; in
the action by conjugation, the orbits are the conjugacy classes.

Given a point α , the stabiliser of α is the set of elements of G which map it to
itself:

StabG(α) = {g ∈ G : αg = α}.

Theorem 1.3.4 (Orbit-Stabiliser Theorem) Let G act on Ω, and choose α ∈Ω.
Then StabG(α) is a subgroup of G; and there is a bijection between the set of right
cosets of StabG(α) in G and the orbit OrbG(α) containing α .

It follows from the Orbit-Stabiliser Theorem that |StabG(α)| · |OrbG(α)| =
|G|.

The correspondence works as follows. Given β ∈OrbG(α), by definition there
exists h ∈ G such that αh = β . Now it can be checked that the set of all elements
mapping α to β is precisely the right coset (StabG(α))h.

Every subgroup of G occurs as the stabiliser in a suitable transitive action of
G. For let H be a subgroup of G. Let Ω be the set of all right cosets of H in G,
and define an action of G on Ω by, formally, µ(Hx,g) = Hxg. (Informally we
would write (Hx)g = Hxg, but this conceals the fact that (Hx)g means the result
of acting on the point Hx with the element g, not just the product in the group,
though in fact it comes to the same thing!) It is readily checked that this really is
an action of G, that it is transitive, and that the stabiliser of the coset H1 = H is
the subgroup H.

So the Orbit-Stabiliser Theorem can be regarded as a refinement of Lagrange’s
Theorem.

1.3.4 The Orbit-Counting Lemma
The Orbit-Counting Lemma is a formula for the number of orbits of G on Ω, in
terms of the numbers of fixed points of all the permutations in G. Given an action
of G on Ω, and g ∈ G, let fix(g) be the number of fixed points of g (strictly, of the
permutation of Ω induced by g). The Lemma says that the number of orbits is the
average value of fix(g), for g ∈ G.

Theorem 1.3.5 (Orbit-Counting Lemma) Let G act on Ω. Then the number of
orbits of G on Ω is equal to

1
|G| ∑g∈G

fix(g).

The proof illustrates the Orbit-Stabiliser Theorem. We form a bipartite graph
with vertex set Ω∪G; we put an edge between α ∈Ω and g ∈ G if αg = α . Now
we count the edges of this graph.
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On one hand, every element g ∈G lies in fix(g) edges; so the number of edges
is ∑g∈G fix(g).

On the other hand, the point α lies in |StabG(α)| edges; so the number of
edges passing through points of OrbG(α) is |OrbG(α)| · |StabG(α)| = |G|, by
the Orbit-Stabiliser Theorem. So each orbit accounts for |G| edges, and the total
number of edges is equal to |G| times the number of orbits.

Equating the two expressions and dividing by |G| gives the result.

Example The edges of a regular pentagon are coloured red, green and blue.
How many different ways can this be done, if two colourings which differ by a
rotation or reflection of the pentagon are regarded as identical?

The question asks us to count the orbits of the dihedral group D10 (the group of
symmetries of the pentagon) on the set Ω of colourings with three colours. There
are 35 colourings altogether, all fixed by the identity. For a colouring to be fixed
by a non-trivial rotation, all the edges have the same colour; there are just three of
these. For a colouring to be fixed by a reflection, edges which are images of each
other under the reflection must get the same colour; three colours can be chosen
independently, so there are 33 such colourings.

Since there are four non-trivial rotations and five reflections, the Orbit-Counting
Lemma shows that the number of orbits is

1
10

(1 ·243+4 ·3+5 ·27) = 39.

1.4 Sylow’s Theorem
Sylow’s Theorem is arguably the most important theorem about finite groups, so
I am going to include a proof.

To begin, let’s ask the question: is the converse of Lagrange’s Theorem true?
In other words, if G is a group of order n, and m is a divisor of n, does G necessarily
contain a subgroup of order m? We note that this statement is true for cyclic
groups.

In fact it is not true in general. Let G be the alternating group A4. Then G is
a group of order 12, containing the identity, three elements with cycle type [2,2],
and eight elements with cycle type [3,1]. We claim that G has no subgroup of
order 6. Such a subgroup must contain an element of order 3, since there are only
four elements not of order 3; also it must contain an element of order 2, since
elements of order 3 come in inverse pairs, both or neither of which lie in any
subgroup, so there are an even number of elements not of order 3, one of which is
the identity. But it is not hard to show that, if you choose any element of order 2
and any element of order 3, together they generate the whole group.
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1.4.1 Statement

Cauchy proved the first partial converse to Lagrange’s Theorem:

Theorem 1.4.1 (Cauchy’s Theorem) Suppose that the prime p divides the order
of the group G. Then G contains an element of order p.

Sylow’s Theorem is a far-reaching extension of Cauchy’s. It is often stated as
three separate theorems; but I will roll it into one here.

Theorem 1.4.2 (Sylow’s Theorem) Let G be a group of order pa ·m, where p is
a prime not dividing m. Then

(a) G contains subgroups of order pa, any two of which are conjugate;

(b) any subgroup of G of p-power order is contained in a subgroup of order pa;

(c) the number of subgroups of order pa is congruent to 1 mod p and divides
m.

Subgroups of order pa of G, that is, subgroups whose order is the largest power
of p dividing |G|, are called Sylow p-subgroups of G.

The smallest positive integer which has a proper divisor whose order is not a
prime power is 12; and we have seen that the group A4 of order 12 has no subgroup
of order 6. So Sylow’s theorem cannot be improved in general!

1.4.2 Proof

This is quite a substantial proof; you may skip it at first reading. You can find
different proofs discussed in some of the references. The crucial tool is the Orbit-
Stabiliser Theorem, which is used many times, sometimes without explicit men-
tion.

The proof uses two different actions of G. First, we consider the action on
the set Ω consisting of all subsets of G of cardinality pa, by right multiplication:
µ(X ,g) = Xg = {xg : x ∈ X}. Each orbit consists of sets covering all elements of
G. (For, if x ∈ X , and y is any element, then y ∈ X(x−1y).) So there are two kinds
of orbits:

(A) orbits of size m, forming a partition of G;

(B) orbits of size greater than m.
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Now by the Orbit-Stabiliser Theorem, the size of any orbit divides |G|; so an orbit
of type (B) must have size divisible by p. But |Ω| =

(pam
pa

)
is not a multiple of p

(this is a number-theoretic exercise); so there must be orbits of type (A). Again
by the Orbit-Stabiliser Theorem, the stabiliser of a set in an orbit of type (A) is a
subgroup of order pa (and the orbit consists of its right cosets). This shows that
subgroups of order pa exist.

Now consider a different action of G, on the set ∆ of all Sylow subgroups of
G by conjugation (that is, µ(P,g) = g−1Pg).

We first observe that, if Q is a subgroup of G of p-power order which stabilises
a Sylow subgroup P in this action, then Q≤ P; for otherwise PQ is a subgroup of
order |P| · |Q|/|P∩Q|, a power of p strictly greater than pa, which is not possible.
(Further discussion of this point is at the end of this section.)

Take P ∈ ∆. Then P stabilises itself, but no other Sylow subgroup (by the
preceding remark), so all other orbits of P have size divisible by p. We conclude
that |∆|, the number of Sylow p-subgroups, is congruent to 1 mod p.

Now G-orbits are unions of P-orbits, so the G-orbit containing P has size
congruent to 1 mod p, and every other G-orbit has size congruent to 0 mod p. But
P was arbitrary; so there is only a single orbit, whence all the Sylow p-subgroups
are conjugate. The number of them is |G : N|, where N = StabG(P); since P≤ N,
this number divides |G : P|= m.

Finally, if Q is any subgroup of p-power order, then the orbits of Q on ∆ all
have p-power size; since |∆| is congruent to 1 mod p, there must be an orbit {P}
of size 1, and so Q≤ P by our earlier remark.

All parts of the theorem are now proved.

Here is a two-part lemma which we made use of in the above proof. The proof
is an exercise. If H is a subgroup of G, we say that the element g ∈ G normalises
H if g−1Hg = H; and we say that the subgroup K normalises H if all its elements
normalise H. Thus H is a normal subgroup of G if and only if G normalises H.
By HK we mean the subset {hk : h ∈ H,k ∈ K} of G (not in general a subgroup).

Lemma 1.4.3 Let H and K be subgroups of G. Then

(a) |HK|= |H| · |K|/|H ∩K|;

(b) if K normalises H, then HK is a subgroup of G.

1.4.3 Applications
There are many applications of Sylow’s Theorem to the structure of groups. Here
is one, the determination of all groups whose order is the product of two distinct
primes.
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Theorem 1.4.4 Let G be a group of order pq, where p and q are primes with
p > q.

(a) If q does not divide p−1, then G is cyclic.

(b) If q divides p−1, then there is one type of non-cyclic group, with presenta-
tion

G = 〈a,b | ap = 1,bq = 1,b−1ab = ak〉
for some k satisfying kq ≡ 1 mod p, k 6≡ 1 mod p.

Proof Let P be a Sylow p-subgroup and Q a Sylow q-subgroup. Then P and
Q are cyclic groups of prime orders p and q respectively. The number of Sylow
p-subgroups is congruent to 1 mod p and divides q; since q < p, there is just one,
so PCG.

Similarly, the number of Sylow q-subgroups is 1 or p, the latter being possible
only if p≡ 1 mod q.

Suppose there is a unique Sylow q-subgroup. Let P and Q be generated by
elements a and b respectively. Then b−1ab = ak and a−1ba = bl for some r,s. So
ak−1 = a−1b−1ab = b−l+1. This element must be the identity, since otherwise its
order would be both p and q, which is impossible. So ab = ba. Then we see that
the order of ab is pq, so that G is the cyclic group generated by ab.

In the other case, q divides p−1, and we have b−1ab = ak for some k. Then
an easy induction shows that b−sabs = aks

. Since bq = 1 we see that kq≡ 1 mod p.
There are exactly q solutions to this equation; if k is one of them, the others are
powers of k, and replacing b by a power of itself will have the effect of raising k
to the appropriate power. So all these different solutions are realised within the
same group.

In particular, the only non-cyclic group of order 2p, where p is an odd prime,
is the dihedral group 〈a,b | ap = 1,b2 = 1,b−1ab = a−1〉.

There are two groups of order 21, the cyclic group and the group

〈a,b | a7 = 1,b3 = 1,b−1ab = a2〉;

in this group, if we replace b by b2, we replace the exponent 2 by 4 in the last
relation.

1.4.4 Another proof
Since writing the first version of these notes, I have changed my mind about which
is the best proof of the first part of Sylow’s Theorem (the existence of Sylow
subgroups). The following proof is a translation of Sylow’s original proof.

We begin with the following observation:
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The group G has a Sylow p-subgroup if and only if it has an action in
which all stabilisers have p-power order and there is an orbit of size
coprime to p.

For, if P is a Sylow p-subgroup, then the action on the right cosets of P by
right multiplication has the stated properties; conversely, if such an action exists,
then the stabiliser of a point in an orbit of size coprime to p is the required Sylow
p-subgrop.

Now the heart of the argument is the following result.

Proposition 1.4.5 If a group G has a Sylow p-subgroup, then so does every sub-
group of G.

Proof Suppose that G has a Sylow p-subgroup. Take an action with the proper-
ties noted above, which we may assume to be transitive; thus the number of points
is coprime to p, and all the stabilisers have p-power order. Now restrict the action
to an arbitrary subgroup H. It is clear that all the stabilisers in H have p-power
order; and at least one orbit has size coprime to p, since if p divided all orbit sizes
it would divide the total number of points.

Now the existence of Sylow p-subgroups in a group G of order n follows
immediately from two facts:

• G is isomorphic to a subgroup of Sn;

• Sn has Sylow p-subgroups.

The first statement is Cayley’s Theorem; the second can be proved directly (see
Exercise 1.17). But another application of the principle saves even this small
amount of work:

• Sn is a subgroup of GL(n, p);

• GL(n, p) has Sylow p-subgroups.

For the first fact, represent elements of Sn by permutation matrices, zero-one ma-
trices with a unique 1 in each row and column: the (i, j) entry of the matrix
corresponding to g is equal to 1 if ig = j, and 0 otherwise. For the second fact,
let P be the set of upper unitriangular matrices in GL(n, p) (upper triangular ma-
trices with 1 on the diagonal). It is straightforward to show that the order of P is
pn(n−1)/2, which is exactly the power of p dividing the order of GL(n, p); so it is
indeed a Sylow subgroup.
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1.5 Composition series
A non-trivial group G always has at least two normal subgroups: the whole group
G, and the identity subgroup {1}. We call G simple if there are no other normal
subgroups. Thus, a cyclic group of prime order is simple. We will see that there
are other simple groups.

In this section we will discuss the Jordan–Hölder Theorem. This theorem
shows that, in a certain sense, simple groups are the “building blocks” of arbitrary
finite groups. In order to describe any finite group, we have to give a list of its
“composition factors” (which are simple groups), and describe how these blocks
are glued together to form the group.

1.5.1 The Jordan–Hölder Theorem
Suppose that the group G is not simple: then it has a normal subgroup N which is
neither {1} nor G, so the two groups N and G/N are smaller than G. If either or
both of these is not simple, we can repeat the procedure. We will end up with a
list of simple groups. These are called the composition factors of G.

More precisely, a composition series for G is a sequence of subgroups

{1}= G0 CG1 CG2 C · · ·CGr = G,

so that each subgroup is normal in the next (as shown), and the quotient group
Gi+1/Gi is simple for i = 0,1, . . . ,r−1.

We can produce a composition series by starting from the series {1}CG and
refining it as follows. If we have Gi CGi+1 and Gi+1/Gi is not simple, let it have
a normal subgroup N; then there is a subgroup N∗ of Gi+1 containing Gi by the
Correspondence Theorem, with Gi CN∗CGi+1, and we may insert another term
in the sequence.

(The Correspondence Theorem, sometimes called the Second Isomorphism
Theorem, asserts that, if A is a normal subgroup of B, then there is a bijection
between subgroups of B/A and subgroups of B containing A, under which normal
subgroups correspond to normal subgroups. The bijection works in the obvious
way: if C ≤ B/A, then elements of C are cosets of A, and the union of all these
cosets gives the corresponding subgroup C∗ of B containing A.)

Now, given a composition series for G, say

{1}= G0 CG1 CG2 C · · ·CGr = G,

we have r simple groups Gi+1/Gi. We are interested in them up to isomorphism;
the composition factors of G are the isomorphism types. (We think of them as
forming a list, since the same composition factor can occur more than once.)
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For a simple example, let G =C12. Here are three composition series:

{1}CC2 CC4 CC12

{1}CC2 CC6 CC12

{1}CC3 CC6 CC12

The composition factors are C2 (twice) and C3, but the order differs between series.

Theorem 1.5.1 (Jordan–Hölder Theorem) Any two composition series for a fi-
nite group G give rise to the same list of composition factors.

Note that the product of the orders of the composition factors of G is equal to
the order of G.

1.5.2 Proof of the Jordan–Hölder Theorem
Recall that we are proving that any two composition series for a group G have the
same length and give rise to the same list of composition factors.

The proof is by induction on the order of G. We suppose the theorem true for
groups smaller than G. Let

G = G0 BG1 BG2 B · · ·BGr = {1}

and
G = H0 BH1 BH2 B · · ·BHs = {1}

be two composition series for G.

Case 1: G1 = H1. Then the parts of the series below this term are composition
series for G1 and so have the same length and composition factors. Adding in the
composition factor G/G1 gives the result for G.

Case 2: G1 6= H1. Let K2 = G1∩H1, a normal subgroup of G, and take a com-
position series

K2 BK3 B · · ·BKt = {1}

for K2.
We claim that G1/K2 ∼= G/H1 and H1/K2 ∼= G/G1. If we can prove this, then

the two composition series

G1 BG2 B · · ·B{1}
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and

G1 BK2 BK3 B · · ·B{1}

for G1 have the same length and composition factors; the composition factors of
G using the first series are these together with G/G1. A similar remark holds for
H1. So each of the given composition series for G has the composition factors in
the series for K2 together with G/G1 and G/H1, and the theorem is proved. So it
only remains to establish the claim.

Now G1H1 is a normal subgroup of G properly containing G1; so G1H1 = G.
Thus, by the Third Isomorphism Theorem,

G/G1 = G1H1/G1 ∼= H1/G1∩H1 = H1/K2,

and similarly G/H1 ∼= G1/K2. Thus the claim is proved.

Example Find all composition series for the dihedral group D12.
This group consists of the symmetries of a regular hexagon. It has three sub-

groups of order 6: a cyclic group consisting of the six rotations; and two dihedral
groups, each containing three rotations (through multiples of 2π/3) and three re-
flections. (In one case the reflections are in the diagonals; in the other, in the
lines joining midpoints of opposite edges.) Also, there is no normal subgroup
of order 4: the three subgroups of order 4 each consist of two rotations and two
reflections through perpendicular axes, and they are conjugate.

Assuming that we know the composition series for cyclic and dihedral groups
of order 6, we can now write down all composition series for the whole group.
They are

• D12 BC6 BC3 B{1};

• D12 BC6 BC2 B{1};

• D12 BD6 BC3 B{1} (two such series).

Here is a diagram of the subgroups occurring in the composition series.
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Both cases in the proof of the Jordan–Hölder theorem are exhibited here.

Example Among groups with composition factors C2 and A5, the factors can
come in both orders or in one but not the other in composition series.

• If G has two composition series with the factors in the two different orders,
then it has normal subgroups H and K isomorphic to C2 and A5 respectively;
clearly HK = G and H ∩K = {1}. So G∼=C2×A5.

• The symmetric group S5 has a normal subgroup A5 with quotient C2, but
has no normal subgroup isomorphic to C2.

• We will see later that the special linear group SL(2,5) has a normal sub-
group isomorphic to C2 (consisting of the matrices I and −I) with quotient
isomorphic to A5; but it has no normal subgroup isomorphic to A5 (since
calculation shows that it contains a unique element of order 2, namely −I).
(See Exercise 1.12.)

1.5.3 Groups of prime power order
In this section, we will see that a group has order a power of the prime p if and
only if all of its composition factors are the cyclic group of order p.

One way round this is clear, since the order of G is the product of the orders
of its composition factors. The other depends on the following definition and
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theorem. The centre of a group G, denoted by Z(G), is the set of elements of G
which commute with everything in G:

Z(G) = {g ∈ G : gx = xg for all x ∈ G}.

It is clearly a normal subgroup of G.

Theorem 1.5.2 Let G be a group of order pn, where p is prime and n > 0. Then

(a) Z(G) 6= {1};

(b) G has a normal subgroup of order p.

To prove this, we let G act on itself by conjugation. By the Orbit-Stabiliser
Theorem, each orbit has size a power of p, and the orbit sizes sum to pn. Now by
definition, Z(G) consists of all the elements which lie in orbits of size 1. So the
number of elements not in Z(G) is divisible by p, whence the number in Z(G) is
also. But there is at least one element in Z(G), namely the identity; so there are at
least p such elements.

Now, if g is an element of order p in Z(G), then 〈g〉 is a normal subgroup of
G of order p.

This proves the theorem, and also finds the start of a composition series: we
take G1 to be the subgroup given by part (b) of the theorem. Now we apply
induction to G/G1 to produce the entire composition series. We see that all the
composition factors have order p.

We note in passing the following result:

Proposition 1.5.3 Let p be prime.

(a) Every group of order p2 is abelian.

(b) There are just two such groups, up to isomorphism

For let |G| = p2. If |Z(G)| = p2, then certainly G is abelian, so suppose that
|Z(G)| = p. Then G/Z(G) is a cyclic group of order p, generated say by the
coset Z(G)a; then every element of G has the form zai, where z ∈ Z(G) and i =
0,1, . . . , p−1. By inspection, these elements commute.

Finally, the Fundamental Theorem of Abelian Groups shows that there are just
two abelian groups of order p2, namely Cp2 and Cp×Cp.

This theorem shows that the list of composition factors of a group does not
determine the group completely, since each of these two groups has two compo-
sition factors Cp. So the “glueing” process is important too. In fact, worse is to
come. The number of groups of order pn grows very rapidly as a function of n.
For example, it is known that the number of groups of order 1024 = 210 is more
than fifty billion; all of these groups have the same composition factors (namely
C2 ten times)!
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Remark At this point, we have determined the structure of all groups whose
order has at most two prime factors (equal or different); so we know all the groups
of order less than 16 except for the orders 8 and 12.

1.5.4 Soluble groups
A finite group G is called soluble if all its composition factors are cyclic of prime
order.

Historically, soluble groups arose in the work of Galois, who was considering
the problem of solubility of polynomial equations by radicals (that is, the existence
of formulae for the roots like the formula (−b±

√
b2−4ac)/2a for the roots of

a quadratic. It had already been proved by Ruffini and Abel that no such formula
exists in general for polynomials of degree 5. Galois associated with each poly-
nomial a group, now called the Galois group of the polynomial, and showed that
the polynomial is soluble by radicals if and only if its Galois group is a soluble
group. The result on degree 5 comes about because the smallest simple group
which is not cyclic of prime order (and, hence, the smallest insoluble group) is the
alternating group A5, as we shall see.

Theorem 1.5.4 A finite group G is soluble if and only if it has a series of sub-
groups

{1}< H1 < H2 < · · ·< Hs = G

such that each Hi is a normal subgroup of G, and each quotient Hi+1/Hi is abelian
for i = 0,1, . . . ,s−1.

(Note that in the definition of a composition series, each subgroup is only
required to be normal in the next, not in the whole group.)

This theorem is important because the definition we gave of a soluble group
makes no sense in the infinite case. So instead, we use the condition of the theorem
as the definition of solubility in the case of infinite groups.

1.5.5 Simple groups
In the course, we will spend some time discussing simple groups other than cyclic
groups of prime order. Here, for a starter, is the argument showing that they exist.

Theorem 1.5.5 The alternating group A5 is simple.

The group G = A5 consists of the even permutations of {1, . . . ,5}. (Recall that
even permutations are those for which the number of cycles is congruent to the
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degree mod 2.) Their cycle types and numbers are given in the following table.

Cycle type Number
[1,1,1,1,1] 1
[1,2,2] 15
[1,1,3] 20
[5] 24

Since a normal subgroup must be made up of entire conjugacy classes, our
next task is to determine these.

It is easy to see that all the elements of order 2 are conjugate, as are all those of
order 3. The elements of order 5 are not all conjugate, but the subgroups of order 5
are (by Sylow’s Theorem), and a potential normal subgroup must therefore either
contain all or none of them.

So if N is a normal subgroup of A5, then |N| is the sum of some of the numbers
1, 15, 20, 24, certainly including 1 (since it must contain the identity), and must
divide 60 (by Lagrange’s Theorem).

It is straightforward to see that the only possibilities are |N|= 1 and |N|= 60.
So A5 is simple.

In perhaps the greatest mathematical achievement of all time, all the finite
simple groups have been determined. We will say more about this in the course.
But, by way of introduction, they fall into four types:

(a) cyclic groups of prime order;

(b) alternating groups An (these are simple for all n≥ 5);

(c) the so-called groups of Lie type, which are closely related to certain matrix
groups over finite fields — for example, if G = SL(n,q), then G/Z(G) is
simple for all n ≥ 2 and all prime powers q except for n = 2 and q = 2 or
q = 3;

(d) twenty-six so-called sporadic groups, most of which are defined as symme-
try groups of various algebraic or combinatorial configurations.

The proof of this simply-stated theorem is estimated to run to about 10000 pages!
This theorem means that, if we regard the Jordan–Hölder theorem as reducing

the description of finite groups to finding their composition factors and glueing
them together, then the first part of the problem is solved, and only the second
part remains open.
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Exercises
1.1 The figure below is the Fano plane, a configuration of seven points and seven
lines. A symmetry is a permutation of the seven points which carries lines to lines.
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(a) Let a,b,c and A,B,C be two triples of distinct points, neither of which forms
a line. Show that there is a unique symmetry of the Fano plane carrying the
first to the second.

(b) Show that the symmetries of the Fano plane form a group G of order 168.

(c) Describe the Sylow subgroups of G.

(d) Show that G is simple.

(e) Show that G is isomorphic to PSL(3,2).

1.2 Show that the two groups whose Cayley tables are given on page 6 are not
isomorphic.

1.3 Let G be a group with the property that every element g ∈G satisfies g2 = 1.
Prove that G is abelian.

1.4 Facts about cosets.

(a) Show that, if C is a right coset of H in G, then C−1 = {c−1 : c ∈C} is a left
coset of H. Show also that the map C 7→ C−1 is a bijection between right
and left cosets. Deduce that the numbers of left and right cosets are equal.

(b) Let H be a subgroup of G. Prove that a−1Ha = {a−1ha : h ∈ H} is also a
subgroup of G. (It is called a conjugate of H.)

(c) Prove that any right coset is a left coset (of a possibly different subgroup).

1.5 Let H and K be subgroups of a group G.

(a) Show that H ∩K is a subgroup.
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(b) Show that

|HK|= |H| · |K|
|H ∩K|

,

where HK = {hk : h ∈ H,k ∈ K}. [Hint: given x ∈ HK, in how many
different ways can we write it in the form hk with h ∈ H and k ∈ K?]

(c) Show that, if H is a normal subgroup of G, then HK is a subgroup of G.

(d) Give an example of subgroups H and K for which HK is not a subgroup.

1.6 Use the Fundamental Theorem of Abelian Groups to show that the converse
of Lagrange’s Theorem is true for abelian groups: that is, if G is an abelian group
of order n, and m | n, then G has a subgroup of order m.

1.7 What is the largest order of an element of S10?

1.8 Recall that that GF(2) = {0,1} is the field of integers mod 2. Show that the
invertible 2×2 matrices over GF(2) are(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 1
0 1

)
,

(
1 1
1 0

)
,

(
1 0
1 1

)
,

(
0 1
1 1

)
.

Show that the group GL(2,2) of order 6 consisting of these matrices is isomorphic
to the symmetric group S3.

1.9 Let A(n) be the number of abelian groups of order n.

(a) Let p be a prime and a a positive integer. Prove that A(pa) is the number of
partitions of a, that is, the number of expressions for a as a sum of positive
integers, where order is not important).

(b) Show that A(pa) ≤ 2a−1 for a ≥ 1 and p prime. [Hint: the number of
expressions for a as a sum of positive integers, where order is important, is
2a−1.]

(c) Let n = pa1
1 · · · par

r , where p1, . . . , pr are distinct primes and a1, . . . ,ar are
positive integers. Show that

A(n) = A(pa1
1 ) · · ·A(par

r ).

(d) Deduce that A(n)≤ n/2 for all n > 1.

1.10 Show that there is no simple group of non-prime order less than 60. Show
also that there is no simple group of order 120.
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1.11 Let G be a group of order 2m, where m is odd and m > 1. Prove that G is
not simple. [Hint: Consider the action of G on itself by right multiplication; show
that this action contains an odd permutation.]

1.12 Let F be a field of characteristic different from 2. Show that SL(2,F) con-
tains a unique element of order 2.

1.13 Show directly that, if p is a prime not dividing m, then
(

pam
p

)
is not divis-

ible by p. Harder: show that(
pam
pa

)
≡ m (mod p).

1.14 Prove Lemma 1.4.3.

1.15 Let A be the group of all complex roots of unity, with the operation of
multiplication. Let Q be the group of rational numbers, with the operation of
addition. Let θ : Q→ A be the map given by

qθ = e2πiq.

Prove that θ is a homomorphism, with image A and kernel Z. Hence show that
Q/Z∼= A.

Is A isomorphic to the infinite cyclic group C∞?

1.16 Verify the isomorphisms between polyhedral groups and symmetric or al-
ternating groups in the table on page 17.

1.17 Let n = a0 + a1 p+ · · ·+ ar pr, where p is prime and 0 ≤ ai ≤ p− 1 for
i = 0, . . . ,r, be the expression for n in base p.

(a) Show that the symmetric group Sn contains a subgroup which is the direct
product of ai symmetric groups of degree pi, for i = 0, . . . ,r.

(b) Show that a Sylow p-subgroup of Spi has order pm, where m = 1+ p+ · · ·+
pi−1, and construct such a subgroup.

(c) Hence show that Sn has a Sylow p-subgroup.

1.18 A transposition is a permutation which interchanges two points and fixes
the others.
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(a) Show that the symmetric group Sn is generated by its transpositions for
n≥ 2.

(b) Let G be a subgroup of Sn containing a transposition. Define a relation∼ on
the set {1,2, . . . ,n} by the rule that i ∼ j if either i = j or the transposition
(i, j) belongs to G. Prove that ∼ is an equivalence relation. Show that the
transpositions contained in any equivalence class generate the symmetric
group on that class.

(c) Hence show that G has a normal subgroup which is the direct product of
symmetric groups on the equivalence classes of ∼.

1.19 Let G be the symmetric group S5.

(a) For each prime p dividing |G|, find a Sylow p-subgroup of G and determine
its structure; find also the number of Sylow p-subgroups.

(b) Find all the normal subgroups of G.

1.20 (a) Show that a group of order 40 has a normal Sylow subgroup.

(b) Do the same for a group of order 84.

1.21 (a) Show that every subgroup of a cyclic group is cyclic.

(b) Show that every subgroup of a dihedral group is cyclic or dihedral.

(c) Let G be the dihedral group of order 12. Find all subgroups of G, indicating
which are normal.

(d) Find all the composition series for the dihedral group of order 12.

1.22 Suppose that a and b are elements of a finite group G satisfying a2 = b2 = 1.

(a) Show that 〈a,b〉 is a dihedral group D2m for some m.

(b) If m is odd, show that a and b are conjugate in G.

(c) If m is even, show that G contains an element c satisfying c2 = 1 which
commutes with both a and b.

1.23 Find all the composition series for the symmetric group S4.

1.24 Let p be a prime number. An elementary abelian p-group is a group G such
that G is abelian and gp = 1 for all g ∈ G.
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(a) Show that an elementary abelian p-group has order a power of p.

(b) Show that if G is an elementary abelian group of order pn, then

G∼=Cp×Cp×·· ·×Cp (n factors).

1.25 Don’t tackle parts (b) and (c) of this question unless you have met primitive
roots (e.g. in a number theory course). Let U(n) be the group of units of the ring
Zn of integers mod n.

(a) Prove that, if n = pa1
1 pa2

2 · · · par
r , then

U(n)∼=U(pa1
1 )×U(pa−2

2 )×·· ·×U(par
r ).

[Hint: Chinese Remainder Theorem.]

(b) Prove that, if p is prime, then U(p)∼=Cp−1.

(c) Prove that, if p is prime and a≥ 1, then U(pa)∼=C(p−1)pa−1 .

(d) Prove that U(2a)∼=C2×C2a−2 for a≥ 2. [Hint: the factors are generated by
the units −1 and 5.]
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Chapter 2

Simple groups

2.1 More on group actions
We saw when we considered group actions before that any action of a group can
be “decomposed” into orbits, so that the group has a transitive action on each orbit.
In this section we look further at transitive actions, and show that all the different
transitive actions of a group can be recognised in terms of the subgroup structure
of the group. We define primitivity of an action, and examine how to recognise
this in group-theoretic terms and its consequences for normal subgroups. We also
look at the stronger notion of double transitivity. After some examples, we turn to
Iwasawa’s Lemma, which will enable us to show that certain groups are simple.

2.1.1 Coset actions
Let H be a subgroup of the group G. We will consider the set of right cosets of H
in G:

cos(H,G) = {Hg : g ∈ G}.

Sometimes this is written as H\G, but this is too close to the notation H \G for
set difference so I will avoid it. Sometimes it is written [G:H].

Now G acts on cos(H,G) by right multiplication. Formally, using µ(x,g) for
the action of the permutation corresponding to g on the element x, the action is
given by

µ(Hx,g) = H(xg).

Fortunately, we can write this in the briefer form (Hx)g = H(xg) without risk of
too much confusion.

Note that the action of G on cos(H,G) is transitive; for given any two cosets
Hx and Hy, we have (Hx)(x−1y)=Hy. The important thing is that every transitive
action can be realised in this way, in a sense which we now explore.

41
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Let G have actions on two sets Ω1 and Ω2. An isomorphism between these
actions is a bijection f : Ω1→ Ω2 such that (αg) f = (α f )g for all g ∈ G. Here
the left-hand side means “apply the group element g to α , in the given action on
Ω1, and then map across to Ω2 using f ”, while the right-hand side means “map
to Ω2 using f , and then apply g using the action on Ω2”. Another way that this is
commonly expressed is that the following diagram commutes, in the sense that all
routes through the diagram following the arrows give the same result:

Ω1
f→ Ω2

g↓ ↓g

Ω1
f→ Ω2

The gs on left and right refer to the two actions.
Recall that, if G acts on Ω, then the stabiliser Stab(α) of a point α is

Stab(α) = {g ∈ G : αg = α}.

Theorem 2.1.1 (a) Any transitive action of a group G on a set Ω is isomorphic
to the action of G on the coset space cos(H,G), where H = Stab(α) for
some α ∈Ω.

(b) The actions of G on the coset spaces cos(H,G) and cos(K,G) are isomor-
phic if and only if the subgroups H and K are conjugate (that is, K = g−1Hg
for some g ∈ G).

Proof I will prove the first part; the second is an exercise. The proof is just an
adaptation of the proof of the Orbit-Stabiliser Theorem. If G acts transitively on
Ω, we saw that there is a bijection between Ω and the set of subsets X(α,β ) of G
for fixed α (as β ranges over Ω), where

X(α,β ) = {g ∈ G : αg = β}.

We saw, furthermore, that X(α,β ) is a right coset of Stab(α), and that every
right coset arises in this way. Now it is a fairly routine exercise to check that the
bijection from Ω to cos(Stab(α),G) taking β to X(α,β ) is an isomorphism.

Example Let G be the dihedral group D6 of symmetries of an equilateral tri-
angle. Let Ω1 be the set of three vertices of the triangle, and Ω2 the set of three
edges. Show that G acts transitively on both these sets, and that the map f which
takes each vertex to the opposite edge is an isomorphism of actions.
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2.1.2 Primitivity
Let G act transitively on a set Ω, with |Ω| > 1. A congruence, or G-congruence,
on Ω is an equivalence relation on Ω which is preserved by G (that is, if α ≡ β ,
then (αg)≡ (βg) for all g ∈ G). An equivalence class of a congruence is called a
block. Note that, if B is a block, then so is Bg for any g ∈ G.

There are always two trivial congruences:

equality: α ≡ β if and only if α = β ;

the universal relation: α ≡ β for all α,β ∈Ω.

The action is called imprimitive if there is a non-trivial congruence, and primitive
if not.

Example Let G be the symmetry group of a square (the dihedral group of or-
der 8), acting on Ω, the set of four vertices of the square. The relation ≡ defined
by α ≡ β if α and β are equal or opposite is a congruence, with two blocks of
size 2.

Proposition 2.1.2 Let G act transitively on Ω. A non-empty subset B of Ω is a
block if and only if, for all g ∈ G, either Bg = B or B∩Bg = /0.

Proof If B is a block, then so is Bg; and equivalence classes are equal or disjoint.
Conversely, suppose that B is a non-empty set such that B = Bg or B∩Bg = /0

for all g. Then for any h,k ∈ G, we have Bh = Bk or Bh∩Bk = /0. (For Bh∩Bk =
(B∩Bkh−1)h.) So the images of B are pairwise disjoint. By transitivity, every
point of Ω is covered by these images. So they form a partition, which is the set
of equivalence classes of a congruence.

We saw that every transitive action is isomorphic to a coset space: how do we
recognise primitive actions? A subgroup H of G is maximal if H < G but there is
no subgroup K satisfying H < K < G.

Proposition 2.1.3 Let H be a proper subgroup of G. Then the action of G on
cos(H,G) is primitive if and only if H is a maximal subgroup of G.

Proof Suppose that H < K < G, and let B be the set of cosets of H which are
contained in K. Then B satisfies the conditions of the previous proposition. For
take a coset Hk with k ∈ K. For any g ∈ G,

• if g ∈ K, then Hkg ∈ B, so Bg = B;

• if g /∈ K, then Hkg /∈ B, so B∩Bg = /0.
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Conversely, suppose that G acts imprimitively on cos(H,G); let B be a block
containing the coset H, and K = {g ∈ G : Bg = B}. Then K is a subgroup of G,
and H < K < G.

One of the important properties of primitive actions is the following strong
restriction on normal subgroups:

Proposition 2.1.4 Let G act primitively on Ω, and let N be a normal subgroup of
G. Then either N acts trivially on Ω (that is, N lies in the kernel of the action), or
N acts transitively on Ω.

Proof We show that, for any transitive action of G, the orbit relation of the nor-
mal subgroup N is a congruence. It follows that, if the action is primitive, then
either all orbits have size 1, or there is a single orbit.

So let α ≡ β if αh = β for some h ∈ N. Then for any g ∈ G, (αg)(g−1hg) =
βg, and g−1hg ∈ N by normality; so αg≡ βg. Thus ≡ is indeed a congruence.

Example If G is the group of symmetries of a square, then the subgroup of order
2 generated by the 180◦ rotation is normal; its orbit relation is the congruence we
found earlier.

Remark Let G act transitively on an n-element set. If ≡ is a congruence with
l classes, then each class has the same size k, and kl = n. If n is prime, then
necessarily k = 1 or k = n. So:

A transitive action on a prime number of points is primitive.

2.1.3 Digression: Minimal normal subgroups
A minimal normal subgroup of a group G is a normal subgroup N EG with N 6=
{1} such that, if MEG with M ≤ N, then either M = N or M = {1}.

There is an important result which says:

Theorem 2.1.5 A minimal normal subgroup of a finite group is isomorphic to the
direct product of a number of copies of a simple group.

Since I haven’t given in detail the result for recognising the direct product of
more than two factors, I won’t prove this theorem in general; but I will prove a
special case as an illustration.

Let p be a prime number. An elementary abelian p-group is an abelian group
in which every element different from the identity has order p. By the Fundamen-
tal Theorem of Abelian Groups, such a group is a direct product of cyclic groups
of order p.
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Proposition 2.1.6 An abelian minimal normal subgroup of a finite group is ele-
mentary abelian.

Proof Let N be such a subgroup, and let p be a prime dividing |N|. There is an
element of order p in N. Let M be the set of elements of N with order dividing
p. Then M 6= {1}, and M is a normal subgroup of G (since conjugation preserves
both order and membership in N). So M = N.

Any minimal normal subgroup of a soluble group is abelian. For let G be
soluble, and N a minimal normal subgroup. Then N is soluble, so its derived group
N′ satisfies N′ 6=N; and N′EG, since conjugation preserves both commutators and
members of N. So N′ = {1}, that is, N is abelian.

Here is a slightly unexpected corollary.

Proposition 2.1.7 Let G be a finite soluble group. Then any maximal subgroup
of G has prime power index.

Proof Let H be a maximal subgroup, and consider the (primitive) action of G on
cos(H,G). The image of this action is a quotient of G, hence is soluble. So we
may assume that the action is faithful.

Let N be a minimal normal subgroup of G. Then N is abelian, and hence
an elementary abelian p-group for some prime p; and N is transitive, since G
is primitive and N 6= {1}. So by the Orbit-Stabiliser Theorem, |cos(H,G)| (the
index of H in G) is a power of p.

2.1.4 Regular actions
In this section we consider only faithful actions.

An action of G on Ω is regular if it is transitive and the point stabiliser is
trivial.

If H is the trivial subgroup, then each coset of H consists of a single element;
so the set cos(H,G) is “essentially” just G. Thus, a regular action of G is isomor-
phic to the action on itself by right multiplication.

(If we did not require the action to be faithful, then we could say that an action
is regular if it is transitive and the point stabiliser H is a normal subgroup of G;
such an action is isomorphic to the action of G/H on itself by right multiplication.
In particular, since every subgroup of an abelian group is normal, we see that every
transitive action of an abelian group is regular.)

We need to look at a fairly technical situation. Let G be a group with a faithful
action on Ω, and N a normal subgroup of G whose action on Ω is regular. Then
we can “identify” Ω with N so that N acts by right multiplication. More precisely,
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we choose a fixed reference point α ∈Ω; then there is a bijection between N and
Ω, under which h∈N corresponds to αh∈Ω; this is an isomorphism between the
action of N on itself by right multiplication and the given action.

Can we describe the entire action of G on N? It turns out that there is a nice
description of the subgroup Stab(α) of G:

Under the above bijection, the action of Stab(α) on N by conjugation
corresponds to the given action on Ω.

To show this, take g ∈ Stab(α) and suppose that g maps β to γ . Let h and k be the
elements of N corresponding to β and γ under the bijection: that is, αh = β and
αk = γ . Now

α(g−1hg) = αhg = βg = γ,

since g−1 fixes α . Since there is a unique element of N mapping α to γ , namely
k, we have g−1hg = k, as required.

We will use this analysis when we come to showing the simplicity of the al-
ternating group.

2.1.5 Double transitivity
Let G act on Ω, with |Ω|> 1. We say that the action is doubly transitive if, given
any two ordered pairs (α1,α2) and (β1,β2) of distinct elements of Ω, there is an
element g ∈ G satisfying α1g = β1 and α2g = β2.

Here “distinct” means that α1 6= α2 and β1 6= β2, but we don’t say anything
about the relation between α1 and β1, for example. (A permutation cannot map
distinct points to equal points or vice versa.)

Examples 1. The symmetric group Sn acts doubly transitively on the set {1,2, . . . ,n}
for n≥ 2.

2. The automorphism group of the Fano plane, the group of order 168 in
Exercise 1.1, acts doubly transitively on the seven points of the plane.

Proposition 2.1.8 A doubly transitive action is primitive.

Proof Let ≡ be a congruence. By the reflexive property, α ≡ α for all α . If
α1 ≡ α2 for any single pair (α1,α2) of distinct elements, then β1 ≡ β2 for all
distinct pairs, and ≡ is the universal congruence; otherwise, it is the relation of
equality.

Remark In a similar way, we can define t-transitivity of an action, for any t ≥ 1.
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2.1.6 Iwasawa’s Lemma
Iwasawa’s Lemma is a technique for proving the simplicity of a group. It looks
rather technical, but we will use it to show that the group PSL(d,F) is simple in
most cases. Though it is technical, fortunately the proof is quite straightforward.

The derived group, or commutator subgroup, of G is the subgroup G′ gen-
erated by all commutators [g,h] = g−1h−1gh for g,h ∈ G. It has the following
properties:

• G′ is a normal subgroup of G;

• G/G′ is abelian;

• if N is a normal subgroup of G such that G/N is abelian, then G′ ≤ N.

Theorem 2.1.9 Let G be a group with a faithful primitive action on Ω. Suppose
that there is an abelian normal subgroup A of Stab(α) with the property that the
conjugates of A generate G. Then any non-trivial normal subgroup of G contains
G′. In particular, if G = G′, then G is simple.

Proof Suppose that N is a non-trivial normal subgroup of G. Then N is transitive,
so N 6≤ Stab(α). Since Stab(α) is a maximal subgroup of G, we have N Stab(α) =
G.

Let g be any element of G. Write g = nh, where n ∈ N and h ∈ Stab(α). Then

gAg−1 = nhAh−1n−1 = nAn−1,

since A is normal in Stab(α). Since N is normal in G we have gAg−1 ≤NA. Since
the conjugates of A generate G we see that G = NA.

Hence
G/N = NA/N ∼= A/(A∩N)

is abelian, whence N ≥ G′, and we are done.

2.2 Symmetric and alternating groups
In this section we examine the alternating groups An (which are simple for n≥ 5),
prove that A5 is the unique simple group of its order, and study some further
properties, including the remarkable outer automorphism of the symmetric group
S6.

Let us remind ourselves at the start of the test for conjugacy in Sn. The cycle
structure of permutation is the list of cycle lengths.
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Proposition 2.2.1 Two elements of Sn are conjugate if and only if they have the
same cycle structure.

Using this, it is possible to calculate the size of any conjugacy class in Sn:

Proposition 2.2.2 If a permutation has ai cycles of length i for i= 1,2, . . . ,n, then
the size of its conjugacy class in Sn is

n!
1a1a1!2a2a2! · · ·nanan!

.

Proof Write down brackets and spaces for a permutation with the given cycle
structure. There are n! ways of writing the numbers 1,2, . . . ,n into the gaps. But
we get the same permutation if we start any cycle at a different point, or if we
rearrange the cycles of the same length in any order. The number of different
representations of a permutation is thus the denominator in the above expression.

We saw that every permutation is a product of transpositions; that is, the trans-
positions generate Sn. Similarly, we have:

Proposition 2.2.3 The alternating group An is generated by the 3-cycles.

Proof First, note that 3-cycles are even permutations, so they lie in An.
Now take an arbitrary even permutation g ∈ An; say

g = t1t2 · · · t2k−1t2k.

We have to express g as a product of 3-cycles. Clearly it suffices to write each con-
secutive pair of transpositions t2i−1t2i in the product in terms of 3-cycles. There
are three cases for a product of two transpositions:

• (a,b)(a,b) = 1;

• (a,b)(a,c) = (a,b,c);

• (a,b)(c,d) = (a,b,c)(a,d,c).
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2.2.1 The group A5

Recall that An is the group of all even permutations on {1, . . . ,n}. (A permutation
is even if the number of disjoint cycles is congruent to n mod 2, or if it is the
product of an even number of transpositions.) It is a group of order (n!)/2.

A2 is the trivial group, and A3 the cyclic group of order 3. A4 is a group
of order 12. It consists of the identity, three conjugate elements of order 2, and
eight elements of order 3 (falling into two conjugacy classes each of size 4). The
identity and the three elements of order 2 form a normal subgroup of order 4, the
Klein group V4. It is the only non-trivial proper normal subgroup of A4. (We use
“non-trivial” to mean “not the identity subgroup”, and “proper” to mean “not the
whole group”.)

Proposition 2.2.4 A5 is simple.

There are several ways to prove this theorem. Here are two. They both start by
describing the conjugacy classes. First, note that any conjugacy class in Sn must
be a union of conjugacy classes in An; since the index is 2, either it is a single
An-class, or it splits into two An-classes of equal sizes. We need to know which
classes split.

Proposition 2.2.5 The following are equivalent for a permutation g ∈ An:

(a) the Sn-conjugacy class of g splits into two An-classes;

(b) there is no odd permutation which commutes with g;

(c) g has no cycles of even length, and all its cycles have distinct lengths.

Proof Sn acts transitively by conjugation, and the stabiliser of an element g is its
centraliser (the set of elements which commute with g). Now if C(g) and C′(g)
are the centralisers of g in Sn and An, then C′(g) = C(g)∩An, so C′(g) = C(g)
if condition (b) holds, and |C′(g)| = |C(g)|/2 otherwise. Now the sizes of the
conjugacy classes in Sn and An are |Sn|/|C(g)| and |An|/|C′(g)|, from which we
see that (a) is equivalent to (b).

If g has a cycle of even length, then this cycle is an odd permutation com-
muting with g; if g has two cycles of equal odd length l, then a permutation in-
terchanging them is a product of l transpositions and commutes with g. On the
other hand, if neither possibility holds, then any permutation commuting with g
must fix each of its cycles and act on it as a power of the corresponding cycle of
g, hence is an even permutation. So (b) and (c) are equivalent.
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Using this, we can calculate the conjugacy classes in A5:

Cycle structure Class size Splits in A5?
[1,1,1,1,1] 1 No

[1,2,2] 15 No
[1,1,3] 20 No

[5] 24 Yes

So the class sizes are 1,15,20,12,12.
A normal subgroup is a union of conjugacy classes, containing the identity,

and having order dividing 60 (the order of A5). It is easy to see that there is no
such divisor.

Here is a rather different proof. We know that A5 acts doubly transitively,
and hence primitively, on {1,2,3,4,5}. (Alternatively it is primitive because 5
is prime.) So, if N is a non-trivial normal subgroup, then N is transitive. Then
|N|= 5 · |N ∩A4|, and N ∩A4 is a normal subgroup of A4, hence is {1}, V4 or A4.
So |N|= 5,20 or 60. We can ignore the last case.

Since 5 divides |N|, we see that N contains a Sylow 5-subgroup of A5. Since
they are all conjugate, it contains all six Sylow 5-subgroups. But they contain 24
elements of order 5; these cannot fit into a group of order 5 or 20.

2.2.2 Simplicity of An

Theorem 2.2.6 An is simple for all n≥ 5.

Proof The proof is by induction, starting at n = 5 (the case we have just done).
Suppose that N is a non-trivial normal subgroup of An. Then N is transitive, so
contains a set of coset representatives for the stabiliser An−1; thus NAn−1 = An.
Also, N∩An−1 is a normal subgroup of An−1, so by the inductive hypothesis either
N∩An−1 = An−1 (in which case we have

An/N = NAn−1/N ∼= An−1/N∩An−1 = {1},

so that N = An) or N∩An−1 = {1}, in which case N acts regularly and |N|= n.
Now there are many ways to proceed. Here are three different proofs.

• We have a formula for the size of conjugacy classes in An−1. Using this,
and some hard labour, it is possible to show that there cannot be a conjugacy
class of size n−1 or smaller. So the existence of a normal subgroup of order
n is impossible.

• Use the analysis of regular normal subgroups we gave in the last section.
The action of An−1 on N \{1} by conjugation is isomorphic to its action on
{1,2, . . . ,n−1}. This implies
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(a) all non-identity elements of N are conjugate, so all have the same or-
der, necessarily a prime number p;

(b) now N is a p-group, so Z(N) 6= {1}; but Z(N) is fixed by conjugation,
so Z(N) = N, and N is elementary abelian;

(c) suppose that p> 2, and let a,b∈N such that b 6= a,a2; then since An−1
is 2-transitive, there is an element g ∈ An−1 satisfying g−1ag = a and
g−1a2g = b, which is impossible;

(d) suppose that p = 2, and choose a,b,c ∈ N generating a subgroup of
order 8; since N is triply transitive, there is an element g∈N satisfying
g−1ag = 1, g−1bg = b and g−1(ab)g = c, which is impossible.

The contradiction shows that no normal subgroup of order n can exist.

• We have seen that N is generated by at most blog2 nc elements. An automor-
phism is determined by the images of the generators, so |Aut(N)| ≤ nlog2 n.
But An−1 acts faithfully on N by conjugation, so (n− 1)! ≤ nlog2 n. Some
easy checking shows that this is impossible for n≥ 6.

2.2.3 Normal subgroups of Sn

Theorem 2.2.7 The only normal subgroups of Sn for n≥ 5 are {1}, An and Sn.

Proof Let N be a normal subgroup of Sn. Then N ∩An is a normal subgroup of
An, so N∩An = {1} or An.

If N∩An = An, then N ≥ An, so N = An or Sn.
if N∩An = {1}, then

N = N/(N∩An)∼= NAn/An = Sn/An or An/An,

So |N| = 1 or 2. But |N| = 2 is impossible, since then there would have to be a
non-identity element of Sn in a conjugacy class of size 1. So N = {1} in this case.

2.2.4 The uniqueness of A5

Proposition 2.2.8 A simple group of order 60 is isomorphic to A5.

Proof Let G be a simple group of order 60.
The number of Sylow 5-subgroups of G is congruent to 1 (mod 5) and divides

12, but is not 1 (else the unique Sylow subgroup would be a normal subgroup of
G). So there are six Sylow 5-subgroups.
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Consider the action of G on the set Ω of six Sylow 5-subgroups by conjuga-
tion. By Sylow’s Theorem, the action is transitive. Since G is simple, the kernel
of the action is {1}; that is, the action is faithful. So the image of the action is a
subgroup of S6 isomorphic to G; let us call it H.

Now H ≤ A6, since otherwise H ∩A6 would be a normal subgroup of H, con-
tradicting the simplicity of H. Also, |H| = 60, and |A6| = 360, so H has index 6
in H.

Consider the action of K = A6 on the set cos(H,K) of six cosets of H. This ac-
tion is faithful, so K is a subgroup of the symmetric group S on the set cos(H,K).
Clearly K has index 2 in S, and so is a normal subgroup. Thus K = A6 in its
usual action on six objects. But then H is the stabiliser of one of these objects, so
H ∼= A5.

Since G∼= H we have G∼= A5 as required.

2.2.5 Automorphisms

You may have got lost in the above proof because the group A6 was acting on a
set of six objects which were not the original {1, . . . ,6} on which the group is
defined. We can put this confusion to constructive use. In the next section we
see a remarkable property of the number 6, which is shared by no other positive
integer, finite or infinite.

First some definitions. Let G be a group.

• An automorphism of G is an isomorphism from G to G.

• An inner automorphism is a map of the form cg : x 7→ g−1xg from the group
G to itself.

In what follows, maps will be composed from left to right, so to avoid confu-
sion, we write a map on the right of its argument.

Theorem 2.2.9 Let G be a group.

(a) The set of automorphisms of G forms a group under the operation of com-
position. This is the automorphism group of G, denoted by Aut(G).

(b) An inner automorphism of G is an automorphism of G (as the name sug-
gests).

(c) The inner automorphisms comprise a normal subgroup of Aut(G), denoted
by Inn(G); it is isomorphic to G/Z(G), where Z(G) is the centre of G.
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Proof (a) It is straightforward to show that the composition of automorphisms is
an automorphism, and the inverse map of an automorphism is an automorphism.

(b) First, cg is a bijective map, since it has an inverse, namely cg−1 . Next,

(xy)cg = g−1(xy)g = g−1xg ·g−1yg = (xcg)(ycg),

so cg is a homomorphism, and hence an automorphism.

There is a map from G to Aut(G) given by g 7→ cg. We show that this map is
a homomorphism.

(xcg)ch = (g−1xg)ch = h−1(g−1xg)h,

xcgh = (gh)−1x(gh) = (h−1g−1)x(gh),

and the right-hand sides are equal.
So the First Isomorphism Theorem tells us that Inn(G), the image of this map,

is a subgroup of Aut(G). To show that it is normal, let φ be any automorphism of
G, and calculate the effect of φ−1cgφ :

x(φ−1cgφ) = ((xφ
−1)cg)φ

= (g−1(xφ
−1)g)φ

= (gφ)−1x(gφ),

where we used the fact that automorphisms map inverses to inverses to say that
(g−1)φ = (gφ)−1. So φ−1cgφ = cgφ , an inner automorphism. Thus Inn(G) is a
normal subgroup of Aut(G).

The kernel of the map g 7→ cg is the set

{g ∈ G : cg = 1} = {g ∈ G : xcg = x for all x ∈ G}
= {g ∈ G : g−1xg = x for all x ∈ G}
= {g ∈ G : xg = gx for all x ∈ G}
= Z(G).

So G/Z(G)∼= Inn(G).

An automorphism which is not inner is called outer. However, by abuse of
language, the outer automorphism group of G is not the group of outer automor-
phisms — they do not form a group [WHY?] — but is defined to be the quotient
group Aut(G)/ Inn(G). Thus, the outer automorphism group of G is trivial if and
only if G has no outer automorphisms.
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2.2.6 Outer automorphisms of S6

For n ≥ 3, Z(Sn) = {1}, so Inn(Sn) ∼= Sn. It turns out that, except for the single
value n = 6, we actually have Aut(Sn) = Sn, so that Sn has no outer automor-
phisms. We will not prove that, but will construct outer automorphisms of S6 in
two different ways, and hence show that |Out(S6)|= 2.

First, we can find such a subgroup directly. Let G = S5. It is easy to check
that G has six Sylow 5-subgroups. (The only divisors of 24 which are congruent
to 1 (mod 6) are 1 and 6, and we know that S5 does not have a normal Sylow
5-subgroup.) So S5 acts faithfully and transitively on the set of six Sylow 5-
subgroups by conjugation, giving a transitive subgroup of S6 isomorphic to S5 but
not conjugate to the stabiliser of a point. By our previous analysis, this shows that
there is an outer automorphism.

For the second approach, we follow Sylvester, including his rather odd ter-
minology. Let A = {1,2, . . . ,6}. A duad is a 2-element subset of A; there are
(6 ·5)/2 = 15 duads. A syntheme is a partition of A into three duads. Each duad is
contained in three synthemes (the number of ways of partitioning the remaining
four points into two duads), so there are (15 · 3)/3 = 15 synthemes. Finally, a
synthematic total is a partition of the 15 duads into five synthemes. It is a little
harder to count this; we argue as follows.

Consider two disjoint synthemes; think of them as having two different colours,
say red and blue (see the left-hand figure below). The red and blue duads form
the edges of a hexagon, and the remaining nine duads are of two types; six “short
diagonals” of the hexagon, and three “long diagonals”.

It is easy to see that there are two different ways to pick three disjoint duads
from these nine: either take the three long diagonals (magenta on the right), or
one long diagonal and the two short diagonals perpendicular to it (green in the
middle). So the only way to partition these nine duads into three synthemes is to
take the three synthemes of the second type.
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Thus, any two disjoint synthemes are contained in a unique synthematic total.
There are eight synthemes disjoint from a given one; so the number of synthematic
totals is (15 ·8)/(5 ·4) = 6. The six synthematic totals are all isomorphic, and so
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S6 permutes them transitively. Thus, the stabilisers of synthemes form a conjugacy
class of subgroups of index 6, not conjugate to the point stabilisers. Hence we get
our outer automorphism.

Using this approach, we can show that the outer automorphism group has
order 2: all that is required is to show that any subgroup of index 6 stabilises
either a point or a syntheme.

It is an instructive exercise to repeat the construction. Let X be the set of
synthemes. Then

• any two synthematic totals share a unique syntheme, so the “duads of X”
correspond to synthemes of A;

• three synthemes containing a given duad lie between them in all the synthe-
matic totals, so the “synthemes of X” correspond to duads of A;

• the five duads through a point lie between them in all fifteen synthemes, so
the “synthematic totals of X correspond to the points of A.

Thus, the square of our automorphism is the identity.

2.3 Linear groups
In this section we study the next important family of linear groups, the “projective
special linear groups” PSL(n,F). The proof of their simplicity is an application
of Iwasawa’s Lemma.

2.3.1 Finite fields
Our constructions of simple groups in this chapter work over any field, and give
finite groups if and only if the field is finite.

The finite fields were classified by Galois (this was one of the few pieces of
work published in his lifetime). His theorem is:

Theorem 2.3.1 The order of a finite field is a prime power. Conversely, for any
prime power q > 1, there is a field with q elements, unique up to isomorphism.

We will not prove this theorem here, since the techniques come from ring
theory rather than group theory. Here is a simple example, a field of four elements.
We construct it by adjoining to the field Z2 a root of an irreducible polynomial of
degree 2. Of the four polynomials of degree 2 over Z2, namely,

x2, x2 +1 = (x+1)2, x2 + x = x(x+1), x2 + x+1,
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only the last is irreducible, so we add an element α satisfying α2 = α + 1. (Re-
member that, since −1 = 1 in Z2, we have −u = u for any element u in the field
we are constructing.) Thus the addition and multiplication tables of our field are
the following, where we have put β = α +1 = α2:

+ 0 1 α β

0 0 1 α β

1 1 0 β α

α α β 0 1
β β α 1 0

· 0 1 α β

0 0 0 0 0
1 0 1 α β

α 0 α β 1
β 0 β 1 α

Finite fields are called Galois fields. The unique Galois field of given prime
power order q is denoted by Fq or GF(q). Note that Fq ∼= Zq if and only if q is
prime.

Note that the additive group of F4 is the Klein group, while the multiplicative
group is cyclic of order 3. This is an instance of a general fact.

Theorem 2.3.2 Let q = pn, where p is prime. Then:

(a) The additive group of Fq is elementary abelian of order q.

(b) The multiplicative group of Fq is cyclic of order q−1.

(c) The automorphism group of Fq is cyclic of order n.

Proof (a) For n∈N and u∈ Fq, let nu = u+ · · ·+u (n terms). This is the additive
analogue of raising u to the nth power.

Since the additive group has order pn, there is an element u 6= 0 with order p,
thus pu = 0. But then pv = (pu)(u−1) = 0 for all v ∈ Fq. Thus the additive group
is elementary abelian.

(b) Let k be the exponent of the multiplicative group of Fq (the smallest pos-
itive integer such that uk = 1 for all u 6= 0). Then k divides the order q− 1 of
the multiplicative group. But the equation xk−1 = 0 has at most k solutions. So
we must have k = q− 1. Now in our proof of the Fundamental Theorem of Fi-
nite Abelian Groups, we saw that there is an element whose order is equal to the
exponent. So the multiplicative group is cyclic.

(c) We will not prove this, but simply describe an automorphism of the field
which generates the automorphism group. This is the Frobenius map u 7→ up. To
show that it is a homomorphism:

(u+ v)p =
p

∑
i=0

(
p
i

)
up−ivi = up + vp,

(uv)p = upvp.
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In the first line we use the fact that the binomial coefficient
(

p
i

)
is divisible by p

for i = 1, . . . , p−1, so that
(

p
i

)
x = 0 in Fq.

Now a field has no non-trivial ideals, so the kernel of the Frobenius map is
{0}, that is, it is one-to-one. Since Fq is a finite set, this implies that the Frobenius
map is a bijection, that is, an automorphism.

2.3.2 Linear groups
Let F be any field. We denote by GL(n,F) the group of all invertible n× n ma-
trices over F ; this group is the general linear group of dimension n over F . For
brevity, we write GL(n,q) instead of GL(n,Fq). We always assume that n≥ 2; for
GL(1,F) is simply the multiplicative group F× of F , and is abelian (and cyclic if
F is finite).

Proposition 2.3.3

|GL(n,q)|= (qn−1)(qn−q) · · ·(qn−qn−1).

Proof A matrix is invertible if and only if its rows are linearly independent; this
holds if and only if the first row is non-zero and, for k = 2, . . . ,n, the kth row is
not in the subspace spanned by the first k−1 rows. The number of possible rows
is qn, and the number lying in any i-dimensional subspace is qi. So the number of
choices of the first row of an invertible matrix is qn−1, while for k = 2, . . . ,n, the
number of choices for the kth row is qn− qk−1. Multiplying these together gives
the result.

Next we investigate normal subgroups of GL(n,q).

Proposition 2.3.4 The determinant map det : GL(n,F)→F× is a homomorphism.

Proof This is the simple fact from linear algebra that det(AB) = det(A)det(B).

The kernel of the determinant map is the set of n× n matrices with determi-
nant 1. This is denoted SL(n,F), the special linear group of dimension n over F .
Thus, SL(n,F)CGL(n,F), and

GL(n,F)/SL(n,F)∼= F×

(the last fact follows from the First Isomorphism Theorem, since it is easy to
see that det is onto: for every element u ∈ F there exists an n× n matrix A with
det(A) = u.
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In particular, we see that

|SL(n,q)|= |GL(n,q)|/(q−1).

The projective space PG(n−1,F) is the set of 1-dimensional subspaces of Fn,
the n-dimensional vector space over F . (Really it is a geometric object and has a
lot of structure, but we only need to regard it as a set. Watch out for the confusing
dimension shift!) We have

|PG(n−1,F)|= qn−1
q−1

.

For there are qn−1 non-zero vectors in Fn, each of which spans a 1-dimensional
subspace; but each 1-dimensional subspace is spanned by any of its q−1 non-zero
vectors.

There is an action of GL(n,F) on PG(n− 1,F): the matrix A maps the sub-
space 〈v〉 to the subspace 〈vA〉.

Proposition 2.3.5 The following conditions on a matrix A ∈ GL(n,F) are equiv-
alent:

(a) A ∈ Z(GL(n,F));

(b) A belongs to the kernel of the action of GL(n,F) on the projective space
PG(n−1,F);

(c) A is a scalar matrix, that is, A = λ I for some λ ∈ F×.

Proof (a)⇔ (c): Clearly scalar matrices commute with everything and so lie in
the centre of the group. Suppose A ∈ Z(GL(n,q)). If E is the matrix with entries
1 on the diagonal and in position (1,2) and zero elsewhere, then EA is obtained
from A by adding the second row to the first, while AE is obtained by adding the
first column to the second. If these are equal, then the first and second diagonal
elements of A are equal, and the other entries in the first column and second row
are zero. Repeating the argument for the ith row and jth column, we conclude
that A is a scalar matrix.

(b)⇔ (c): Again it is clear that a scalar matrix fixes every 1-dimensional sub-
space. Let A be a matrix which fixes all 1-dimensional subspaces. Let e1, . . . ,en
be the standard basis vectors. Then we have eiA = αiei for i = 1, . . . ,n, (for some
α1, . . . ,αn ∈ F×), so A is a diagonal matrix. Also,

(ei + e j)A = β (ei + e j) for some β ∈ F×,
eiA+ e jA = αiei +α je j,

so αi = β = α j. Thus A is a scalar matrix.
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Thus we see that Z(GL(n,F)) is the group of scalar matrices, and is isomor-
phic to F× (so is cyclic of order q−1 if F = Fq).

We define the projective general and special linear groups by

PGL(n,F) = GL(n,F)/Z, PSL(n,F) = SL(n,F)/(Z∩SL(n,F)),

where Z = Z(GL(n,q)). Thus, the projective groups are the images of the linear
groups in the action on the projective space PG(n−1,F), so we can think of them
as groups of permutations of this space.

We have |PGL(n,q)|= |GL(n,q)|/(q−1) = |SL(n,q)|. What is the order of
PSL(n,q)?

The kernel of the action of SL(n,F) on the projective space consists of the
scalar matrices λ I with determinant 1, that is, for which λ n = 1. If F = Fq, then
the multiplicative group is cyclic of order q− 1, and the number of solutions of
λ n = 1 is gcd(n,q−1). So we have

|PSL(n,q)|= |SL(n,q)|/gcd(n,q−1).

In particular, if gcd(n,q− 1) = 1, then PSL(n,q) = PGL(n,q) = SL(n,q): for in
this case, the first group is a subgroup of the second and a quotient of the third,
but all three have the same order.

For n = 2, we find that

|PSL(2,q)|=
{
(q+1)q(q−1) if q is a power of 2,
(q+1)q(q−1)/2 if q is odd.

In this case, the number of points of PG(1,q) is (q2− 1)/(q− 1) = q+ 1, and
so PGL(2,q) and PSL(2,q)| are subgroups of the symmetric group Sq+1. We
examine the first few cases.

q = 2: PSL(2,2) = PGL(2,2) is a subgroup of S3 of order 3 · 2 · 1 = 6; so it is
isomorphic to S3.

q = 3: PGL(2,3) is a subgroup of S4 of order 4 · 3 · 2 = 24; so PGL(2,3) ∼= S4.
Also PSL(2,3) is a subgroup of index 2, so PSL(2,3)∼= A4.

q = 4: PGL(2,4) = PSL(2,4) is a subgroup of S5 of order 5 · 4 · 3 = 60; so
PSL(2,4)∼= A5.

q = 5: PGL(2,5) is a subgroup of S6 of order 6 ·5 ·4 = 120, and hence index 6;
so it is the stabiliser of a synthematic total, and hence is isomorphic to S5.
Moreover, PSL(2,5) is a subgroup of index 2, so is isomorphic to A5.

q = 7: PSL(2,7) has order 8 ·7 ·6/2 = 168. It turns out to be isomorphic to the
group we met on Problem Sheet 1.
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There is a simpler way to think of the action of PSL(2,F) on the projective
line. The 1-dimensional subspaces of F2 are of two types: those with a unique
spanning vector with first coordinate 1, say (1,x) for x ∈ F ; and one spanned by
(0,1). We denote points of the first type by the corresponding field element x, and
the point of the second type by ∞. Then the elements of PGL(2,F) are the linear
fractional maps

x 7→ ax+b
cx+d

for a,b,c,d ∈ F , ad−bc 6= 0, with the “natural” conventions for dealing with ∞:
for a 6= 0 we have a/0=∞, a∞=∞, and (b∞)/(a∞) = b/a; also ∞+c=∞ for any
c. The group PSL(2,F) consists of those linear fractional maps with ad−bc = 1.

2.3.3 Simplicity of PSL(n,F)

The main result is:

Theorem 2.3.6 For n≥ 2 and any field F, the group PSL(n,F) is simple, except
in the two cases n = 2, F = F2 or n = 2, F = F3.

We saw the two exceptional cases (which are isomorphic to S3 and A4) in
the preceding section. The remainder of this section is devoted to the proof of
simplicity in the other cases.

We have two preliminary jobs, concerning transitivity and generation.

Proposition 2.3.7 For n≥ 2, the group PSL(n,F) acts doubly transitively on the
points of the projective space PG(n−1,F).

Proof Let 〈v1〉 and 〈v2〉 be two distinct 1-dimensional subspaces of Fn. Then
v1 and v2 are linearly independent, and so for any other pair 〈w1〉 and 〈w2〉, there
is a linear map carrying v1 to w1 and v2 to w2. (Simply extend both (v1,v2) and
(w1,w2) to bases, and take the unique linear map taking the first basis to the sec-
ond.) If this map has determinant c, we can follow it by the map multiplying the
first basis vector by c−1 and fixing the rest to find one with determinant 1 which
does the job.

A transvection is a linear map of a vector space V of the form v 7→ v+ f (v)a,
where a ∈ V , f ∈ V ∗ (that is, f is a linear map from V to F), and f (a) = 0. We
will call the corresponding map of the projective space a transvection also, though
geometers sometimes use the term “elation”. A transvection of F2 is also called a
“shear”. We denote the above transvection by T (a, f ).

For a 6= 0, let A(a) be the set of all transvections T (a, f ) with given a, as
f runs over all elements of V ∗ satisfying f (a) = 0. Since T (a, f1)T (a, f2) =
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T (a, f1 + f2), we see that A(a) is an abelian group isomorphic to Ann(a), the
annihilator of a, a subspace of codimension 1 in V ∗.

Any transvection belongs to SL(n,F). (Transvections have determinant 1
since they are represented by strictly upper triangular matrices with respect to a
suitable basis. Indeed, if we let a be the first vector in a basis, then a transvection
is represented by the matrix 

1 0 0 . . . 0
∗ 1 0 . . . 0
...

... . . . ...
...

∗ 0 0 . . . 1


whose first column represents the element f ∈V ∗.

The transvection group A(a) acts faithfully on the projective space, since it is
clearly disjoint from the group Z of scalar matrices (the kernel of the action). It is
obviously normal in the stabiliser of a, since it is easy to check that g−1A(a)g =
A(ag) for any g ∈ PSL(n,F).

Proposition 2.3.8 For n≥ 2, the group PSL(n,F) is generated by transvections.

Proof We use induction on n.
For n = 2, represent PSL(2,F) as the group of linear fractional transforma-

tions. The transvections with a = 〈(0,1)〉 are the maps of the form x 7→ x+ a
(fixing ∞); they form a group acting transitively on the points different from ∞.
So the group H generated by all transvections is 2-transitive. It suffices now to
show that the stabiliser of two points in H is the same as that in PSL(2,F).

Now the stabiliser of ∞ and 0 in PSL(2,F) is the group of maps of the form
x 7→ ax/d with ad = 1, in other words, x 7→ a2x. We have to show that we can
generate this map by transvections, which we show by the following calculation:(

1 1
0 1

)(
1 0

a−1 1

)(
1 −a−1

0 1

)(
1 0

a−a2 1

)
=

(
a 0
0 a−1

)
.

Now suppose the result is true for n−1. Let H be the subgroup of PSL(n,F)
generated by transvections. First, we observe that G is transitive on the projective
space, since given two subspaces 〈a〉 and 〈b〉, we have transvections of 〈a,b〉 fix-
ing a complement pointwise, and in the group they generate we can map one point
to the other. So it suffices to show that the stabiliser of a point 〈a〉 is generated by
transvections.

Now the stabiliser of 〈a〉 in G contains all the transvections of PSL(n−1,F)
acting on the quotient space V/〈a〉. By induction, these generate PSL(n− 1,F).
So if we take an arbitrary element of PSL(n,F) fixing 〈a〉, we can multiply it by a
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suitable product of transvections so that on the quotient space it is diagonal with
all but one diagonal entry equal to 1. That is, we can reduce to a matrix of the
form 

λ 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0
x1 x2 . . . xn−1 λ−1

 .

By further multiplication by transvections we can reduce to the case where x1 =
. . .= xn−1 = 0. Now apart from the identity in the middle, we have just the matrix(

λ 0
0 λ−1

)
which is dealt with as in the case n = 2.

Proof of the Theorem First, we recall the statement of Iwasawa’s Lemma:

Theorem 2.3.9 Let G be a group with a faithful primitive action on Ω. Suppose
that there is an abelian normal subgroup A of Stab(α) with the property that the
conjugates of A generate G. Then any non-trivial normal subgroup of G contains
G′. In particular, if G = G′, then G is simple.

We will take G= PSL(n,F) acting on Ω= PG(n−1,F). (The action is doubly
transitive and hence primitive.) We have seen that the transvection group A(a) is
abelian and normal in the stabiliser of 〈a〉, and that its conjugates generate G. So
only one thing remains to be proved:

Proposition 2.3.10 For n ≥ 2, the group PSL(n,F) is equal to its derived group
except in the cases n = 2, F = F2, and n = 2, F = F3.

Proof Since all transvection groups are conjugate, it suffices to find a transvec-
tion group in the derived group; that is, to express the elements of one transvection
group as commutators.

Suppose first that |F |> 3. It suffices to do the case n = 2, since all the calcula-
tions below can be done in the upper left-hand corner of a matrix with the identity
in the bottom right and zeros elsewhere. Since |F |> 3, there is an element a ∈ F

satisfying a2 6= 0,1. Then SL(2,F) contains the matrix
(

a 0
0 a−1

)
, as we saw

above; and(
1 −x
0 1

)(
a 0
0 a−1

)(
1 x
0 1

)(
a−1 0
0 a

)
=

(
1 (a2−1)x
0 1

)
,
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and (a2−1)x runs through F as x does.
Now suppose that n ≥ 3, and that |F | = 2 or |F | = 3 (indeed this argument

works for all F). Again we need only consider 3×3 matrices. We have1 −x 0
0 1 0
0 0 1

1 0 0
0 1 −1
0 0 1

1 x 0
0 1 0
0 0 1

1 0 0
0 1 1
0 0 1

=

1 0 x
0 1 0
0 0 1

 .

The proof is complete.

Exercises
2.1 Consider the regular action of G on itself by right multiplication. Show that
there is a congruence ≡H for each subgroup H of G, whose classes are the right
cosets of H, and that these are all the congruences.

2.2 Show that the actions of G on the coset spaces cos(H,G) and cos(K,G) are
isomorphic if and only if the subgroups H and K are conjugate.

2.3 Let G be the symmetry group of the cube. Show that the action of G on
the set of vertices of the cube is transitive but imprimitive, and describe all the
congruences. Repeat for the action of G on the set of faces, and on the set of
edges.

2.4 An automorphism of a group G is an isomorphism from G to itself. An inner
automorphism of G is a conjugation map, one of the form cg : x 7→ g−1xg.

(a) Show that the set of automorphisms, with the operation of conjugation, is a
group Aut(G).

(b) Show that the set of inner automorphisms is a subgroup Inn(G) of Aut(G).

(c) Show that Inn(G)∼= G/Z(G), where Z(G) is the centre of G.

(d) Show that Inn(G) is a normal subgroup of Aut(G). (The quotient Aut(G)/ Inn(G)
is defined to be the outer automorphism group Out(G) of G.)

2.5 Let G be a group. Then there is in a natural way an action of the automor-
phism group Aut(G) of G on the set G. The identity is fixed by all automorphisms,
so {1} is an orbit of size 1 for this action.

(a) Suppose that G \ {1} is an orbit for Aut(G). Show that all non-identity
elements of G have the same order, and deduce that the order of G is a
power of a prime p, and hence that G is an elementary abelian p-group.
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(b) Suppose that Aut(G) acts doubly transitively on G \ {1}. Show that either
|G|= 2d for some d, or |G|= 3.

(c) Suppose that Aut(G) acts triply transitively on G\{1}. Show that |G|= 4.

2.6 Show that a permutation group which acts primitively on {1, . . . ,n} and con-
tains a transposition is the symmetric group Sn.

2.7 Show that a permutation group which acts primitively on {1, . . . ,n} and con-
tains a 3-cycle is the symmetric group Sn or the alternating group An.

2.8 Let n≥ 2. Let G be the symmetric group Sn of permutations of {1,2, . . . ,n}.
Let Ω be the set of 2-element subsets of {1,2, . . . ,n}. There is a “natural” action
of G on Ω given by {i, j}g = {ig, jg}. (You are not required to show that this is
an action.) Prove the following assertions:

(a) If n = 2, the action is not faithful.

(b) If n = 3, the action is doubly transitive.

(c) If n = 4, the action is imprimitive.

(d) If n≥ 5, the action is primitive but not doubly transitive.

2.9 Show that the outer automorphism of S6 interchanges the conjugacy classes
of types [1,1,1,1,2] and [2,2,2], those of types [1,1,1,3] and [3,3], and those of
types [1,2,3] and [6], and fixes the other classes.

2.10 Let Aut(G) denote the automorphism group of the group G.

(a) Let V4 denote the Klein group. Prove that Aut(V4)∼= S3.

(b) Prove that Aut(S3)∼= S3.

(c) Find another group G such that Aut(G)∼= G.

(d) Let G be the elementary abelian group of order 8. Prove that |Aut(G)| =
168. Is there any connection with the question on Problem Sheet 1?

2.11 Let G be a finite group of order greater than 2. Prove that G has a non-
identity automorphism. (Hint: treat abelian and non-abelian groups separately.)
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Remark: It is also true that, if G is an infinite group, then G has a non-identity
automorphism; but the proof requires the Axiom of Choice. (Can you prove this?)

2.12 (a) Construct addition and multiplication tables for a field with eight ele-
ments. [I hope you have met this before, and that this question is revision.]

(b) Prove that any two fields with eight elements are isomorphic. [Hint: you
probably used an irreducible polynomial of degree 3 over Z2 in your con-
struction: there are two such polynomials. If you use one polynomial in the
construction, show that the field you construct also contains a root of the
other polynomial.]

2.13 Let G be a subgroup of G. Let NG(H) be the normaliser of H in G, the
largest subgroup of G in which H is contained as a normal subgroup. Alterna-
tively,

NG(H) = {g ∈ G : g−1Hg = H}.

(a) Prove that, in the action of G on the coset space cos(H,G), a coset Hg is
fixed by H if and only if g ∈ NG(H).

(b) Suppose that |G| = pn, where p is prime, and that H < G. Prove that H <
NG(H). (Recall that H < G means “H is a subgroup of G and H 6= G”.)

2.14 Show that

(a) SL(2,F) does not contain a subgroup isomorphic to PSL(2,F);

(b) if F = GF(q) with q > 3, then the only composition series for SL(2,q) is
{I}C{±I}CSL(2,q);

(c) SL(2,q) is not isomorphic to C2×PSL(2,q).

2.15 Consider G = PGL(2,F) as the group of linear fractional transformations
x 7→ (ax+b)/(cx+d) of F ∪{∞} with ad−bc 6= 0.

(a) Show that G acts transitively.

(b) Show that the stabiliser of ∞ is the “affine group” of all transformations
x 7→ ax+b with a 6= 0. Deduce that G is doubly transitive.

(c) Show that the stabiliser of ∞ and 0 is the multiplicative group of F . Deduce
that G is triply transitive and that the stabiliser of any three points is the
identity.
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2.16 Show that there is no simple group whose order is the product of three
distinct primes.

2.17 Let V consist of the
(6

2

)
= 15 2-element subsets of {1,2,3,4,5,6}, together

with one extra symbol 0. Define an operation ⊕ on V by the rules

• v⊕0 = 0⊕ v = v and v⊕ v = 0 for any ∈V ;

• {a,b}⊕{a,c}= {b,c} for all distinct a,b,c ∈ {1, . . . ,6};
• {a,b}⊕{c,d}= {e, f} if {a, . . . , f}= {1, . . . ,6}.

Prove that (V,⊕) is an elementary abelian 2-group of order 16, that is, the additive
group of a 4-dimensional vector space over F2. Deduce that S6 is a subgroup of
GL(4,2). What is its index?

2.18 This (quite difficult) question outlines a proof that any simple group of order
168 is isomorphic to PSL(2,7). Let G be a simple group of order 168.

(a) Show that G has 8 Sylow 7-subgroups, and that the normaliser of one such
subgroup, say P, has order 21.

(b) Hence show that G acts doubly transitively on a set of 8 points, and the
stabiliser of a point acts as the group

N = {x 7→ ax+b : a ∈ {1,2,4},b ∈ Z7}

of Z7. Deduce that the identity and the two maps x 7→ 2x and x 7→ 4x form
a Sylow 3-subgroup Q of G.

(c) Let the stabilised point be named ∞. Show that there is an element t of
order 2 in G which interchanges ∞ and normalises Q.

(d) Show that t is an even permutation, and deduce that it must interchange the
two sets {1,2,4} and {3,5,6}.

(e) By laborious computation (which you may omit), show that necessarily t =
(∞,0)(1,6)(2,3)(4,5); in other words, t is the map x 7→ −1/x.

(f) Show that N and t generate G.

(g) Now every element of G lies in PSL(2,7) (the group of linear fractional
transformations of {∞}∪Z7. By comparing orders, G = PSL(2,7).



Chapter 3

Group extensions

3.1 Semidirect product

3.1.1 Definition and properties
Let A be a normal subgroup of the group G. A complement for A in G is a subgroup
H of G satisfying

• HA = G;

• H ∩A = {1}.

It follows that every element of G has a unique expression in the form ha for
h ∈ H, a ∈ A. For, if h1a1 = h2a2, then

h−1
2 h1 = a2a−1

1 ∈ H ∩A = {1},

so h−1
2 h1 = a2a−1

1 = 1, whence h1 = h2 and a1 = a2.
We are going to give a general construction for a group with a given normal

subgroup and a given complement. First some properties of complements.

Proposition 3.1.1 Let H be a complement for the normal subgroup A of G. Then

(a) H ∼= G/A;

(b) if G is finite then |A| · |H|= |G|.

Proof (a) We have
G/A = HA/A∼= H/H ∩A = H,

the first equality because G = HA, the isomorphism by the Third Isomorphism
Theorem, and the second equality because H ∩A = {1}.

(b) Clear.

67
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Example There are two groups of order 4, namely the cyclic group C4 and the
Klein group V4. Each has a normal subgroup isomorphic to C2; in the Klein group,
this subgroup has a complement, but in the cyclic group it doesn’t. (The comple-
ment would be isomorphic to C2, but C4 has only one subgroup isomorphic to
C2.)

If A is a normal subgroup of G, then G acts on A by conjugation; the map
a 7→ g−1ag is an automorphism of A. Suppose that A has a complement H. Then,
restricting our attention to A, we have for each element of H an automorphism of
A, in other words, a map φ : H→ Aut(A). Now this map is an automorphism: for

• (gφ)(hφ) maps a to h−1(g−1ag)h,

• (gh)φ maps a to (gh)−1a(gh),

and these two expressions are equal. We conclude that, if the normal subgroup A
has a complement H, then there is a homomorphism φ : H→ Aut(A).

Conversely, suppose that we are given a homomorphism φ : H→Aut(A). For
each h∈H, we denote the image of a∈ A under hφ by ah, to simplify the notation.
Now we make the following construction:

• we take as set the Cartesian product H×A (the set of ordered pairs (h,a)
for h ∈ H and a ∈ A);

• we define an operation on this set by the rule

(h1,a1)∗ (h2,a2) = (h1h2,a
h2
1 a2).

We will see the reason for this slightly odd definition shortly.
Closure obviously holds; the element (1H ,1A) is the identity; and the inverse

of (h,a) is (h−1,(a−1)h−1
). (One way round, we have

(h,a)∗ (h−1,(a−1)h−1
) = (hh−1,ah−1

(a−1)h−1
) = (1H ,1N);

you should check the product the other way round for yourself.) What about the
associative law? If h1,h2,h3 ∈ H and a1,a2,a3 ∈ N, then

((h1,a1)∗ (h2,a2))∗ (h3,a3) = (h1h2,a
h2
1 a2)∗ (h3,a3) = (h1h2h3,(a

h2
1 a2)

h3a3),

(h1,a1)∗ ((h2,a2)∗ (h3,a3)) = (h1,a1)∗ (h2h3,a
h3
2 a3) = (h1h2h3,a

h2h3
1 ah3

2 a3),

and the two elements on the right are equal.
So we have constructed a group, called the semi-direct product of A by H using

the homomorphism φ , and denoted by Aoφ H. If the map φ is clear, we sometimes
simply write AoH. Note that the notation suggests two things: first, that A is the
normal subgroup; and second, that the semi-direct product is a generalisation of
the direct product. We now verify this fact.
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Proposition 3.1.2 Let φ : H → Aut(A) map every element of H to the identity
automorphism. Then Aoφ H ∼= A×H.

Proof The hypothesis means that ah = n for all a ∈ A, h ∈ H. So the rule for the
group operation in Aoφ H simply reads

(h1,a1)∗ (h2,a2) = (h1h2,a1a2),

which is the group operation in the direct product.

Theorem 3.1.3 Let G be a group with a normal subgroup A and a complement
H. Then G ∼= Aoφ H, where φ is the homomorphism from H to Aut(A) given by
conjugation.

Proof As we saw, every element of G has a unique expression in the form ha, for
h ∈ H and a ∈ A; and

(h1a1)(h2a2) = h1h2(h−1
2 a1h2)a2 = (h1h2)(a

h2
1 a2),

where ah2
1 here means the image of a1 under conjugation by h2. So, if φ maps

each element h ∈H to conjugation of A by h (an automorphism of A), we see that
the map ha 7→ (h,a) is an isomorphism from G to Aoφ H.

Example: Groups of order pq, where p and q are distinct primes. Let us suppose
that p> q. Then there is only one Sylow p-subgroup P, which is therefore normal.
Let Q be a Sylow q-subgroup. Then Q is clearly a complement for P; so G is a
semi-direct product Poφ Q, for some homomorphism φ : Q→ Aut(P).

Now Aut(Cp) ∼= Cp−1 (see below). If q does not divide p− 1, then |Q| and
|Aut(P)| are coprime, so φ must be trivial, and the only possibility for G is Cp×
Cq. However, if q does divide p−1, then Aut(Cp) has a unique subgroup of order
q, and φ can be an isomorphism from Cq to this subgroup. We can choose a
generator for Cq to map to a specified element of order q in Aut(Cp). So there is,
up to isomorphism, a unique semi-direct product which is not a direct product.

In other words, the number of groups of order pq (up to isomorphism) is 2 if
q divides p−1, and 1 otherwise.

Why is Aut(Cp) ∼= Cp−1? Certainly there cannot be more than p− 1 auto-
morphisms; for there are only p−1 possible images of a generator, and once one
is chosen, the automorphism is determined. We can represent Cp as the additive
group of Zp, and then multiplication by any non-zero element of this ring is an au-
tomorphism of the additive group. So Aut(Cp) is isomorphic to the multiplicative
group of Zp. The fact that this group is cyclic is a theorem of number theory (a
generator for this cyclic group is called a primitive root mod p). We simply refer
to Number Theory notes for this fact.
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3.1.2 The holomorph of a group
Let A be any group. Take H = Aut(A), and let φ be the identity map from H
to Aut(A) (mapping every element to itself). Then the semidirect product Aoφ

Aut(A) is called the holomorph of A.

Example Let A be the Klein group. Its automorphism group is the symmetric
group S3. The holomorph V4 oS3 is the symmetric group S4.

Example Let p be a prime and n a positive integer. Let A be the elementary
abelian group of order pn (the direct product of n copies of Cp). Show that
Aut(A) = GL(n, p). The holomorph of A is called the affine group of dimension n
over Zp, denoted by AGL(n, p). Exercise: Write down its order.

3.1.3 Wreath product
Here is another very important example of a semidirect product. Let F and H be
groups, and suppose that we are also given an action of H on the set {1, . . . ,n}.
Then there is an action of H on the group Fn (the direct product of n copies of F)
by “permuting the coordinates”: that is,

( f1, f2, . . . , fn)
h = ( f1h, f2h, . . . , fnh)

for f1, . . . , fn ∈ F and h ∈ H, where ih is the image of i under h in its given action
on {1, . . . ,n}. In other words, we have a homomorphism φ from H to Aut(Fn).
The semi-direct product Fn oφ H is known as the wreath product of F by H, and
is written F Wr H (or sometimes as F oH).

Example Let F = H =C2, where H acts on {1,2} in the natural way. Then F2

is isomorphic to the Klein group {1,a,b,ab}, where a2 = b2 = 1 and ab = ba. If
H = {h}, then we have ah = b and bh = a; the wreath product F Wr H is a group
of order 8. Prove that it is isomorphic to the dihedral group D8 (see also below).

There are two important properties of the wreath product, which I will not
prove here. The first shows that it has a “universal” property for imprimitive
permutation groups.

Let G be a permutation group on Ω, (This means that G acts faithfully on Ω,
so that G is a subgroup of the symmetric group on Ω, and assume that G acts
imprimitively on Ω. Recall that this means there is an equivalence relation on Ω

which is non-trivial (not equality or the universal relation) and is preserved by G.
In this situation, we can produce two smaller groups which give information about
G:
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• H is the permutation group induced by G on the set of congruence classes,
that is, the image of the action of G on the equivalence classes).

• Let ∆ be a congruence class, and F the permutation group induced on ∆ by
its setwise stabiliser in G.

Theorem 3.1.4 With the above notation, G is isomorphic to a subgroup of F Wr
H.

Example The partition {{1,2},{3,4}} of {1,2,3,4} is preserved by a group of
order 8, which is isomorphic to D8. The two classes of the partition are permuted
transitively by a group isomorphic to C2; and the subgroup fixing {1,2} setwise
also acts on it as C2. The theorem illustrates that C2 WrC2 ∼= D8; we can write the
elements down explicitly as permutations. With the earlier notation, a = (1,2),
b = (3,4), and H = (1,3)(2,4).

The other application concerns group extensions, a topic we return to in the
next section of the notes. Let F and H be arbitrary groups. An extension of F by
H refers to any group G which has a normal subgroup isomorphic to F such that
the quotient is isomorphic to H. Note that the semi-direct product is an extension.

Theorem 3.1.5 Every extension of F by H is isomorphic to a subgroup of F WrH.

Example There are two extensions of C2 by C2, namely C4 and the Klein group
V4. We find them in the wreath product, using the earlier notation, as follows:

• 〈ah〉= 〈(1,4,2,3)〉 ∼=C4 (note that (ah)2 = ahah = aah = ab);

• 〈ab,h〉= 〈(1,2)(3,4),(1,3)(2,4)〉 ∼=V4.

3.2 Extension theory
In this section we tackle the harder problem of describing all extensions of a group
A by a group H; that is, all groups G which have a normal subgroup (isomorphic
to) A with quotient G/A isomorphic to H. As suggested, we will call the normal
subgroup A.

We will assume in this chapter that A is abelian. Later we will discuss briefly
why we make this assumption.

We begin as in the preceding section of the notes. The group G acts on A
by conjugation: that is, we have a homomorphism φ : G→ Aut(A). Since A is
abelian, its action on itself by conjugation is trivial; that is, A≤ Ker(φ). Now we
have the following useful result, which can be regarded as a generalisation of the
First Isomorphism Theorem:
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Proposition 3.2.1 Let θ : G→ H be a group homomorphism, and suppose that
N is a normal subgroup of G satisfying N ≤Ker(θ). Then θ induces a homomor-
phism θ̄ : G/N→ H.

Proof Of course, we would like to define (Ng)θ̄ = gθ . We have to check that
this is well-defined. So suppose that Ng1 = Ng2, so that g2(g1)

−1 ∈ N. Then by
assumption, (g2(g−1

1 ))θ = 1H , and so g1θ = g2θ , as required.
Now proving that θ̄ is a homomorphism is a routine check, which you should

do for yourself.

In our case, A ≤ Kerφ , so φ induces a homomorphism (which we will also
call φ , by abuse of notation) from H ∼= G/A to Aut(A).

Note that we are now in the same situation as the case where there is a comple-
ment: we have a homomorphism from H to Aut(A). Now here are a few questions
for you to think about:

• What goes wrong if A is not abelian?

• Is it possible that the same extension gives rise to different homomorphisms
(in the case where A is abelian)? Is this possible in the case where A has a
complement in G?

• (much harder) Is there an extension of A by H in which we cannot define
a homomorphism from H to Aut(A) to describe the conjugation action? (A
has to be non-abelian and not complemented.)

Now we begin to describe the group G. First of all, since G/A is isomorphic
to H, we can label the cosets of A in G by elements of H (their images under the
homomorphism from G/A to H). How do we describe the elements of G? For this,
we need to choose a set of coset representatives. Let r(h) be the representative of
the coset corresponding to H. We can, and shall, assume that r(1) = 1 (use the
identity as representative of the coset A). If there is a complement we could use
its elements as coset representatives; but in general this is not possible. Note that
we have

r(h)−1ar(h) = ah,

where ah is shorthand for the image of A under the automorphism hφ .
Now, for h1,h2 ∈ H, the element r(h1)r(h2) lies in the coset labelled by h1h2,

but it is not necessarily equal to r(h1h2). So we define a “fudge factor” to give us
the difference between these elements:

r(h1)r(h2) = r(h1h2) f (h1,h2)
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where f (h1,h2) ∈ A. Thus f is a function from H×H to A (that is, it takes two
arguments in H and outputs an element of A).

Now we are ready to examine the group G. Each element of G has a unique
representation in the form r(h)a where h ∈ H and a ∈ A. Said otherwise, there is
a bijection between H×A (as a set) and G. What happens when we multiply two
elements?

r(h1)a1r(h2)a2 = r(h1)r(h2)a
h2
1 a2

= r(h1h2) f (h1,h2)a
h2
1 a2.

At this point we are going to change our notation and write the group operation
in A as addition. So the product of r(h1)a1 and r(h2)a2 has coset representative
r(h1h2) and differs from it by the element ah2

1 + a2 + f (h1,h2) of A. We will
simplify notation in another way too. Instead of writing an element of G as r(h)a,
we will write it as the corresponding element (h,a) of H×A.

Before going on, let us look at a special case. What does it mean if f (h1,h2) =
0 for all h1,h2 ∈ H? This means that the chosen coset representatives require no
fudge factor at all: r(h1)r(h2) = r(h1,h2). This just means that r is a homomor-
phism from H to G, and its image is a complement for A. This is the semi-direct
product case. So the function f should measure how far we are from a semi-direct
product. So it does, but things are a little more complicated . . .

Here is another special case. In primary school you learned how to add two-
digit numbers. What is 37+26? You add 7 and 6, giving 13; you write down 3 and
carry 1. Then you add 3 and 2 together with the carried 1 to get 6, so the answer
is 63. If you did all your calculations mod 10 and didn’t worry about carrying, the
answer would be 53. Said another way, the sum of the elements (3,7) and (2,6)
in Z10×Z10 is (5,3). But there is another extension of Z10 by Z10, namely Z100,
which has a normal subgroup A (consisting of the multiples of 10) isomorphic
to Z10 with quotient group Z10. If we use (a,x) to denote the element 10a+ x
(belonging to the coset of A containing x), then (3,7)+(2,6) = (6,3). The carried
1 is exactly what we described as a fudge factor before. So in this case

f (x,y) =
{

0 if x+ y≤ 9,
1 if x+ y≥ 10.

So you should think of the function f as a generalisation of the rules for carry-
ing in ordinary arithmetic, to any group extension with abelian normal subgroup
and arbitrary quotient.

The function f is not arbitrary, but must satisfy a couple of conditions. The
fact that r(1) = 0 shows that f (1,h) = f (h,1) = 0 for all h ∈ H. (Remember that
we are writing A additively, so the identity is now 0.) Also, let’s do the calculation
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for the associative law. To simplify matters I will just work it out for elements of
the form (h,0).

((h1,0)(h2,0))(h3,0) = (h1h2, f (h1,h2))(h3,0) = (h1h2h3, f (h1,h2)
h3 + f (h1h2,h3)),

(h1,0)((h2,0)(h3,0)) = (h1,0)(h2h3, f (h2,h3)) = (h1h2h3, f (h1,h2h3)+ f (h2,h3))

So the function f must satisfy

f (h1,h2)
h3 + f (h1h2,h3) = f (h1,h2h3)+ f (h2,h3)

for all h1,h2,h3 ∈ H.
Accordingly, we make a definition. Let A be an abelian group (written addi-

tively), and H a group. Let a homomorphism φ : H→ Aut(A) be given; write the
image of a under hφ as ah. A factor set is a function f : H×H→ A satisfying

• f (1,h) = f (h,1) = 0 for all h ∈ H;

• (h1,h2)
h3 + f (h1h2,h3) = f (h1,h2h3)+ f (h2,h3)) for all h1,h2,h3 ∈ H.

Theorem 3.2.2 Given an abelian group A, a group H, a homomorphism φ : H→
Aut(A), and a factor set f , define an operation on H×A by the rule

(h1,a1)∗ (h2,a2) = (h1h2,a
h2
1 +a2 + f (h1,h2)).

Then (H×A,∗) is a group; it is an extension of A by H, where the action of H on A
is given by φ , and the “fudge factor” for a suitable choice of coset representatives
by f .

However, this is not the end of the story. Before we continue, let us make two
simple observations.

Proposition 3.2.3 Given A, H and φ , the set of all factor sets is an abelian group,
with operation given by

( f + f ′)(h1,h2) = f (h1,h2)+ f ′(h1,h2).

We will denote this group by FS(A,H,φ).

Proposition 3.2.4 If the chosen coset representatives form a complement for A in
G, then the corresponding factor set is identically zero.
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The reason why there is more to do lies in the choice of coset representatives.
Suppose that the function s defines another choice of coset representatives. The
values r(h) and s(h) are in the same coset of A, so they differ by an element of A;
say s(h) = r(h)d(h), where d is a function from H to A. Since r(1) = s(1) = 0,
we have d(1) = 0.

Let fr and fs be the factor sets corresponding to the coset representatives r and
s. Then

r(h1h2)d(h1h2) fs(h1,h2) = s(h1h2) fs(h1,h2)

= s(h1)s(h2)

= r(h1)d(h1)r(h2)d(h2)

= r(h1)r(h2)d(h1)
h2d(h2)

= r(h1h2) fr(h1,h2)d(h1)
h2d(h2).

Reverting to additive notation, we see that

fs(h1,h2)− fr(h1,h2) = d(h1)
h2 +d(h2)−d(h1h2).

Now let d be any function from H to A satisfying d(1) = 0, and define a
function δd : H×H→ A by

δd(h1,h2) = d(h1)
h2 +d(h2)−d(h1h2).

Then some calculation shows that δd is a factor set. The special factor sets of this
form are called inner factor sets.

Now at last we can summarise our conclusions.

Theorem 3.2.5 Let the abelian group A, the group H, and the map φ : H →
Aut(A) be given.

(a) The factor sets form an abelian group FS(H,A,φ), and the inner factor sets
form a subgroup IFS(H,A,φ) of FS(H,A,φ).

(b) Two factor sets arise from different choices of coset representatives in the
same extension if and only if their difference is an inner factor set.

We define the extension group Ext(H,A,φ) to be the quotient FS(H,A,φ)/IFS(H,A,φ).
Now the elements of Ext(H,A,φ) “describe” extensions of A by H with action φ .
In particular,

• the zero element of Ext(H,A,φ) describes the semidirect product Aoφ H;

• if Ext(H,A,φ) = {0}, then the only extension of A by H with action φ is
the semi-direct product Aoφ H.
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We say that an extension of A by H splits if it is a semi-direct product; the last
conclusion can be expressed in the form “if Ext(H,A,φ) = {0} then any extension
of A by H with action φ splits”.

There is one important case where this holds.

Theorem 3.2.6 (Schur’s Theorem) Suppose that A is an abelian group and H a
group satisfying gcd(|A|, |H|) = 1, Then any extension of A by H splits.

Proof Let m = |A| and n = |H|. Now if f is any factor set, then m f (h1,h2) = 0
for any h1,h2 ∈ H; in other words, m f = 0 in FS(H,A,φ), and so m f = 0 in
Ext(H,A,φ), where f is the image of f in FS/ IFS.

We now show that n f is an inner factor set. Define a function d : H→ A by

d(h) = ∑
h1∈H

f (h1,h).

Consider the equation

f (h1,h2)
h3 + f (h1h2,h3) = f (h1,h2h3)+ f (h2,h3)).

Sum this equation over h1 ∈ H; we obtain

d(h2)
h3 +d(h3) = d(h2h3)+n f (h2,h3),

where we obtain d(h3) in the second term because h1h2 runs through H as h1 does.
Thus,

n f (h2,h3) = d(h2)
h3 +d(h3)−d(h2h3),

which asserts that n f is an inner derivation.
Now this says that n f = 0 in Ext(H,A,φ).
Our hypothesis says that gcd(m,n) = 1. By Euclid’s algorithm, there exist

integers a and b such that am+bn = 1. Now, calculating in Ext(H,A,φ),

f = (am+bn) f = a(m f )+b(n f ) = 0.

Since f was arbitrary, we have Ext(H,A,φ) = {0}.

In fact, a more general result is true. Zassenhaus improved Schur’s theorem by
showing that it is not necessary to assume that A is abelian, as long as one of A and
H is soluble. Now if the orders of A and H are coprime, then at least one of them
is odd; and Feit and Thompson showed that any group of odd order is soluble. So
we can say that if gcd(|A|, |H|) = 1, then any extension of A by H splits, with no
extra conditions on A or H. This is known as the Schur–Zassenhaus Theorem.
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Let us calculate Ext(C2,C2,φ), where φ is the trivial homomorphism. Let f be
a factor set. Let H = {1,h} and A = {0,a}. We have f (1,1) = f (1,h) = f (h,1) =
0, so there are two possible factor sets: we can have f (h,h) = 0 or f (1,1) = a.

What about inner factor sets? The function d satisfies d(1) = 0; so we have

δd(h,h) = d(h)+d(h)−d(0) = 0,

So there is only one possible inner factor set.
Thus, Ext(C2,C2) = FS(C2,C2)/IFS(C2,C2) ∼=C2, and there are just two ex-

tensions of C2 by C2. Of course we have known this all along; the only extensions
are C4 and C2×C2. Nevertheless, calculating factor sets and inner factor sets can
easily be done by computer, so it is quite practical to decide what the possible
extensions are.

There is one further problem, which we will not address (and causes a lot
of difficulty in the theory). Non-isomorphic extensions correspond to different
elements of the Ext group; but sadly, the converse is not true. Different elements
of Ext may yield isomorphic groups. For example, Ext(Cp,Cp) = Cp, but there
are only two non-isomorphic extensions (Cp2 and Cp×Cp), not p of them.

Exercises
3.1 Show that the holomorph of A acts on A in such a way that A acts by right

multiplication and Aut(A) acts in the obious way (its elements are automorphisms
of A, which are after all permutations!). Note that all automorphisms fix the iden-
tity element of A; in fact, Aut(A) is the stabiliser of the identity in this action of
the holomorph.

3.2 Let G be a transitive permutation group with a regular normal subgroup A.
Show that G is isomorphic to a subgroup of the holomorph of A.

3.3 Let A, B and C be finite abelian groups. Show that the following are equiva-
lent:

(a) A has a subgroup isomorphic to B with quotient isomorphic to C;

(b) A has a subgroup isomorphic to C with quotient isomorphic to B.

Show that this equivalence is false for

• infinite abelian groups;

• non-abelian groups.



78 CHAPTER 3. GROUP EXTENSIONS

3.4 Let G be the group S3× S3. Let A denote the first direct factor. Find two
complements to A in G, one of which is normal and the other is not. Hence show
that this group can be expressed as S3 oφ S3 with two different homomorphisms
φ from S3 to Aut(S3). (Note that Aut(S3) is isomorphic to S3.)

3.5 A group G is called complete if it has the properties Z(G)= {1} and Out(G)=
{1}. If G is complete, then

Aut(G) = Inn(G)∼= G/Z(G) = G,

in other words, a complete group is isomorphic to its automorphism group. Prove
that, if G is complete, then the holomorph of G is isomorphic to G×G.

3.6 Find a group G which is not complete but satisfies Aut(G)∼= G.

3.7 Recall that the affine group AGL(n, p) is the semidirect product of (Cp)
n by

its automorphism group GL(n, p). We regard (Cp)
n as the additive group of the

n-dimensional vector space over the field Fp.

(a) Show that the affine group AGL(n,2) is a triply transitive permutation group
of degree 2n. [Hint: The stabiliser of the zero vector is GL(n,2); show that
this group is doubly transitive on non-zero vectors.]

(b) Show that AGL(2,2) is isomorphic to the symmetric group S4.

(c) Show that the affine group AGL(3,2) is contained in the alternating group
A8 as a subgroup of index 15.

(d) Show that A8 acts doubly transitively on the 15 elements of cos(AGL(3,2),A8).

Remark: In fact, A8 is isomorphic to GL(4,2), and this action on 15 points
is isomorphic to the action on the non-zero vectors of the 4-dimensional vector
space.

3.8 Let A = H = C10, where the elements of both A and H are represented as
{0,1,2, . . . ,9}. Let φ : H→Aut(A) be the trivial homomorphism mapping every-
thing to the identity. Let f : A×A→H be the usual “carry digit” from elementary
arithmetic, that is,

f (h1,h2) =

{
0 if h1 +h2 ≤ 9,
1 if h1 +h2 ≥ 10.

(In this formula, addition is usual addition of integers, not addition in C10.)
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(a) Show that f is a factor set.

(b) Show that f is not an inner factor set.

(c) Show that the extension of A by H constructed using the action φ and the
factor set f is isomorphic to C100.
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Chapter 4

Soluble and nilpotent groups

4.1 Soluble groups
There are several ways to recognise when a finite group is soluble. Recall that the
derived group or commutator subgroup G′ of G is the subgroup generated by all
commutators [g,h] = g−1h−1gh for g,h∈G. It is a normal subgroup of G with the
properties that G/G′ is abelian, and if N is any normal subgroup of G such that
G/N is abelian, then G′ ≤ N. Inductively we define G(r) for r ∈ N by G(0) = G
and G(r+1) = (G(r))′ for r ≥ 0.

Note that, if G(i) = G(i+1), then G(i) = G( j) for all j > i.

Theorem 4.1.1 For the finite group G, the following properties are equivalent:

(a) There is a chain of subgroups

G = G0 ≥ G1 ≥ G2 ≥ ·· · ≥ Gr−1 ≥ Gr = {1}

such that Gi CGi−1 and Gi−1/Gi is cyclic of prime order for i = 1,2, . . . ,r
(in other words, all the composition factors of G are cyclic of prime order);

(b) There is a chain of subgroups

G = H0 ≥ H1 ≥ H2 ≥ ·· · ≥ Hs−1 ≥ Hs = {1}

such that Hi CG and Hi−1/Hi is abelian for i = 1,2, . . . ,s;

(c) there exists r such that G(r) = {1}.

Proof (c) implies (b): If G(r) = {1}, then the subgroups Hi = G(i) satisfy the
conditions of (b).

81
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(b) implies (a): Suppose that we have a chain of subgroups as in (b). Now if A
is a finite abelian group, then A has a composition series with cyclic composition
factors of prime order. (The proof is by induction. Working from the bottom
up, let Hs = {1} and Hs−1 the subgroup generated by an element of prime order;
using the inductive property, choose a composition series for A/Hs−1, and use
the Correspondence Theorem to lift them to a composition series of A containing
Hs−1.)

Now choose a composition series in each abelian quotient, and lift each to a
part of a composition series between Gi−1 and Gi.

(a) implies (c): We use the fact that, if G/N is abelian, then G′ ≤ N. If a
composition series with prime cyclic factor groups exists as in (a), then by an easy
induction, the ith term G(i) in the derived series is contained in Gi; so G(r) = {1}.

The derived length or soluble length of the soluble group G is the minimum r
such that G(r) = {1}. Note that a non-trivial finite group is abelian if and only if
it is soluble with derived length 1.

Theorem 4.1.2 (a) Subgroups, quotient groups, and direct products of soluble
groups are soluble.

(b) If G has a normal subgroup N such that N and G/N are soluble, then G is
soluble.

Proof (a) If H ≤ G then all commutators of elements of H belong to G′, and so
H ′ ≤ G′. By induction, H(i) ≤ G(i) for all i. So, if G(r) = {1}, then H(r) = {1}.

If N≤G, then [Ng,Nh] =N[g,h], so (G/N)′=G′N/N. By induction, (G/N)(i)=
G(i)N/N for all i. So, if G(r) = {1}, then (G/N)(r) = {1}.

In G×H, we have [(g1,h1),(g2,h2)] = ([g1,g2], [h1,h2]) for all g1,g2 ∈G and
h1,h2 ∈ H. So (G×H)′ = G′×H ′. By induction, (G×H)(i) = G(i)×H(i) for all
i. So, if G(r) = {1} and H(s) = {1}, then (G×H)(t) = {1}, where t = max{r,s}.

Suppose that N(r) = {1} and (G/N)(s) = {1}. Arguing as in (a), we see that
G(s) ≤ N, and so G(r+s) = {1}.

Remark The arguments in the proof show that the derived length of a subgroup
or quotient of G are not greater than the derived length of G, while the derived
length of a direct product is the maximum of the derived length of the factors.

4.2 Nilpotent groups
Recall that the centre of G is the subgroup Z(G) = {g∈G : gx = xg for all x∈G}.
It is an abelian normal subgroup of G. Now we define a series of subgroups of G
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called the upper central series of G as follows: Z0(G) = {1}, Zi+1(G) is the nor-
mal subgroup of G corresponding to the centre of G/Zi(G) by the Correspondence
Theorem. (Briefly we say Zi+1(G)/Zi(G) = Z(G/Zi(G)).)

Note that, if Zi(G) = Zi+1(G) (that is, if the centre of G/Zi(G) is trivial), then
Zi(G) = Z j(G) for all j > i.

The group G is said to be nilpotent if Zr(G) = G for some r; the smallest such
r is called the nilpotency class of G. Again, a non-trivial finite group is abelian if
and only if it is nilpotent with nilpotency class 1.

Theorem 4.2.1 The following conditions for a finite group G are equivalent:

(a) Zr(G) = G for some r;

(b) there is a chain of subgroups

G = H0 ≥ H1 ≥ H2 ≥ ·· · ≥ Hs−1 ≥ Hs = {1}

such that Hi CG and Hi−1/Hi ≤ Z(G/Hi) for i = 1,2, . . . ,s;

(c) all Sylow subgroups of G are normal;

(d) G is the direct product of its Sylow subgroups.

Thus nilpotency of a finite group can be defined by any of the equivalent con-
ditions of the Theorem. (As for solubility, the conditions are no longer equivalent
for infinite groups.) Note that

(a) a nilpotent group is soluble (for the centre of a group is abelian, so the
quotients of the groups in the chain (b) are abelian);

(b) a group of prime power order is nilpotent;

(c) the smallest non-abelian group, S3, is soluble but not nilpotent.

Proof (a) implies (b): If Zr(G) = G, then the subgroups Hi = Zr−i(G) satisfy the
conditions of (b).

(b) implies (c): We defer this for a moment.
(c) implies (d): This is proved by a straightforward induction on the number

of primes dividing |G|.
(d) implies (a): Recall that, if P is a non-trivial group of prime-power order,

then Z(P) 6= {1}. Thus, by induction, a group of prime-power order satisfies (a).
Moreover, it is easy to see that

Z(P1×·· ·×Pm) = Z(P1)×·· ·×Z(Pm);
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so a direct product of groups satisfying (a) also satisfies (a).
The remaining implication is a little more difficult; it follows from a couple of

lemmas which we now prove.

Lemma 4.2.2 Let P be a Sylow p-subgroup of the group G, and H a subgroup of
G which contains the normaliser NG(P) of P. Then NG(H) = H.

Proof Take g ∈ NG(H), so that g−1Hg = H. Then g−1Pg ≤ H, so g−1Pg is a
Sylow p-subgroup of H. By Sylow’s theorem, all the Sylow p-subgroups of H are
conjugate, so there exists h∈H satisfying h−1(g−1Pg)h = P. Then gh∈NG(P)≤
H, so gh ∈ H. Since h ∈ H, it follows that g ∈ H. So NG(H) = H, as claimed.

Remark This argument is known as the Frattini argument.

Lemma 4.2.3 Suppose that G satisfies (b) of the Theorem. If H is a proper sub-
group of G, then H < NG(H).

Proof Let i be maximal such that Gi ≤ H. Then i 6= 0, since H < G. Now
Gi−1 6≤ H, so there is a coset Gig in Gi−1/Gi which is not in H/Gi but commutes
with all cosets of Gi, and hence normalises H/Gi. Thus, NG/Gi(H/Gi) > H/Gi.
Judicious use of the Correspondence Theorem shows that NG(H)> H.

Now we can show that (b) implies (c) in the theorem. Suppose that G satisfies
(b), and let P be a Sylow p-subgroup of G, for some prime p. Let H = NG(P).
Then NG(H) = H. But if H < G, then NG(H) > H; so we must have H = G as
required.

Remark The condition

If H < G, then H < NG(H)

is equivalent to the four conditions of the theorem, and so provides another equiv-
alent to nilpotency of a finite group. [Can you prove this?]

4.3 Supersoluble groups
A finite group G is supersoluble if there is a chain

G = G0 > G1 > G2 > · · ·> Gr−1 > Gr = {1}

of subgroups such that Gi B G and Gi−1/Gi is cyclic of prime order for i =
1,2, . . . ,r.
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Look back at the first theorem of this chapter. In a soluble group G, we may
assume either that all the subgroups in the chain are normal in G (with the quo-
tients being abelian), or that all the quotients are cyclic of prime order (with each
subgroup being normal in the one before). The example G = A4 shows that we
cannot ask both things in general. The only candidate for G1 is V4, which is not
cyclic; its cyclic subgroups of order 2 are not normal in G. In other words, A4 is
not supersoluble. However, S3 is supersoluble.

Supersoluble groups form a class between nilpotent and soluble. (Any nilpo-
tent group is supersoluble, because a subgroup contained in the centre of a group
G is normal.) They are not as important as either nilpotent or soluble groups. Here
is a surprising fact about them.

Theorem 4.3.1 If G is supersoluble, then G′ is nilpotent.

Proof This depends on the fact that the automorphism group of a cyclic group of
prime order is abelian. (In fact, Aut(Cp) =Cp−1.) Hence, a homomorphism from
G to Aut(Cp) has the property that its kernel contains G′.

Let
G = G0 > G1 > G2 > · · ·> Gr−1 > Gr = {1}

be a series of subgroups such that GiCG and Gi−1/Gi is cyclic of prime order for
i = 1,2, . . . ,r. Now consider the series

G′ = H0 ≥ H1 ≥ H2 ≥ ·· · ≥ Hr−1 ≥ Hr = {1},

where Hi = Gi∩G′. Then Hi CG′, and

Hi−1/Hi = (Gi−1∩G′)/(Gi∩ (Gi−1∩G′))∼= (Gi−1∩G′)Gi/Gi ≤ Gi−1/Gi,

so Hi−1/Hi is either trivial or cyclic of prime order. By dropping terms from the
series, we can assume it is always cyclic of prime order.

Now G acts by conjugation on Hi−1/Hi. By our earlier remark, G′ acts trivially
on this quotient, which means that Hi−1/Hi ≤ Z(G′/Hi). Since this is true for all
i, we see that G′ is nilpotent.

Exercises
4.1 What is the smallest group which is supersoluble but not nilpotent? What is

the smallest group that is soluble but not supersoluble?

4.2 Calculate the sequence of derived subgroups of the group S4 and of the group
GL(2,3).



86 CHAPTER 4. SOLUBLE AND NILPOTENT GROUPS

4.3 Closure properties.

(a) Prove that subgroups, quotients, and direct products of nilpotent groups are
nilpotent.

(b) Prove that subgroups, quotients, and direct products of soluble groups are
soluble.

(c) Prove that an extension of a soluble group by a soluble group (that is, a
group with a soluble normal subgroup having soluble factor group) is solu-
ble. Does this hold with “nilpotent” replacing “soluble”?

(d) Do the above properties hold for supersoluble groups?

4.4 Let n be a positive integer greater than 2, and let G = D2n be the dihedral
group of order 2n.

(a) Prove that G is not abelian.

(b) Prove that G is soluble and calculate the series of derived subgroups of G.

(c) Prove that G is nilpotent if and only if n is a power of 2.

(d) Is G supersoluble?

4.5 Show that any group of order smaller than 60 is soluble.

4.6 The lower central series of a group G is the series of subgroups defined by the
rule that γ1(G) = G and γ i+1(G) = [γ i(G),G], where [H,K] denotes the subgroup
generated by all commutators [h,k] = h−1k−1hk for h ∈ H and k ∈ K.

(a) Prove that each term in the lower central series is a normal subgroup of G.

(b) Prove that γ i(G)/γ i+1(G)≤ Z(G/γ i+1(G)).

(c) Prove that G is nilpotent if and only if γ i(G) = 1 for some i, and in this case
the length of the lower central series is equal to the nilpotency class of G.

(d) What, if any, is the relationship between the terms in the upper and lower
central series?
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Solutions to some of the exercises

1.5 (a) By the Subgroup Test, we have to show that H ∩K is non-empty (which
it is, as it contains the identity), and that if x,y ∈ H ∩K, then xy−1 ∈ H ∩K. This
holds because x,y ∈H, so xy−1 ∈H (as H is a subgroup), and similarly xy−1 ∈ K.

(b) We claim that, if x ∈ HK, then x can be written as hk (with h ∈ H and
k ∈ K) in exactly |H ∩K| ways. Given one such expression x = hk, we have x =
(hg−1)(gk) for all g ∈ H ∩K, giving |H ∩K| expressions, Conversely, if x = h′k′

is any such expression, then hk = h′k′, so (h′)−1h = k′k−1 = g, say, so h′ = hg−1

and k′ = gk. So we have found all such expressions.
Hence |HK| = |H| · |K|/|H ∩K|, since by counting the pairs (h,k) we over-

count by a factor of |H ∩K|.
(c) Clearly HK is non-empty. If h1k1,h2k2 ∈ HK, then

(h1k1)(h2k2)
−1 = h1kh−1

2 where k = k1k−1
2

= h1h3k where h3 = kh−1
2 k−1 ∈ kHk−1 = K

∈ HK,

so HK is a subgroup.
(d) Let G = S3, and let H and K be the subgroups of order 2 generated by

(1,2) and (1,3) respectively. Then |HK|= 4, and so HK cannot be a subgroup of
a group of order 6, by Lagrange’s Theorem.

1.15 We have

(q1 +q2)θ = e2πi(q1+q2)

= e2πiq1 · e2πiq2

= q1θ ·q2θ ,

so θ is a homomorphism.

87
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Since every root of unity has the form e2πiq for some rational number q, θ is
onto. Its kernel is

{q ∈Q : e2πiq = 1}= Z.

So Q/Z∼= A, by the First Isomorphism Theorem.
Every element of A has finite order (the order of e2πiq is the denominator of

q), while every non-zero element of the infinite cyclic group has infinite order. So
they are not isomorphic.

1.17 (a) Split the n points up into a1 sets of size pi for i = 0, . . . ,r, and let G be
the group fixing each of these sets. It is easily seen that G is the direct product of
symmetric groups of the appropriate sizes.

Some slightly tedious number theory (which we will need later) shows that the
power of p dividing n! is the same as the power of p dividing |G|.

(b) The power of p dividing pi! is as claimed: if we write out the factorial as a
product, there are pi−1 terms which are multiples of p, of which pi−2 are multiples
of p2, and so on.

Given a set of size pi, choose partitions π1,π2, . . . ,πi−1 where pi j has p j parts
of size pi− j, and each partition refines the one before. Now consider permutations
which fix all these partitions, and permute the parts of π j+1 in each part of π j
cyclically. This has the required order.

(c) Take the direct product of Sylow p-subgroups of Spi for each i to get a
Sylow p-subgroup of G. By our remark in the first part, this is also a Sylow
p-subgroup of Sn.

(d) Given any finite group H of order n, by Cayley’s Theorem we can embed H
into the symmetric group Sn, which has a Sylow p-subgroup. By Sylow’s Lemma,
H has a Sylow p-subgroup.

1.19 (a) We are looking for Sylow p-subgroups for p = 5,3,2; they should have
orders 5,3,8 respectively. It is enough to give an example of each.

p = 5: the cyclic group generated by a 5-cycle;

p = 3: the cyclic group generated by a 3-cycle;

p = 2: the dihedral group of symmetries of a square, fixing the remaining point.

There are 24 elements of order 5, hence 24/4 = 6 Sylow 5-subgroups; 20 ele-
ments of ordedr 3, hence 20/2 = 10 Sylow 3-subgroups. To count the Sylow
2-subgroups we note that, by the conjugacy part of Sylow’s theorem, they are all
symmetry groups of squares, so we have to count the number of ways of labelling
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a square and an isolated point. There are 5 choices for the isolated point, and 3
ways of labelling the square; so 15 Sylow 2-subgroups.

(b) The conjugacy classes in S5 have sizes 1 (the identity), 10 (the transposi-
tions), 15 (products of two transpositions), 20 (the 3-cycles), 20 (the products of
a 2-cycle and a 3-cycle), 30 (the 4-cycles), and 24 (the 5-cycles). How can we
choose some of these, including the identity, to have size dividing 120? There are
trivial solutions corresponding to the identity and the whole group; what others
are there? A little thought shows that the numerical solutions are 1+ 24+ 15 or
1+ 24+ 15+ 20. A subgroup containing elements which are the product of a 2-
cycle and a 3-cycle would also contain their squares, which are 3-cycles; so the 20
must be the class of 3-cycles. Now it is easy to see that we can write a 3-cycle as
the product of two double transpositions; so if we include 15 we must also include
20. So the only possibility is to use all the even permutations, obtaining A5.

Thus the only normal subgroups are {1}, A5 and S5.

1.20 (a) The number of Sylow 5-subgroups of a group of order 40 is congruent
to 1 (mod 5) and divides 8, so is 1; thus a Sylow 5-subgroup is normal.

(b) The number of Sylow 7-subgroups of a group of order 84 is congruent to
1 (mod 7) and divides 12, so is 1; thus a Sylow 7-subgroup is normal.

1.21 (a) Let G = Cn, with generator a, and let H be a subgroup of G. Let k be
the smallest positive integer for which ak ∈ H. (There certainly are some positive
integers with this property, e.g. k = n.) Now we claim that, if am ∈ H, then k
divides m. For if not, then let m= kq+r, with 0< r < k; then ar = am ·(ak)−q ∈H,
contradicting the definition of k. So ak generates H, which is thus cyclic.

(b) Let G be the dihedral group of order 2n, the group of symmetries of a
regular n-gon. Then G contains a cyclic group C of order n consisting of rotations;
all the elements outside C are reflections. Let H be any subgroup of G. If H ≤C,
then H is cyclic, by (a); so suppose not. Then H ∩C is a cyclic group of order m,
say, and |H|= 2m. An element of H outside C is a reflection (so has order 2) and
conjugates a generator of H ∩C to its inverse (since it conjugates every element
of C to its inverse). Thus H is a dihedral group.

(c) Further to (b), we see that G contains a unique cyclic subgroup of order
m consisting of rotations, for every m dividing n. Also, if K is such a subgroup,
and t any reflection, then 〈K, t〉 is a dihedral group. If |K| = m, then the dihedral
group 〈K, t〉 contains m reflections. Since there are n involutions, there must be
n/m dihedral subgroups of order 2m.

If n is odd, then all these dihedral groups are conjugate, so they are not normal
(unless m= n, in which case we have the whole group). If n is even, the reflections
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fall into two conjugacy classes. Now if n/m is even, then the dihedral group of
order 2m contains reflections from only one class, so there are two conjugacy
classes of dihedral groups, while if n/m is odd, then all the dihedral groups contain
reflections from both classes and so all is conjugate.

So the normal subgroups are: all the cyclic rotation groups Cm; and the dihe-
dral groups D2m for m = 1 and (if n is even) m = 2.

(d) In D12, we see that there are three normal subgroups of index 2, namely
C6 and two D6s. Moreover, C6 has two composition series C6 BC2 B {1} and
C6 BC3 B {1}, while D6 has only one, namely D6 BC3 B {1}. So there are four
composition series for D12.

1.23 The normal subgroups of S4 are A4, V4 (the Klein group) and {1}. So
any composition series must begin S4 B A4. Now the normal subgroups of A4
are V4 and {1}, so the series must continue A4 BV4. Finally, V4 has three cyclic
subgroups of order 2, all normal, so there are three ways to continue the series as
V4 BC2 B{1}.

1.24 (a) Let G be an elementary abelian p-group. If its order were divisible by
a prime q 6= p, then by Cauchy’s Theorem it would contain an element of order q,
which it does not. So |G| is a power of p.

(b) There are two ways to argue. First, use the structure theorem for finite
abelian groups to express G as a direct product of cyclic groups. Since all non-
identity elements have order p, these cyclic groups must all be Cp.

The second method avoids using this theorem. Write the abelian group G
additively, and define ng = g+ g+ · · ·+ g (n times) for 0 ≤ n ≤ p− 1. Since
pg = 0, it is easy to show that this scalar multiplication makes G into a vector
space over the field GF(p) of integers mod p. Choose a basis for this vector
space. Translating back to group theory language, the elements of this basis are
generators of cyclic groups whose direct product is G.

2.8 (a) If n = 2, then Ω contains only the single element {1,2}, and obviously
every element of S2 fixes it; so the action is not faithful. (If g = (1,2), then
{1,2}g = {1g,2g}= {2,1}= {1,2}.)

(b) If n = 3, the map

{1,2} 7→ 3, {2,3} 7→ 1, {1,3} 7→ 2

is an isomorphism from the action on Ω to the usual action on {1,2,3}, which is
obviously doubly transitive.
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(c) If n = 4, then the relation {i, j} ∼ {k, l} if the sets {i, j} and {k, l} are
equal or disjoint, is a congruence: it is obviously invariant under S4, and the fact
that it is an equivalence relation is most easily seen by observing that the three
equivalence classes form a partition of Ω. So S4 is imprimitive.

(d) Assume that n≥ 5. To show that the action of Sn on Ω is primitive, suppose
that ≡ is a congruence, which is not the relation of equality, so two unequal pairs
are congruent. There are two cases:

• Two pairs with an element in common, say {a,b} and {a,c}, are congruent.
Since Sn acts transitively on configurations like this, it follows that every
two pairs with an element in common are congruent. Then for example,
{1,2} is congruent to {1,3} and to {2,4}; so two disjoint pairs are also
congruent. Now reason as in the next case.

• Two disjoint pairs are congruent, say {a,b} and {c,d}. Again Sn is transi-
tive on such configurations, so every two disjoint pairs are congruent. Now
{1,2} is congruent to {3,4} and to {3,5} [here we use the fact that n≥ 5],
so two pairs with an element in common are congruent. Now reason as in
the preceding case.

The conclusion is that any two pairs are congruent, so the congruence is the uni-
versal relation. Thus the group is primitive.

To show it is not doubly transitive, observe that a permutation cannot map two
intersecting pairs like {1,2} and {1,3} to two disjoint pairs like {1,2} and {3,4}.

2.10 (a) Any automorphism of a group G must permute the elements of G and fix
the identity, so must permute the non-identity elements. If G =V4, there are three
non-identity elements, so Aut(G) ≤ S3. Why is it equal to S3? One way to see
this is to observe that, if V4 = {1,a,b,c}, then we can specify the multiplication
as follows:

• 1x = x1 = x and x2 = 1 for all x ∈ G;

• the product of any two distinct non-identity elements is the third.

Stated in this way, it is clear that any permutation of the non-identity elements is
an automorphism of the group.

(b) Let G = S3. Since Z(G) = {1}, we have

G∼= Inn(G)≤ Aut(G),

and we are done if we can show that G has at most six automorphisms. But G has
two elements of order 3 and three of order 2; any choice of an element a of order 3
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and b of order 2 generates the group, so an automorphism is uniquely determined
by what it does to a and b. And a must go to an element of order 3, and b to an
element of order 2, so there are at most 2 ·3 = 6 choices.

(c) For n > 2 and n 6= 6, the symmetric group has trivial centre and no outer
automorphisms; so

Aut(Sn)∼= Inn(Sn)∼= Sn/Z(Sn)∼= Sn.

Many other examples are possible, for example dihedral groups of order greater
than 4.

(d) Suppose that G is elementary abelian of order 8. Then G is isomorphic
to the additive group of a 3-dimensional vector space over the field Z2 with two
elements. Any map taking a basis to a basis extends uniquely to an automorphism.
So the order of the automorphism group is equal to the number of bases. Now
there are

• 7 choices for the first basis vector u (any non-zero vector);

• 6 choices for the second basis vector v (any vector which is not a multiple
of u, thus 0 and u are excluded);

• 4 choices for the third basis vector (any vector which is not a linear combi-
nation of u and v, thus 0, u, v and u+ v are excluded).

Now it is a simple exercise to label the Fano plane with the seven non-zero
vectors of the 3-dimensional vector space in such a way that three points form a
line if and only if the corresponding vectors sum to 0. So any automorphism of the
group will be an automorphism of the Fano plane. Since the two automorphism
groups have the same order 168, they are equal.

2.11 If G is non-abelian, suppose that gh 6= hg. Then conjugation by g (the
map x 7→ g−1xg) is an (inner) automorphism of G, and is not the identity, since it
doesn’t fix h.

If G is abelian, then the map 7→ x−1 is an automorphism, since (xy)−1 =
y−1x−1 = x−1y−1. If some element of G is not equal to its inverse, then this
automorphism is non-trivial. [Note that the map x 7→ x−1 is an automorphism of
G if and only if G is abelian.]

Finally, if every element of G is equal to its inverse, then G is an elementary
abelian 2-group, and so is isomorphic to the additive group of a k-dimensional
vector space over Z2 (where |G|= 2k). Since |G|> 2 we have k > 1. Now choose
a basis for G; the map which switches the first two basis vectors and fixes the rest
is a non-trivial automorphism.
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All of this works exactly the same for infinite groups except for the innocent-
looking phrase “choose a basis”. The proof that every (infinite-dimensional) vec-
tor space has a basis requires the Axiom of Choice.

2.12 (a) We construct F8 by adjoining to F2 =Z2 the root of an irreducible cubic
polynomial f (x).

The reason for this is that, if f is irreducible, then the ideal 〈 f 〉 of the
polynomial ring F2[x] generated by f is maximal, and hence the quotient ring
F2[x]/〈 f 〉 is a field (see Algebraic Structures II notes). Now the Division
algorithm shows that, if p is any polynomial over F2, then we can write
p(x) = f (x)q(x) + r(x), where deg(r) < deg( f ) = 3, so r belongs to the
coset 〈 f 〉+ p. Thus every coset contains a representative of degree less than
3. It is easy to see that this coset representative is unique. The number of
polynomials of degree less than 3 is 23 = 8 (since ax2 + bx+ c has three
coefficients each of which can be any element of F2). So there are 8 cosets
of 〈 f 〉 in F2[x], and the quotient is a field with 8 elements.

We note in passing that, if we use the symbols 0,1,α to denote the cosets
〈 f 〉, 〈 f 〉+ 1 and 〈 f 〉+ x respectively, then f (α) = 〈 f 〉+ f (x) = 〈 f 〉 = 0.
Thus α is a root of f .

There are eight polynomials of degree 3 over F2. If f is an irreducible polyno-
mial of degree 3, then f (0) = 1 (since if f (0) = 0 then x is a factor of f (x)), and
f (1) = 1 (since if f (1) = 0 then x+1 is a factor of f (x)). This leaves just the two
irreducible polynomials f (x) = x3 + x+1 and g(x) = x3 + x2 +1.

Now take the polynomial f . The eight elements of our field are aα2 +bα +c,
where a,b,c ∈ F2 and α3 +α + 1 = 0. Addition is straightforward: to add two
expressions of this form, we simply add the coefficients of α2, the coefficients of
α , and the constant terms. For example, (α2 +1)+(α2 +α) = α +1.

Multiplication can be done by multiplying in the usual way and using the fact
that α3 = α +1 to reduce the degree of the product. A more user-friendly way to
multiply is to use “logarithms”. We construct a table of powers of α:

α0 1
α1 α

α2 α2

α3 α + 1
α4 α2 + α

α5 α2 + α + 1
α6 α2 + 1

and α7 = 1 = α0. So the multiplicative group is cyclic of order 7, in agreement
with what we know.
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Now to multiply two elements, use the table to express them as powers of α ,
add the exponents mod 7, and use the table in reverse to express the result in the
standard form. For example,

(α2 +1)(α2 +α) = α
6 ·α4 = α

10 = α
3 = α +1.

(b) Let β = α3. (Why this choice? Trial and error – see below.) Then

β
3 +β

2 +1 = α
9 +α

6 +1 = α
2 +(α2 +1)+1 = 0,

so β is a root of the other irreducible polynomial g. So the field we construct
already contains a root of g, and thus is the field obtained by adjoining such a root
to F2. So the two irreducible polynomials give the same field.

If you try γ = α2, you will find that f (γ) = 0, so γ is a root of the same
irreducible polynomial as is α . In fact, this agrees with our observation that the
Frobenius map u 7→ u2 is an automorphism of F8. Similarly, α4, the result of
applying the Frobenius map twice, will also satisfy f . The other two elements
α6 = (α3)2 and α5 = (α3)4 are roots of g.

2.13 (a) The following are equivalent (for g ∈ G):

• Hg is fixed by H,

• (Hg)h = Hg for all h ∈ H,

• Hghg−1 = H for all h ∈ H,

• ghg−1 ∈ H for all h ∈ H,

• gHg−1 = H,

• g−1Hg = H.

(b) Let H = pk. Then the coset space cos(H,G) has size pn−k, a multiple of p
(since H < G). Now consider the action restricted to H, and split cos(H,G) into
orbits. By the Orbit-Stabiliser Theorem, the size of each orbit is a power of p; and
at least one orbit (namely {H}) has size 1 = p0. So there must be at least p orbits
of size 1; that is, at least p cosets of H lie in NG(H), by (a). So NG(H)> H.

2.14 (a) PSL(2,F) contains an involution; indeed, it is easy to see that it contains
more than one involution. (For example, thinking of it as the group of linear
fractional transformations, z 7→ −a2/z is an involution for any non-zero a ∈ F , so
if |F | > 3 there is more than one such element. The case |F | = 3 can be handled
directly.) So it cannot be a subgroup of a group with only one involution. [An
involution is an element of order 2.]
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(b) Since the composition factors are C2 and PSL(2,q), and there is no sub-
group (normal or otherwise) isomorphic to PSL(2,q), the composition series must
be GBH B{1}, where H ∼=C2. By the first part of the question, there is only one
such subgroup H, namely {±I}.

(c) Immediate from (a) (or (b)).

2.15 (a) We can map 0 to b by the map x 7→ x+b (that is, x 7→ (1x+b)/(0x+1)),
and 0 to ∞ by x 7→ 1/x. So the orbit containing 0 is the whole of F ∪{∞}.

(b) The map x 7→ (ax+b)/(cx+d) maps ∞ to a/c. If this is to be ∞, we must
have c = 0, so that x 7→ (ax+ b)/d = (a/d)x+(b/d). Nothing is affected if we
take d = 1, giving the form stated.

This group is transitive on F (we saw this implicitly in (a)), so the result fol-
lows from:

Fact Suppose that G is transitive on Ω, and the stabiliser of a point ω ∈ Ω is
transitive on Ω\{ω}. Then G is doubly transitive on Ω.

Proof Suppose that we want to map (α,β ) to (γ,δ ), where α 6= β and γ 6= δ .
Choose g ∈ G mapping α to ω , and g′ ∈ G mapping γ to ω . Then βg and δg′ are
both different from Ω; so choose h ∈ Stab(ω) mapping βg to δg′. Then check
that gh(g′)−1 is the element we are looking for.

(c) If x 7→ ax+b fixes 0, then b = 0, so the stabiliser of ∞ and 0 is the group
x 7→ ax for a ∈ F×. Clearly it is transitive on F \ {0}: we can map 1 to a by
multiplying by a.

Now a result similar to the Fact above shows that, if G is doubly transitive and
the stabiliser of two points is transitive on the remaining points then G is triply
transitive.

Since G is triply transitive, all three-point stabilisers are conjugate; and the
stabiliser of ∞, 0 and 1 is the identity. (The map x 7→ ax maps 1 to 1 if and only if
a = 1.)

2.16 Suppose that G is a simple group of order pqr, where p > q > r. The
number of Sylow p-subgroups is congruent to 1 mod p and divides qr; it cannot
be 1 (since G is simple), q or r (since it is at least p+1), so must be qr.

Now the Sylow p-subgroups between them contain the identity and qr(p−1)
elements of order p (since any two intersect only in the identity).

Similarly, the number of Sylow q-subgroups is congruent to 1 mod q and di-
vides pr, so must be either p or pr, giving us at least p(q−1) elements of order q.
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Similarly, there are at least q(r−1) elements of order r. So

1+qr(p−1)+ p(q−1)+q(r−1)≤ pqr,

which is obviously false.

2.17 The proof that G is a group is all straightforward except for the associative
law, which requires a lot of case-by-case analysis. Then the proof that it is an
elementary abelian 2-group is straightforward.

For the associative law, the cases where one or more of the three terms is 0
are all trivial. The case where the first and second, or second and third, are equal
are also trivial. The case where the first and last elements are equal holds since
x+(y+x) = (x+y)+x by commutativity. I reckon that the following cases need
to be considered:

• {a,b}, {a,c}, {a,d};
• {a,b}, {a,c}, {b,c};
• {a,b}, {a,c}, {b,d};
• {a,b}, {a,c}, {c,d};
• {a,b}, {a,c}, {d,e};
• {a,b}, {c,d}, {a,e};
• {a,b}, {c,d}, {c,e};
• {a,b}, {c,d}, {e, f}.

Here is a different argument avoiding cases.

Step 1: The set of all subsets of {1, . . . ,n}, with the operation of symmetric
difference, is an elementary abelian 2-group. (Mapping each subset A to the
n-tuple of 0s and 1s having 1s in the positions of A and 0s elsewhere is a
bijection to (Z2)

n, and it is easy to see that it is a group isomorphism.)

Step 2: The set of subsets of even cardinality is a subgroup W , and the set
{ /0,{1, . . . ,n}} is a subgroup U .

Step 3: If n is even, then U ≤W , and so W/U is an elementary abelian 2-group
of order 2n−2.

Step 4: If n= 6, then every coset of U apart from U itself has the form {{a,b},{c,d,e, f}}.
Choose {a,b} as the coset representative, and check that the group opera-
tion takes exactly the form given in the question (where 0 denotes the coset
U).
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An elementary abelian 2-group is the additive group of a vector space over
F2, where scalar multiplication is given by 0v = 0 and 1v = v. Any group auto-
morphism is a vector space automorphism. So the automorphism group of (V,⊕)
is GL(4,2). But clearly S6, acting by permuting the elements of the sets (so that
0g = 0 and {a,b}g = {ag,bg}) is a group of automorphisms.

The index is (24−1)(24−2)(24−22)(24−23)/6! = 28.

Remark In fact, GL(4,2) is isomorphic to the alternating group A8. The em-
bedding of S6 into A8 is given by the following map:

g ∈ S6 7→
{

g if g is an even permutation;
g(7,8) if g is an odd permutation.

If you are interested in classical groups, I will mention that S6 is isomorphic to the
symplectic group Sp(4,2), which naturally occurs as a subgroup of GL(4,2).

2.18 (a) Immediate from Sylow’s Theorem.

(b) G acts on the set of eight Sylow 7-subgroups; the stabiliser of one such
subgroup P is its normaliser N(P). Now P is cyclic of order 7; we can take it
to be generated by the map x 7→ x+ 1 of Z7. The normaliser of this subgroup in
S7 can be shown to be the group of maps x 7→ ax+ b where a,b ∈ Z7 and a 6= 0,
of order 42. A subgroup of order 21 must contain P, and must consist of maps
x 7→ ax+b where a runs through a subgroup of order 3 of the multiplicative group
of Z7, necessarily {1,2,4}.

G is doubly transitive by the fact proved in Question 1.
The maps x 7→ ax for a = 1,2,4 form a subgroup of order 3, necessarily a

Sylow 3-subgroup Q.

(c,d) By double transitivity there is an element t interchanging ∞ and 0; it must
normalise Q, since Q is the two-point stabiliser, and must consist of four 2-cycles
(the only alternative is 3, and then it would be an odd permutation). If it were to
fix the two orbits of Q it would fix a point in each and have only three 2-cycles.

(e) There are not too many possibilities for t; laborious calculation show that,
in all cases except that given, we can obtain a non-identity permutation fixing
three points from the ones we are given.

(f) The group H generated by N and t is transitive, and contains N, the sta-
biliser of ∞; so it must be equal to G. (Both G and H contain N as a subgroup of
index 8, so they are equal.)

(g) As noted, we have shown that G≤ PSL(2,7). Both groups have order 168,
so they are equal.



98 CHAPTER 5. SOLUTIONS TO SOME OF THE EXERCISES

3.3 This can be done by hard work using the Fundamental Theorem of Finite
Abelian Groups. Here is a trick which makes it easier.

Let A be a finite abelian group of order n. Let A∗ be the set of all homo-
morphisms from A to the multiplicative group of nth roots of unity in the complex
numbers. Then the operation of multiplication (that is, a(φψ) = (aφ)(aψ)) makes
A∗ a group. By using the FTFAG, we can see that A∗ is a group isomorphic to A.

Now if B≤ A, let B† be the set of elements of A∗ which are the identity on B.
Then B† is the kernel of a homomorphism from A∗ to B∗, whose image is B∗; so
A∗/B† ∼= B. Thus A has a subgroup C with A/C∼= B; and C∼= A/B, by considering
(A∗)∗, which is isomorphic to A.

The infinite cyclic group Z has the property that all its subgroups are infinite
cyclic groups (the groups nZ for positive integers n) and all its quotients are finite
cyclic groups Z/nZ. Clearly it doesn’t have this property the other way round.

The quaternion group of order 8 has four non-trivial subgroups (all normal),
once C2 and three C4s. but Q8/C2 ∼=V4, which is not in the list of subgroups.

3.4 We have G = S3×S3, and A = S3×{1}= {(g,1) : g ∈ S3}.
One complement is H1 = {1}× S3 = {(1,g) : g ∈ S3}. It is clear that this is

a complement. Moreover, H1 commutes with A, so the action φ1 of H1 on A is
trivial; the semidirect product Aoφ H1 is just the direct product A×H1.

Another complement is the diagonal subgroup

H2 = {(g,g) : g ∈ S3}.

(We have (g,h) ∈ A∩H2 ⇒ h = 1 and g = h, so A∩H2 = {1}; and similarly
AH2 = G.) The action φ2 of H2 on A is the usual conjugation action of S3 on itself,
since

(g,g)−1(x,1)(g,g) = (g−1xg,1).

Remark: Since Aut(S3) is isomorphic to S3, the semidirect product in the sec-
ond case is the holomorph of S3. So this holomorph is isomorphic to S3×S3.

3.5 Suppose that G is complete. Then Out(G) = {1}, so

Aut(G) = Inn(G)∼= G/Z(G)∼= G,

the last isomorphism holding because also Z(G) = {1}.

As in the preceding question, let A be the first direct factor in G×G, let H1
be the second direct factor, and let H2 be the diagonal subgroup {(g,g) : g ∈ G}.
Then each of H1 and H2 is a complement to A, so G×G∼= AoH1 ∼= AoH2; each
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of A, H1 and H2 is isomorphic to G, but the homomorphism φ1 : H1→ Aut(A) is
trivial (since the two direct factors commute) while the homomorphism φ2 : H2→
Aut(A) is the identity map.

3.6 An example of such a group is the dihedral group D8. It is generated by
two elements g and h satisfying g4 = 1, h2 = 1, h−1gh = g−1. It can be checked
that the eight maps which send g 7→ ga and h 7→ hgb (for a = ±1, b = 0,1,2,3)
each extend to automorphisms of G; and these are the only possibilities, since g
must map to an element of order 4, and h to an element of order 2 which is not a
power of g. Moreover, if s : g 7→ g,h 7→ hg and t : g 7→ g−1,h 7→ h, then it can be
checked that s4 = 1, t2 = 1, and t−1st = s−1. So s and t generate a dihedral group
of order 8.

But D8 is not complete since |Z(D8)|= 2.

3.7 (a) AGL(n,2) is generated by the translations of V = Fn
2 and the invertible

linear maps. The translation group acts transitively, so it suffices to show that the
stabiliser of the zero vector (which is GL(n,2)) is doubly transitive.

Now, over F2, any two non-zero vectors are linearly independent (the only
possible linear combination would be v1 + v2 = 0, implying that v1 = v2), so can
be extended to a basis; and we can carry any basis to any other by an element of
the general linear group. So GL(n,2) is doubly transitive, as required.

(b) AGL(2,2) has order 4|GL(2,2)|= 4 ·6 = 24, and acts on the four vectors
of F2

2, so is a subgroup of S4. So AGL(2,2)∼= S4.

(c) AGL(3,2) acts on the eight points of F3
2, so is a subgroup of S8. We

need to show it is contained in A8, that is, consists of even permutations. The
translations are products of four 2-cycles, so are even permutations. For the el-
ements of GL(3,2), either do this directly, or use the fact that if it were not so
then A8 ∩GL(3,2) would be a subgroup of index 2 in GL(3,2), hence normal,
contradicting the simplicity of this group.

Now the index is 1
2 8!/(8 ·168) = 15.

(d) The action of A8 on the fifteen cosets of AGL(3,2) is transitive. So we
have to show that AGL(3,2) is transitive on the other 14 cosets.

This group contains a Sylow 7-subgroup, which has order 7 and is generated
by a product of two 7-cycles. (The only alternative would be that the generator
is a single 7-cycle; then the Sylow 7-subgroup would lie in eight conjugates of
AGL(3,2), which is not possible.) So if the conclusion is false, then AGL(3,2)
itself would have two orbits of size 7. Pick one of these orbits and count the
ordered pairs (α,β ) where β lies in the specified orbit of the stabiliser of α; there
are 105 such pairs. Since 105 is odd, these pairs cannot be interchanged by an
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element of A8. But an element of order 2 in A8 must interchange some pair of
points, a contradiction.

An alternative argument would be that, if AGL(3,2) acts on 7 points, the trans-
lation group must act trivially; and it cannot act trivially on the whole set since A8
is simple. Thus not all orbits can have size 7 (or 1).
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