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1 From Q to Q,, the field of p-adic numbers

Let us define what a valuation is. Let F' be a field. A valuation over F' is a function V(-) such that:
1. V(-) : F — Ry, where Ry is the set of positive real numbers,
2. Fora,be F,V(a-b) =|a| - |b], and
3. For a,be F,V(a+b) <V(a)+ V(b).
4. V(a) =0iff a = 0.

It is easy to see that the above definition captures the key properties of the absolute value definition
for rational numbers. Armed with this abstraction, we investigate if there are other valuations over
Q besides the absolute value.

Let V(-) be any valuation over Q. Our first observation is:
Lemma 1.1. V(1) =V(-1) = 1.

Proof. We have, V(1) = V(1) = V(1), which gives V(1) = 1 since V(1) # 0. Similar proof for
V(-1) = 1. O

Next, we observe that:
Lemma 1.2. V(a) =|a|® is a valuation for any o € R.
Proof. Properties 1, 2, and 4 are straightforward. For 3, we need to show that:
la+b|* <[al|® + [b]".
This follows from the fact that o > 0. O

The valuations identified above are essentially the same as the absolute valuation. To enumerate
all possible valuations, we consider the behavior of the valuation function on Z, the set of positive
integers. Since valuation is multiplicative, its values over Q are fixed by values over Z,. We
distinguish two cases.



Case 1: V(n) > 1 for some n € Z,

In this case, let m be the smallest positive integer with V(m) > 1. Then there exists a« € Ry such
that V(m) = m®.

Lemma 1.3. For everyn € Z4, V(n) = n®.

Proof. Let n be any positive integer. Let m* < n < m**! for some k > 0. Write n in base-m
representation:

with |a;| < m. Then,

k k

. R 1 m
V(n) = V(Z a;m') < ZV(ai)V(m)’ < me‘ < < -n®,
; - ;

=0 i=

since V(a;) <1 and n > m¥*. We also have:
mF <4 (m — 1)mF,

which gives
m*DE — Pmkty < Y(n) + V(mF) = V(n) + mke.

1 we get:

Since n < m*

V(n) > mFEHe - L) L ! -n®.
me me

Therefore,
1
—-n*<V(n) <c-n%
c

_ _m®
fOTC—m>1.

Using the above inequality for n’, we get:

1
~.nf <yt <c-n'e
c
which gives
1
17/@ . na < V(n) S Cl/e . na.
c

When ¢ — 0o, ¢/t — 1, and so taking the limit, we get

V(n) =n®.

Corollary 1.4. Fora € Q, let |a|=", m,n € Z. Then,

n’

These valuations have already been identified.
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Case 2: V(n) <1 forallneZ,

Let p be the smallest positive integer for which V(m) < 1.

Lemma 1.5. p is a prime number.

Proof. If p=my - mg, m1, mg < p, then V(p) = V(my) - V(mga) = 1. A contradiction. O
Lemma 1.6. For every prime q # p, V(q) = 1.

Proof. Suppose V(q) < 1 for some ¢ # p. Choose a power ¢ such that both V(¢*), V(p*) < % Since
p and ¢ are relatively prime, there exist integers a and b such that a - p® +b- ¢ = 1. Then,

1=V(1) =V(a) - V) + VD) - V() < -+ =1
A contradiction. O
Let 8 = V(p). Then, the following is immediate from the above two:
Corollary 1.7. For anyn € Zy, V(n) = B* where p* is the largest power of p that divides n.

Fora € Q, let |a|= 2, m,n € Z. Let ordy(a) = kp, — ky, where k,, and k,, are the largest powers

n’?
of p dividing m and n respectively.

Corollary 1.8. Fora € Q,
V(a) _ ﬁordp(a)‘

It is easy to verify that the above definition satisfies all the properties of a valuation:
Lemma 1.9. The function as defined in Corollary 1.8 is a valuation for any 5, 0 < 8 < 1.
Proof. Properties 1, 2, and 4 are obvious. For 3, we need to show that:

gordy(att) < gordy(a) | gordy(b).
It follows from the observation that ord,(a + b) > min{ord,(a),ord,(b)}. In fact, we have
R (@) < s 3ordo(@) gordp(h)y
O

The above valuations are very different from the absolute value valuations, and hold for every
0 < B < 1. We will use a special value of § = % to define the p-adic valuation.

Definition 1.10. For any prime number p, define |a |, = ﬁ, for a € Q to be the p-adic

ordp (a
valuation.

Completion of Q with respect to p-adic valuation gives us a different field Q,, the field of p-adic
numbers. We investigate this field in the next section. We end this section by making an interesting
observation.

Let us denote, by |-|s the usual absolute value (i.e., valuation defined in the previous section with
a =1). Let P be the union of the set of all prime numbers and co.
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Theorem 1.11. For any a € Q,

H lalg=1.

qeP
Proof. Let |a|= Hle p; for distinct primes p; and e; € Z. Then, |al,, = ﬁ, and for any prime
pE{p1,p2,-. ..k}, lalp =1. And |a|e =|a|= Hle p;". Multiplying all valuations, we get 1. [

Above theorem explains the reason for the choices made for o and . It is a special case of similar
theorem for a large class of fields containing Q.

2 The Field Q,

Now that we have discovered new ways of extending Q, let us develop an understanding of the field
Qp. First, let us see what do Cauchy sequences look like.

By definition, s = (ag,a1,ag,...) is a Cauchy sequence if for every rational number € > 0, there
exists an m > 0 such that for all n > m: |a, — am|p < €. Given that the p-adic valuation equals
}% for ¢ € Z, we can rephrase the above condition as: for every ¢ € Z., there exists an m > 0 such

that for all n > m: |a, —an|p < i. In other words, the difference a,, — a,, is divisible by pZ , and

therefore, a, — a,, = 0 (mod p?) for all n > m.

A Cauchy sequence s converging to 0 would therefore satisfy: for all ¢ € Z, there exists an m > 0
such that for all n > m, a,, = 0 (mod pg). In particular, the following sequence converges to zero:

(Lp, % 0%, 0 ).

Under the standard valuation, this sequence of numbers diverges and so does not form a Cauchy
sequence!

Above example shows that the numbers in Q, are very different from numbers in R. Of course, all
rational numbers are in Q,. What are the Cauchy sequences corresponding to rational numbers?
In general, how does one view the numbers of Q,7 We now describe it. Let R, be the ring of
Cauchy sequences under p-adic valuation, and I, the ideal of Cauchy sequences converging to 0 (as
defined in the previous section). Then Q, = R,/I,. A number of Q, corresponds to an equivalence
class of Cauchy sequences converging to the same value. Each such class has a canonical sequence:

Definition 2.1. A canonical sequence is a Cauchy sequence in R, of the form

l
1 .
(To'ptaTO'pt"i_Tl'pH_ a"'?Zri'pt—H?"')
i=0

with t € Z, £ > t, and 0 < r; < p. Notice that ¢ can be negative here. It is succinctly written as
(t; ro,Tr1,72,.. )

We will show that every number in @@, can be uniquely represented as a canonical sequence. Before
we do that, let us see some examples of such representations:
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e Number 1 is represented by canonical sequence (1,1,1,...), or (0;1,0,0,...) in succinct form.

e Number —1 is represented by canonical sequence (p—1,(p—1)+(p—1)-p=p*—1,p3—1,...)
or (0;p—1,p—1,p—1,...) in succinct form.

e For m € Z, write m in base p:
m=ag+a-p+--+ap

for 0 < a; < p. The canonical sequence of m is (ag, ag + a1p, a0+ a1p+ asp?, ..., Zf:o a;p’ =
m,m,m,...), or (0;ag,ay,az,...,a,0,0,...)in succinct form.

We now identify an alternative way of expressing rational numbers.

Lemma 2.2. Let 7 € Q with ged(n,m) =1 and n not a multiple of p. There exists a sequence of
numbers ag, a1, ag, ..., with 0 < a; < p such that for every £ > 0:

m
Z:ao+a1'p+a2'p2+~-+ae-p£ (mod p**1).

Proof. Follows by induction. Define ag = “* (mod p) which exists since p does not divide n. Now
assume that ag, aq, ..., ag—1 are defined such that Zf;é a;pt = ™ (mod pg). Then
1 m /—1
ap = o <n - Zaipz> (mod p).
i=0

Above lemma immediately gives is canonical sequences for rational numbers.

e For m,n € Z,, n not a multiple of p, the canonical sequence of ™ is (ag, ag + a1p, ao + a1p +
asp?,...), or (0;ag,a1,as,...) in succinct form with ag, a1, as ... as per the Lemma 2.2.

e For m,n € Z,, n = pt-n', n’ and m not a multiple of p, if the succinct sequence of o7 s
(0;a0,a1,az, ...), then the succinct sequence of ™ is (—t,ag, a1, asg, .. .).

Theorem 2.3. Every number in Q, is uniquely represented by a canonical sequence.

Proof. A canonical sequence is Cauchy: Y., r;-p' — Zf:_t ri-p' =Y 7 7i-p' and so the p-adic
valuation of the difference is < 1% forall £ € Z, and n > /.

Let s = (ag, aq,...) be any Cauchy sequence. We show that there exists a canonical sequence con-
verging to the same number as s. In other words, we show that their difference converges to 0. By
the discussion above, we have that for every £ € Z, there exists an my > 0 such that for all n > my,
an — Gm, = 0 (mod pé). Without loss of generality, we can assume that m; < me < mg < ---.
Hence, my, > /4.

Let
To r1

am1:E+F+---+m (mod p),



as per the Lemma 2.2. Since a,, — a,, = 0 (mod p) for n > my, it follows that

To 1
an = — + ——+ -+ 7 (mod p).
Tttt
So T r
0 1
Ay = o + o1 + -+ 7+ rep1p (mod p?),

and continuing inductively, we get

To 1 —

mg = p o Tt repe1p’ ! (mod pf).

Consider canonical sequence s, = (... ,Zf:_t re4ip’, . ..) (in succinct form (—t,79,71,72,...)). The
sequence s — s, converges to 0: for any n > my, a, — Z?:_ft ripipt =0 (mod pz) since my > /.

It is straightforward to show that difference of two distinct canonical sequences does not converge

to zero. Hence, s, is the unique canonical sequence representing the number.
O

Therefore, a number a in Q) is the sum ) .., rip* for t > 0. Except for rational numbers with
denominator being a power of p, this sum is infinite. In the usual valuation, it does not converge,
however, in p-adic valuation, |a|,= p’.

The is a natural ring associated with Q,: the set of numbers ¢ with |a |, < 1. Equivalently,
a=> 0 rip’. It is straightforward to show that it is a ring. This ring is denoted by Z,. This is
duplication of notation; we have used Z, to denote ring of residues modulo p earlier. To resolve it,
ring of integers modulo p is often written as Z/pZ.

Numbers in Z, are called p-adic integers. This ring is very different from Z. Let

(p)={a€Zyla=) rp'}.

i>1
(p) is clearly an ideal of Z,.

Theorem 2.4. Ideal (p) is the only mazimal ideal of Z,. Any proper ideal of Z, is of the form
(p)k for some k > 1.

Proof. Let I be a proper ideal of Z,. We first show that if a € I, a # 0 and a € (p)*\(p)**!
then (p)f¥ C I. Let a = rep* + rppip® + -, 7 #0. Let b = rp +rpqpp+ -+, b € L.
Define ¢ = ug + wip + ugp® + - € Z, inductively as follows: wugry = 1 (mod p), and u; =
_1 1

" f;o UiTk40—; (mod p“l). It is easy to see that b-c¢ = 1. Therefore, p*¥ € I, and hence

(pFcr

The above argument also shows that every element of Z,\(p) is a unit, and therefore, cannot be in
a proper ideal. Hence, I C (p). This proves that (p) is the only maximal ideal of Z,,.

Now suppose I C (p)*, a € I, and a € (p)\(p)**!. The argument above shows that (p)¥ C I and
hence I = (p)*. O

vi



Rings with a unique maximal ideal are called local rings. These rings capture “local” properties.
For example, ring Z, is used to study prime number p. The finite field F}, is also present there:

Fy = Zy/(p)-

vii



