
Completions of Q

September 4, 2016

1 From Q to Qp, the field of p-adic numbers

Let us define what a valuation is. Let F be a field. A valuation over F is a function V(·) such that:

1. V(·) : F 7→ R+, where R+ is the set of positive real numbers,

2. For a, b ∈ F , V(a · b) = |a | · |b | , and

3. For a, b ∈ F , V(a+ b) ≤ V(a) + V(b).

4. V(a) = 0 iff a = 0.

It is easy to see that the above definition captures the key properties of the absolute value definition
for rational numbers. Armed with this abstraction, we investigate if there are other valuations over
Q besides the absolute value.

Let V(·) be any valuation over Q. Our first observation is:

Lemma 1.1. V(1) = V(−1) = 1.

Proof. We have, V(1) = V(1) ∗ V(1), which gives V(1) = 1 since V(1) 6= 0. Similar proof for
V(−1) = 1.

Next, we observe that:

Lemma 1.2. V(a) = |a |α is a valuation for any α ∈ R+.

Proof. Properties 1, 2, and 4 are straightforward. For 3, we need to show that:

|a+ b |α ≤|a |α + |b |α .

This follows from the fact that α > 0.

The valuations identified above are essentially the same as the absolute valuation. To enumerate
all possible valuations, we consider the behavior of the valuation function on Z+, the set of positive
integers. Since valuation is multiplicative, its values over Q are fixed by values over Z+. We
distinguish two cases.



Case 1: V(n) > 1 for some n ∈ Z+

In this case, let m be the smallest positive integer with V(m) > 1. Then there exists α ∈ R+ such
that V(m) = mα.

Lemma 1.3. For every n ∈ Z+, V(n) = nα.

Proof. Let n be any positive integer. Let mk ≤ n < mk+1 for some k ≥ 0. Write n in base-m
representation:

n =

k∑
i=0

aim
i,

with |ai |< m. Then,

V(n) = V(

k∑
i=0

aim
i) ≤

k∑
i=0

V(ai)V(m)i ≤
k∑
i=0

miα <
m(k+1)α

mα − 1
≤ mα

mα − 1
· nα,

since V(ai) ≤ 1 and n ≥ mk. We also have:

mk+1 ≤ n+ (m− 1)mk,

which gives
m(k+1)α = V(mk+1) ≤ V(n) + V(mk) = V(n) +mkα.

Since n < mk+1, we get:

V(n) ≥ m(k+1)α(1− 1

mα
) >

mα − 1

mα
· nα.

Therefore,
1

c
· nα < V(n) ≤ c · nα,

for c = mα

mα−1 > 1.

Using the above inequality for n`, we get:

1

c
· n`α < V(n`) ≤ c · n`α,

which gives
1

c1/`
· nα < V(n) ≤ c1/` · nα.

When ` 7→ ∞, c1/` 7→ 1, and so taking the limit, we get

V(n) = nα.

Corollary 1.4. For a ∈ Q, let |a |= m
n , m,n ∈ Z+. Then,

V(a) =
mα

nα
= |a |α .

These valuations have already been identified.
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Case 2: V(n) ≤ 1 for all n ∈ Z+

Let p be the smallest positive integer for which V(m) < 1.

Lemma 1.5. p is a prime number.

Proof. If p = m1 ·m2, m1,m2 < p, then V(p) = V(m1) · V(m2) = 1. A contradiction.

Lemma 1.6. For every prime q 6= p, V(q) = 1.

Proof. Suppose V(q) < 1 for some q 6= p. Choose a power ` such that both V(q`),V(p`) < 1
2 . Since

p and q are relatively prime, there exist integers a and b such that a · p` + b · q` = 1. Then,

1 = V(1) = V(a) · V(p`) + V(b) · V(q`) <
1

2
+

1

2
= 1.

A contradiction.

Let β = V(p). Then, the following is immediate from the above two:

Corollary 1.7. For any n ∈ Z+, V(n) = βk where pk is the largest power of p that divides n.

For a ∈ Q, let |a |= m
n , m,n ∈ Z+. Let ordp(a) = km− kn where km and kn are the largest powers

of p dividing m and n respectively.

Corollary 1.8. For a ∈ Q,
V(a) = βordp(a).

It is easy to verify that the above definition satisfies all the properties of a valuation:

Lemma 1.9. The function as defined in Corollary 1.8 is a valuation for any β, 0 < β < 1.

Proof. Properties 1, 2, and 4 are obvious. For 3, we need to show that:

βordp(a+b) ≤ βordp(a) + βordp(b).

It follows from the observation that ordp(a+ b) ≥ min{ordp(a), ordp(b)}. In fact, we have

βordp(a+b) ≤ max{βordp(a), βordp(b)}.

The above valuations are very different from the absolute value valuations, and hold for every
0 < β < 1. We will use a special value of β = 1

p to define the p-adic valuation.

Definition 1.10. For any prime number p, define | a |p = 1
pordp(a)

, for a ∈ Q to be the p-adic

valuation.

Completion of Q with respect to p-adic valuation gives us a different field Qp, the field of p-adic
numbers. We investigate this field in the next section. We end this section by making an interesting
observation.

Let us denote, by | · |∞ the usual absolute value (i.e., valuation defined in the previous section with
α = 1). Let P be the union of the set of all prime numbers and ∞.
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Theorem 1.11. For any a ∈ Q, ∏
q∈P
|a |q = 1.

Proof. Let |a |=
∏k
i=1 p

ei
i for distinct primes pi and ei ∈ Z. Then, |a |pi = 1

p
ei
i

, and for any prime

p 6∈ {p1, p2, . . . , pk}, |a |p = 1. And |a |∞ = |a |=
∏k
i=1 p

ei
i . Multiplying all valuations, we get 1.

Above theorem explains the reason for the choices made for α and β. It is a special case of similar
theorem for a large class of fields containing Q.

2 The Field Qp

Now that we have discovered new ways of extending Q, let us develop an understanding of the field
Qp. First, let us see what do Cauchy sequences look like.

By definition, s = (a0, a1, a2, . . .) is a Cauchy sequence if for every rational number ε > 0, there
exists an m > 0 such that for all n ≥ m: |an − am |p < ε. Given that the p-adic valuation equals
1
p`

for ` ∈ Z, we can rephrase the above condition as: for every ` ∈ Z+, there exists an m > 0 such

that for all n ≥ m: |an − am |p < 1
p`

. In other words, the difference an − am is divisible by p`, and

therefore, an − am = 0 (mod p`) for all n ≥ m.

A Cauchy sequence s converging to 0 would therefore satisfy: for all ` ∈ Z+, there exists an m ≥ 0
such that for all n ≥ m, an = 0 (mod p`). In particular, the following sequence converges to zero:

(1, p, p2, p3, . . . , p`, . . .).

Under the standard valuation, this sequence of numbers diverges and so does not form a Cauchy
sequence!

Above example shows that the numbers in Qp are very different from numbers in R. Of course, all
rational numbers are in Qp. What are the Cauchy sequences corresponding to rational numbers?
In general, how does one view the numbers of Qp? We now describe it. Let Rp be the ring of
Cauchy sequences under p-adic valuation, and Ip the ideal of Cauchy sequences converging to 0 (as
defined in the previous section). Then Qp = Rp/Ip. A number of Qp corresponds to an equivalence
class of Cauchy sequences converging to the same value. Each such class has a canonical sequence:

Definition 2.1. A canonical sequence is a Cauchy sequence in Rp of the form

(r0 · pt, r0 · pt + r1 · pt+1, . . . ,
∑̀
i=0

ri · pt+i, . . .)

with t ∈ Z, ` ≥ t, and 0 ≤ ri < p. Notice that t can be negative here. It is succinctly written as

(t; r0, r1, r2, . . .).

We will show that every number in Qp can be uniquely represented as a canonical sequence. Before
we do that, let us see some examples of such representations:
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• Number 1 is represented by canonical sequence (1, 1, 1, . . .), or (0; 1, 0, 0, . . .) in succinct form.

• Number −1 is represented by canonical sequence (p−1, (p−1)+(p−1) ·p = p2−1, p3−1, . . .)
or (0; p− 1, p− 1, p− 1, . . .) in succinct form.

• For m ∈ Z+, write m in base p:

m = a0 + a1 · p+ · · ·+ ak · pk,

for 0 ≤ ai < p. The canonical sequence of m is (a0, a0 + a1p, a0 + a1p+ a2p
2, . . . ,

∑k
i=0 aip

i =
m,m,m, . . .), or (0; a0, a1, a2, . . . , ak, 0, 0, . . .) in succinct form.

We now identify an alternative way of expressing rational numbers.

Lemma 2.2. Let m
n ∈ Q with gcd(n,m) = 1 and n not a multiple of p. There exists a sequence of

numbers a0, a1, a2, . . ., with 0 ≤ ai < p such that for every ` > 0:

m

n
= a0 + a1 · p+ a2 · p2 + · · ·+ a` · p` (mod p`+1).

Proof. Follows by induction. Define a0 = m
n (mod p) which exists since p does not divide n. Now

assume that a0, a1, . . ., a`−1 are defined such that
∑`−1

i=0 aip
i = m

n (mod p`). Then

a` =
1

p`
·

(
m

n
−

`−1∑
i=0

aip
i

)
(mod p).

Above lemma immediately gives is canonical sequences for rational numbers.

• For m,n ∈ Z+, n not a multiple of p, the canonical sequence of m
n is (a0, a0 + a1p, a0 + a1p+

a2p
2, . . .), or (0; a0, a1, a2, . . .) in succinct form with a0, a1, a2 . . . as per the Lemma 2.2.

• For m,n ∈ Z+, n = pt · n′, n′ and m not a multiple of p, if the succinct sequence of m
n′ is

(0; a0, a1, a2, . . .), then the succinct sequence of m
n is (−t, a0, a1, a2, . . .).

Theorem 2.3. Every number in Qp is uniquely represented by a canonical sequence.

Proof. A canonical sequence is Cauchy:
∑n

i=−t ri · pi−
∑`

i=−t ri · pi =
∑n

`+1 ri · pi and so the p-adic
valuation of the difference is < 1

p`
for all ` ∈ Z+ and n ≥ `.

Let s = (a0, a1, . . .) be any Cauchy sequence. We show that there exists a canonical sequence con-
verging to the same number as s. In other words, we show that their difference converges to 0. By
the discussion above, we have that for every ` ∈ Z+, there exists an m` > 0 such that for all n ≥ m`,
an − am` = 0 (mod p`). Without loss of generality, we can assume that m1 < m2 < m3 < · · · .
Hence, m` ≥ `.

Let
am1 =

r0
pt

+
r1
pt−1

+ · · ·+ rt (mod p),
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as per the Lemma 2.2. Since an − am1 = 0 (mod p) for n ≥ m1, it follows that

an =
r0
pt

+
r1
pt−1

+ · · ·+ rt (mod p).

So
am2 =

r0
pt

+
r1
pt−1

+ · · ·+ rt + rt+1p (mod p2),

and continuing inductively, we get

am` =
r0
pt

+
r1
pt−1

+ · · ·+ rt + rt+`−1p
`−1 (mod p`).

Consider canonical sequence sc = (. . . ,
∑`

i=−t rt+ip
i, . . .) (in succinct form (−t, r0, r1, r2, . . .)). The

sequence s− sc converges to 0: for any n ≥ m`, an −
∑n−t

i=−t rt+ip
i = 0 (mod p`) since m` ≥ `.

It is straightforward to show that difference of two distinct canonical sequences does not converge
to zero. Hence, sc is the unique canonical sequence representing the number.

Therefore, a number a in Qp is the sum
∑

i≥−t rip
i for t ≥ 0. Except for rational numbers with

denominator being a power of p, this sum is infinite. In the usual valuation, it does not converge,
however, in p-adic valuation, |a |p= pt.

The is a natural ring associated with Qp: the set of numbers a with | a |p ≤ 1. Equivalently,
a =

∑
i≥0 rip

i. It is straightforward to show that it is a ring. This ring is denoted by Zp. This is
duplication of notation; we have used Zp to denote ring of residues modulo p earlier. To resolve it,
ring of integers modulo p is often written as Z/pZ.

Numbers in Zp are called p-adic integers. This ring is very different from Z. Let

(p) = {a ∈ Zp | a =
∑
i≥1

rip
i}.

(p) is clearly an ideal of Zp.

Theorem 2.4. Ideal (p) is the only maximal ideal of Zp. Any proper ideal of Zp is of the form
(p)k for some k ≥ 1.

Proof. Let I be a proper ideal of Zp. We first show that if a ∈ I, a 6= 0 and a ∈ (p)k\(p)k+1

then (p)k ⊆ I. Let a = rkp
k + rk+1p

k+1 + · · · , rk 6= 0. Let b = rk + rk+1p + · · · , b ∈ Zp.
Define c = u0 + u1p + u2p

2 + · · · ∈ Zp inductively as follows: u0rk = 1 (mod p), and u` =

− 1
rk

∑`−1
i=0 uirk+`−i (mod p`+1). It is easy to see that b · c = 1. Therefore, pk ∈ I, and hence

(p)k ⊆ I.

The above argument also shows that every element of Zp\(p) is a unit, and therefore, cannot be in
a proper ideal. Hence, I ⊆ (p). This proves that (p) is the only maximal ideal of Zp.

Now suppose I ⊆ (p)k, a ∈ I, and a ∈ (p)\(p)k+1. The argument above shows that (p)k ⊆ I and
hence I = (p)k.
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Rings with a unique maximal ideal are called local rings. These rings capture “local” properties.
For example, ring Zp is used to study prime number p. The finite field Fp is also present there:
Fp ≡ Zp/(p).
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