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Introduction The story behind this article begins in a classroom, with a presenta-
tion intended to show that the dihedral group Dg of symmetries of the hexagon can be
realized as a group of invertible 2 X 2 matrices with real number entries. Two
matrices that can be used to generate this group are

{0 -1 (-1 -1}
B_(l 1) and F—( 0 l)’

R has multiplicative order six and F has order two. There is geometric motivation for
this choice of generators. As in Ficure 1, picture a regular hexagon centered at the
origin; highlight two of its adjacent radii (v, and v, in Ficure 1). Regard these radii as
vectors, to form a basis for R2. Relative to this basis, the matrix R (for “rotation”)
represents a counterclockwise rotation through 60°, while F (for “flip”) corresponds
to a reflection of the hexagon through the y-axis.

The set of matrices {F'R’|i =0,1; j=0,1,...,5} forms a group isomorphic to Ds.
Familiar relations, such as FRF = R™", can either be checked by multiplying matrices

FIGURE 1
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or interpreted geometrically. An interesting and attractive feature of this representa-
tion of a non-abelian group of order 12 is that all of the matrices have integer entries.

Seeing this, a student wondered whether the alternating group A,, another
non-abelian group of order 12, could also be written using integer matrices of size
two. I suspected that the answer to this question was well-known, though, sadly, at
that moment not by me. Some instinct suggested to me that no such representation
was possible, but this was far from proof. To save face, I pointed out that a similar
question could be posed for D,, the group of symmetries of the square. Indeed,
elementary arguments show that D, can be represented using 2 X 2 integer matrices.
Can the quaternion group, the other non-abelian group of order 8, also be written this
way? Better yet, what are all the finite groups that can be realized using two by two
integer matrices?

Some exploration in the library soon revealed that the possibilities for groups
admitting such presentations can be narrowed quite quickly—provided one knows
some basic results in the theory of group representations and about degrees of
primitive roots of unity over the rationals [3]. There remained, then, the challenge of
answering the question using only elementary means—say, those available after one
semester each of linear and abstract algebra. What follows is an attempt to meet this
challenge; an interesting mix of group theory and linear algebra appear along the way.

For any finite group G admitting a matrix representation of the type at hand, the
subgroup G* of integer matrices of determinant 1 will play a fundamental role. The
finite group SL(2,3) of 2 X 2 matrices of determinant 1 with entries in Z, the field
with three elements, will prove equally important. In fact, we will show that any such
G™ must be isomorphic to a subgroup of SL(2,3). We will use elementary techniques
to find all of the subgroups of SL(2,3), a non-abelian group of order 24. In the
process, we will find all possible candidates for a G*. Once G* is known, the
structure of the full group G will be easy to determine.

Elements of finite order in GL(2,Z) We denote by GL(2,7Z) the group of
invertible 2 X 2 integer matrices whose inverses also have integer entries. We seek to
classify the finite subgroups of GL(2,Z). If both a matrix A and its inverse have
integer entries, then, necessarily, det A = +1, since det A™* = 1/(det A). The subset
SL(2,7) of matrices of determinant 1 is a normal subgroup of index two in GL(2,Z).

If a matrix A € GL(2,Z) has order n, then A" =1 (the identity matrix), so the
eigenvalues of A must be nth roots of unity. We claim that such an A must be
diagonalizable. If not, then A must have a repeated eigenvalue, say A. Let v be an
eigenvector of A with eigenvalue A, and choose any vector w so that {v,w} is a basis
for the complex vector space C?. Relative to this basis, the matrix of the linear

transformation determined by A is of the form (3 Z), for some complex numbers

and b, with a # 0. Because the characteristic polynomial of A is (x — A)*, we see that

A

b = A. Direct computation of powers shows that the matrix ;i) which is similar to

A over C, has infinite order. But A has finite order, so we have a contradiction. (A
shorter but less elementary proof can by given by appealing to the Jordan canonical
form.)

One consequence of diagonalizability is that if A has order 2, and det A = 1, then

-1

A must be the matrix _?). In other words, SL(2,7) has a unique element of

order 2. Suppose that A has order greater than 2. Since 1 and —1 are the only
complex roots of unity which are also real and A% # I, at least one eigenvalue, A, of A
is not real. Moreover, since the characteristic polynomial of A has integer (and
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therefore real) coefficients, the eigenvalues of A must be complex conjugates A and
A, with AX = 1. But the product of the eigenvalues of a matrix is its determinant, so
det A = 1. Thus every element in GL(2,Z) of order greater than 2 has determinant 1.

Reduction mod 3: a mapping into SL(2,3) Our goal is to classify finite subgroups
G of GL(2,7). For any such G,G™, the subset of elements of determinant 1 in G, is a
subgroup of G, with index either 1 or 2. Since G™ is a finite subset of SL(2,2), it is
tempting to reduce the elements of G* mod p, for various primes p. The groups
SL(2, p), for p prime, are finite counterparts of SL(2,Z); each consists of 2 X 2
matrices of determinant 1 over Z,,, the integers mod p. The natural projection from Z
to Z,, extends to a homomorphism from SL(2, Z) into SL(2, p); it will prove useful to
examine the image of G* under such a mapping. Indeed, the case p = 3 provides a
wealth of information.
Suppose that the matrix A, A # I, is in the kernel of the mapping G*— SL(2, 3).
-1
0
3, A must have order greater than 2. Also tr( A), the trace of A, must be an integer

with tr A =2 (mod 3). But the eigenvalues of A are w and @, where o is a (non-real)
nth root of unity, so tr(A)|=|w + @| <|w|+|®w|= 2. The only possibility, therefore,

is tr(A) = —1, and it follows that A has the form A= _1b_
a, b, and ¢. Now, b =c¢ =0 (mod 3) since A is in the kernel of the mapping, and so
be must be divisible by 9. Because A is in G*, —a(l +a) —bc = 1. This relation,
taken mod 9, yields a?+a+1=0(mod 9); a direct check shows that no such integer

a exists. We have established the following result.

THEOREM 1. Let G be a finite subgroup of GL(2,Z) and let G*= G N SL(2, 2).
Then the mapping from G* to SL(2,3) is an injective homomorphism.

Since ( ;) , the unique matrix of order two, is not congruent to the identity mod

, for some integers

Thus G™ is isomorphic to a subgroup of SL(2,3), so the latter group merits a closer
look.

The order of SL(2,3) We will compute the order of SL(2, p) for any prime p, and
then specialize to p = 3. Clearly, SL(2, p) is a subgroup of GL(2, p), the full group of
invertible 2 X 2 matrices with entries in Zp. For any prime p, the orders of GL(2, p)
and SL(2, p) are related by [SL(2, p)l=|GL(2, p)I/(p — 1). This can be seen by
applying the fundamental theorem of group homomorphisms to the mapping
¢: GL(2, p) » Z7, given by ¢(A) = det(A) mod p, where Z¥ is the multiplicative
group of non- 710 elements of Z, (Z} has order p — 1). The kernel of ¢ is SL(2, p).

The order of GL(2, p) can be found by a direct count. A matrix in this group can
have any of the (p2 — 1) non-zero vectors in Z?2 as its first column; the second column
can be any vector other than one of the p multiples of the first column—a total of
p? — p choices. This shows that |GL(2, p)I = (p2 — 1)(p® — p); therefore |SL(2, p)| =
p(p? = 1). In particular, SL(2, 3) has order 24.

SL(2,3) and its subgroups We now proceed to find the subgroups of this group.

LEMMA.

(1) SL(2,3) contains a unique element of order 2.
@ T= {( )Ia €Z } is a subgroup of order 3. Its normalizer, N(T), is a cyclic

group of order six.
(3) SL(2,3) contains a subgroup of order 8 isomorphic to the quaternion group.
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Proof. The argument used above to show that SL(2,7) has a unique element of
order two can be used here to establish (1).
In (2), T is clearly a subgroup of order 3. Direct computation shows that elements

of N(T) must be of the form (g Z), where a € Z, and b is either 1 or —1. The

matrix (_ (1) :i) has order six and generates N(T).

For (3), let A = (_(1) (1)) and B=(

1 -1

i 1). Direct calculation shows that A and

B have order 4, A2=B2=(_ (1) _?) (the unique element of order two), and

BAB '=A"% Thus A and B generate a quaternion group of order 8.

Let T be defined as in the Lemma. In any finite group, the number of conjugates
of a subgroup is the index in the group of the normalizer of the subgroup (for
example, see [4, p. 52]). Since N(T) has index 4 in SL(2, 3), the subgroup T has four
distinct conjugates T}, ..., T, in SL(2,3). The normalizers of these four conjugates of
T vyield four distinct cyclic subgroups of order 6: S, =N(T}), i=1,...,4. Each §,
contains the unique element of order two and a single subgroup of order three. Thus,
ifi#j,1S,nS]=2.

These four subgroups of order six thus account for 18 elements of SL(2,3): 8
elements of order 6, 8 elements of order 3, the single element of order 2, and the
identity. The quaternion subgroup from the Lemma above contributes 6 elements of
order four. We have now enumerated all 24 of the elements of SL(2,3). In particular,
SL(2,3) contains no elements of order 8 or 12. We can now describe the subgroup
structure of SL(2,3).

THEOREM 2. SL(2,3) contains

(1) no subgroup of order 12;

(2) a unique subgroup of order 8 (isomorphic to the quaternion group);
(3) no non-abelian subgroup of order 6;

(4) cyclic subgroups of orders 3, 4, and 6;

(5) no subgroup isomorphic to Klein’s four group';

(6) a unique subgroup of order 2.

Proof. Let a be the unique element of order two in SL(2, 3). Suppose there were a
subgroup H of order 12. Since H has even order, H must contain « [4, p. 17, Ex.
2.18]. Since H has index 2, it must contain the square of any element in SL(2,3). If
A is any element of order 3, then A is a square since A = A*=(A??2 Thus, H must
contain all eight elements of order 3. Since @ commutes with elements of order 3,
multiplying them by & produces 8 more elements of order 6 in H. This places at least
seventeen elements in H—a contradiction.

To establish (2), recall that SL(2,3) contains only one element of order 2, no
element of order 8, and 6 elements of order 4. Thus, any subgroup of order 8 must
contain the six elements of order 4 that generate the quaternion subgroup of the
Lemma. Assertions (3), (5) and (6) follow from the fact that SL(2,3) contains only one
element of order 2. We have established (4) above.

Observe that our analysis of subgroup structure did not require use of the Sylow
theorems.

'Named after the mathematician Felix Klein, this is the non-cyclic group of order four and is isomorphic
to Zy X Z,.
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The finite subgroups of GL(2,7Z) There are only two non-cyclic subgroups of
SL(2,3): the quaternion subgroup of order 8 and SL(2,3) itself. If G is a finite
subgroup of GL(2,Z), we have seen that G* is isomorphic to a subgroup of SL(2,3).
We now show that G* must be cyclic.

Suppose, instead, that G* is isomorphic to the quaternion group of order 8. To
derive a contradiction, we reduce G* mod 2, producing a homomorphism ¢:
G*— SL(2,2). Since SL(2,2) has order 6, the kernel of ¢ must contain an element,
A, of order 4. As we observed earlier, the eigenvalues of A are i and —i (two of the

complex fourth roots of unity). Thus, A has trace zero, and so must be of the form
a
c

of the mapping, so bc is divisible by 4. Since A has determinant 1, —a* —bc = 1. It
follows that a*= —1 (mod 4). This is impossible, since the square of every odd
integer is congruent to 1 (mod 4).

The same argument rules out the possibility that G* is isomorphic to SL(2,3),
since such a G* would have a subgroup isomorphic to the quaternion group of order
8. Theorem 8 says, therefore, that G* must be isomorphic to one of the groups

C,,Cy,C4,Cy4, 0r Cg,

_i’) for some integers a and b. Now, b =c¢ =0 (mod 2) since A is in the kernel

where C,; denotes the cyclic group of order i.

The structure of G itself now follows readily. Our earlier discussion shows that,
among elements of finite order in GL(2,Z), only elements of order two have
determinant —1. If G*# G, then G* has index 2 in G. Let x be an element of G
that is not in G*. Then all the elements of the coset G*x must have order 2, since
they are matrices of determinant —1. In particular, if y is a generator of the cyclic
group G*, then yx must have order 2. Thus, (yx)Xyx) = 1 and xyx ™' =y ~'; in other
words, conjugating by x inverts G*. This means that G must then be isomorphic to

one of the dihedral groups
D,, D,, D3, D,, or Dj.

Since all the groups C; and D, above are subgroups of one of the dihedral groups
D, or Dg, and since (as noted at the outset) both D, and Dy can be written using
integer matrices, we can summarize our results as follows.

THEOREM 3. A finite group G can be represented as a group of invertible 2 X 2
integer matrices if and only if G is isomorphic to a subgroup of D, or Dy.

Conclusion A more economical presentation could be achieved by using the Sylow
theorems in analyzing SL(2,3), and by noting that the minimum polynomial of an
element of finite order n in GL(2,Z) must be divisible by the minimal polynomial
over the rationals of a primitive nth root of unity. A famous theorem due to Gauss
asserts that the degree of a primitive nth root of unity over the rationals is ¢(n),
where ¢ is Euler’s totient function. In our situation, ¢(n) =1 or 2; this forces n =1,
2,3, 4, or 6.

The results above are related to a geometric result called the crystallographic
restriction, which arises in classifying symmetry groups of crystals (see e.g.,
[1, p. 151]). This restriction says that the only rotations admitted by lattices in
dimensions 2 or 3 are those through angles 27/n, where n =1, 2, 3, 4, or 6. Indeed,
given a matrix A of the type under consideration, of order n > 3, we have seen that

the eigenvalues of A are precisely ¢'’ and ¢ %, with §=2mm/n and m and n
cos® —sin O

AP 0) has exactly the same two

relatively prime. But the rotation matrix R = (
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distinct eigenvalues. Thus A and R are similar over the complex numbers, and hence
also over the real numbers ([2, p. 158]); i.e., CA = RC for some invertible real matrix
C. The columns of C can be viewed as the basis of a two dimensional lattice L. Since
A has integer entries, the relation RC = CA shows that rotating lattice vectors
through angle 6 produces vectors that are integer linear combinations of a basis of L.
So the lattice L admits a rotational symmetry and the crystallographic restriction can
be invoked to reveal the possible values of n.
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Moving Card i to Position j with Perfect Shuffles
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To perform a perfect riffle shuffle, or faro shuffle, on a deck of 2n cards, you cut the
deck into two stacks of n cards and interlace them perfectly. This can be done in two
ways. If the shuffle leaves the top card on top, it is called an out shuffle. If the shuffle
moves the top card into the second position, it is called an in shuffle.

Perfect shuffles have been of great interest to a wide variety of people for a long
time. We have seen references to books on card cheating that described the perfect
shuffle back in the eighteenth century. Magicians use perfect shuffles in card tricks
(see Marlo [7] and [8]), and computer scientists use them in parallel processing (see
Stone [12] and Chen, et al. [3]).

For the mathematician, perfect shuffles provide a deep and complex structure from
a very simple and natural setting. Mathematics literature on the perfect shuffle ranges
from the recreational and nontechnical in Gardner [5], Ball and Coxeter [2], Adler [1],
Herstein and Kaplansky [6], and Rosenthal [11] to the very sophisticated work of
Diaconis, Graham, and Kantor [4] where the group generated by the in and out
shuffles is determined. Generalizations of the perfect shuffle provide more grist for
the mathematical mill in Morris and Hartwig [10], and Medvedoff and Morrison [9].

Moving cards to desired positions through perfect shuffles is of interest to magicians
and card cheaters because perfect shuffles appear to be random but are not. It has
long been known, and easily proved [4], that the top card can be moved to position j
(the top card is in position 0) through a sequence of in and out shuffles determined by
the base-two representation of j. Reading the base two digits from left to right, simply
perform a shuffle for each digit: an in shuffle for a 1 and an out shuffle for a 0. The
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